Role of Cardiologists in Stroke Prevention Focusing on Hypertension

Se-Joong Rim, M.D.
Cardiology Division
Yongdong Severance Hospital
Yonsei University College of Medicine

Cause of Death in Korea

Stroke mortality by region

		Morta	lity rate
		(per 1	00,000)
Country (Voor)	- N	100	Momo

Country (Year)	Men	Women
Russian Federation (1998)	361	229
Romania (1999)	281	186
China, rural (1099)	243	152
Korea (1997)	182	114
Argentina (1996)	116	63
Japan (1997)	79	41
Mexico (1995)	61	52
England/Wales (1999)	52	41
United States (1999)	41	33
Australia (1996)	38	27

Aged 35 to 74 years

Burdens of Stroke

- Death
- Physical and mental disability (30%)
- Depression (18~50%)
- Economic burden

Type of Stroke

- Ischemic stroke 83%, hemorrhagic stroke 17% in US
 - Rosamond WD, et al. Stroke 1999;30:736-43
- Ischemic stroke 66%, hemorrhagic stroke 34% in Korea
 - The Korean National Health System Study (1986-2000)BMJ 2004;328:324-325

What Causes a Stroke?

Ischemic

- Hypertension
- Atherosclerosis
- Heart and/or blood conditions that contribute to clotting

Hemorrhagic

- Aneurysm
- Arteriovenous Malformation

Hypertension Prevalences vs Stroke Mortality 6 European and 2 North American Countries

Stroke Mortality and Usual BP by Age Systolic Blood Pressure Diastolic Blood Pressure

Prospective Studies Collaboration. Lancet. 2002;360:1903-1913.

SBP and Stroke in Asia

"Increased blood pressure levels are directly responsible for the majority of stroke deaths (more than 50%)...in Eastern Asia. "

Modifiable Risk Factors for Ischemic Stroke

Relative risk

Guide to Primary Prevention of Strokes

- Smoking Cessation
- BP control
- Follow a Healthy Diet
- Aspirin
- Blood lipid management
- Exercise Regularly
- Weight management
- Diabetes management
- Treat chronic anticoagulation

Effectiveness of Primary Prevention Strategies

Strategy	Relative Risk Reduction, %	Number needed to prevent 1 stroke a year
Antihypertensive therapy	42	7937
Statins	25	13333
Aspirin	RR increase, 7	Not significant
Aspirin after myocardial infarction	36	400
ACE inhibitor	30	11111
Carotid endarterectomy	RR increase, 423	Not significant

Effectiveness of Secondary Prevention Strategies

Strategy	Relative Risk Reduction, %	Number needed to prevent 1 stroke a year
Antihypertensive therapy	28	51
Statins	25	57
Warfarin for nonrheumatic Afib	62	13
Smoking cessation	33	43
Aspirin	28	77
Thienopyridines (vs aspirin)	13	64
Carotid endarterectomy	44	26

Annual recurrence rate 7% in patients with history of TIA or stroke

Benefits of Lowering BP

	Average Percent Reduction
Stroke incidence	35–40%
Myocardial infarction	20–25%
Heart failure	50%

In stage 1 HTN and additional CVD risk factors, achieving a sustained 12 mmHg reduction in SBP over 10 years will prevent 1 death for every 11 patients treated.

JNC7

Prevention of Stroke by BP lowering drugs

Is "Hypertension" needed for expecting a benefit from BP lowering drugs?

HOPE Study

- Design: multicenter, randomized, double-blind, placebo-controlled trial
- Patients: 9297 patients ≥55 years old with a history of CV disease or diabetes plus at least 1 other CV risk factor and without evidence of heart failure
- Treatment: ramipril 10 mg/day or placebo and vitamin E or placebo for an average of 5 years
- Primary end point: composite of MI, stroke, or CV death

HOPE Study Outcomes: Events per Patient Group

*MI, stroke, or CV death. Yusuf et al. *N Engl J Med*. 2000;342:145-153.

Hourly Means of Systolic and Diastolic Ambulatory BP in HOPE Substudy: Baseline and 1 Year

Svensson et al. *Hypertension*. 2001;38:e28-e32.

Odds Ratio for CV Events and Systolic BP Difference: Recent and Older Trials

Staessen et al. *J Hypertens*. 2003;21:1055-1076.

EUROPA Study

- Design: multicenter, randomized, double-blind, placebo-controlled trial
- Patients: 12,238 patients ≥18 years old with previous MI, revascularization or angiographic evidence of ≥70% narrowing of ≥1 coronary arteries, and men with positive exercise test, stress echo or nuclear study;
 - no evidence of heart failure
- Treatment: perindopril 8 mg/day, or placebo for an average of 4.2 years
- Primary end point: composite of CV death, MI, or cardiac arrest

EUROPA: Time to First Occurrence of Primary End Point (CV Death, MI, or Cardiac Arrest)

Fox. Lancet. 2003;362:782-788.

EUROPA: Frequency of Primary and Selected Secondary Outcomes

	Perindopril	Placebo	Relative Risk Reduction (95%	
	(n=6110)	(n=6108)	CI)	Р
CV mortality, MI, or cardiac arrest	488 (8.0%)	603 (9.9%)	20% (9 to 29)	.0003
CV mortality	215 (3.5%)	249 (4.1%)	14% (-3 to 28)	.107
Nonfatal MI	295 (4.8%)	378 (6.2%)	22% (10 to 33)	.001
Stoke	98 (1.6%)	102 (1.7%)	1-2%	NS
Total mortality, nonfatal MI, UA, cardiac arrest	904 (14.8%)	1043 (17.1%)	14% (6 to 21)	.0009
Total mortality	375 (6.1%)	420 (6.9%)	11% (-2 to 23)	.1

Fox. Lancet. 2003;362:782-788.

EUROPA Facts

- At baseline, 27% of patients were "hypertensive"
 (BP >160/95 mm Hg or receiving antihypertensive rx)
- Mean baseline BP: 137/82 mm Hg
- During run-in period, BP was reduced from 137/82 mm Hg to 128/78 mm Hg
- After randomization, systolic and diastolic BP among patients on perindopril were maintained
- During double-blind treatment, placebo group BP was
 5/2 mm Hg higher than perindopril group BP

Fox. Lancet. 2003;362:782-788.

Odds Ratio for CV Events and Systolic BP Difference: Recent and Older Trials

Fox. Lancet. 2003;362:782-788; Staessen et al. J Hypertens. 2003;21:1055-1076.

Prevention of Stroke by BP lowering drugs

Which drug can be used as a first-line therapy?

JNC 7: Compelling Indications for Individual Drug Classes

Compelling Indication	Initial Therapy Options	Clinical Trial Basis
Diabetes	Diuretic, BB, ACE inhibitor, ARB, CCB	NKF-ADA Guideline, UKPDS, ALLHAT
Chronic kidney disease	ACE inhibitor, ARB	NKF Guideline, Captopril Trial, RENAAL, IDNT, REIN, AASK
Recurrent stroke prevention	Diuretic, ACE inhibitor	PROGRESS

Chobanian et al, and the National High Blood Pressure Education Program Coordinating Committee. *Hypertension*. 2003;42:1206-1252.

WHO/ISH: Compelling Indications for Specific Antihypertensive Drugs

Compelling Indications	Preferred Drug	Primary End Point	
Elderly with isolated systolic hypertension	Diuretic DHP CCB	Stroke Stroke	
Renal disease			
Diabetic nephropathy type 1 Diabetic nephropathy type 2 Nondiabetic nephropathy	ACE inhibitor ARB ACE inhibitor	Progression of renal failure Progression of renal failure Progression of renal failure	
Cardiac disease			
Post-MI	ACE inhibitor β-blocker	Mortality Mortality	
LV dysfunction	ACE inhibitor ACE inhibitor	Heart failure Mortality	
CHF (diuretics almost always included)	β-blocker Spironolactone	Mortality Mortality	
LV hypertrophy	ARB	CV morbidity and mortality	
Cerebrovascular disease	ACE inhibitor + diurectic Diuretic	Recurrent stroke Recurrent Stroke	

WHO/ISH Writing Group. J Hypertens. 2003;21:1983-1992.

PROGRESS Study

- Design: multicenter, randomized, placebocontrolled trial
- Patients: 6105 patients with a history of stroke or transient ischaemic attack
- Treatment: active treatment (perindopril (4 mg daily), with the addition of indapamide) or placebo for 4 years
- Primary end point: total stroke (fatal or non-fatal)

ProgressCumulative incidence of stroke

Perindopril alone: 5/3 mmHg difference with no benefit (5% RR, 95% CI -19% to 23%) Perindopril / indapamide: 12/5 mmHg difference with 43% RR (30% to 54%)

Effect of antihypertensive therapy on recurrent stroke

Rachid P, et al. Stoke 2003;34:2741-2749

Prevention of Stroke by BP lowering drugs

Which drug can be used as a first-line therapy for primary prevention?

MRC Trial: Design

- N: 17,354; 52% men
- Age: 35-64 years
- BP: diastolic BP 90 to 109 mm Hg
- Design: 3 treatment groups
- Treatment: bendrofluazide vs propranolol vs placebo
- Diastolic BP difference: 6 mm Hg
- Duration: 5.5 years

MRC Trial: Endpoints

Active Therapy vs Placebo

The reduction in stroke rate on bendrofluazide was greater than that on propranolol (p = 0.002). MRC Working Party. *BMJ*. 1985;291:97-104.

LIFE Study

- Design: multicenter, double-blind, randomized trial
- Patients: 9193 patients 55-80 years old with previously treated or untreated essential hypertension (systolic BP 160-200 mm Hg and/or diastolic BP 95-115 mm Hg) and LVH determined by ECG
- Treatment: losartan 50 to 100 mg/day with additional drugs as needed vs atenolol 50 to 100 mg/day with additional drugs as needed to achieve goal BP of <140/90 mm Hg for an average of 4.8 years</p>
- Primary end point: composite of CV mortality, fatal and nonfatal MI, and fatal and nonfatal stroke

LIFE: Systolic Blood Pressure

LIFE: Study End Points

^{*}For degree of LVH and Framingham risk score at randomization.

Dahlöf et al. *Lancet*. 2002;359:995-1003.

Favors Losartan Favors Atenolol

ANBP2 Study

- Design: prospective, randomized, open-label trial with blind end point assessment (PROBE)
- Patients: 6083 patients 65 to 84 years of age with hypertension (≥160/90 mm Hg) who received health care at 1594 family practices
- Treatment: initial therapy recommended with either enalapril or hydrochlorothiazide to reduce systolic BP by ≥20 mm Hg or to under 140 mm Hg, and diastolic BP by ≥10 mm Hg or to under 80 mm Hg. Choice of specific agent or dose made by family practitioner
- Primary end point: all CV events or deaths from any cause
 Wing et al. N Engl J Med. 2003;348:583-592.

ANBP2 End Points

	ACE Inhibitor (n=3044)	Diuretic (n=3039)	Hazard Ratio	<i>P</i> value
All CV events or death	695	736	0.89	.05
First CV event or death	490	529	0.89	.06
All-cause mortality	195	210	0.90	.27
First CV event	394	429	0.88	.07
Coronary event	173	195	0.86	.16
MI	58	82	0.68	.04
Other CV event	134	144	0.90	.36
Heart failure	69	78	0.85	.33
Cerebrovascular event	152	163	0.90	.35
Stroke	112	107	1.02	.91

ALLHAT: BP Results by Treatment Group

- Chlorthalidone
- **→** Amlodipine
- Lisinopril

Compared with chlorthalidone:

SBP significantly higher in the amlodipine group (0.8 mm Hg) and the lisinopril group (2 mm Hg) at 5 years

Compared with chlorthalidone:

DBP significantly lower in the amlodipine group (0.8 mm Hg) at 5 years

ALLHAT Collaborative Research Group. JAMA. 2002;288:2981-2997.

ALLHAT: Primary Outcome (CHD Death and Nonfatal MI)

ALLHAT: Secondary End Points

Relative Risk (95% CI)

Tota	l mortal	lity

0.96 (0.89-1.02) Amlodipine

1.00 (0.94-1.08) Lisinopril

Stroke

0.93 (0.82-1.06) Amlodipine

1.15 (1.02-1.30) Lisinopril

Combined CVD

1.04 (0.99-1.09) **Amlodipine**

Lisinopril 1.10 (1.05-1.16)

Heart failure

1.38 (1.25-1.52) **Amlodipine**

1.19 (1.07-1.31) Lisinopril

Favors Amlodipine

ALLHAT: Stroke

ALLHAT: Stroke (Amlodipine vs Chlorthalidone) Subgroups

ALLHAT: Stroke (Lisinopril vs Chlorthalidone) Subgroups

ALLHAT Collaborative Research Group. JAMA. 2002;288:2981-2997.

ALLHAT Summary

- Study confirmed importance of systolic BP
- No difference between study medications in primary endpoint of fatal/nonfatal CHD
- Nonsignificant reduction in stroke with amlodipine compared with diuretic
- Significantly higher incidence of stroke with lisinopril than with chlorthalidone
 - Difference particularly pronounced in black subpopulation
 - Systolic BP not as well controlled in lisinopril group, especially in black subpopulation
- CHF, a component of the secondary endpoint, lower in diuretic group than in amlodipine or chlorthalidone group
- ALLHAT showed that multiple medications often are required to get to BP goal

BP-Lowering Treatment Trialists

Comparisons of Active Treatments and Control

•	BP Difference (mm Hg)	Relative Risk	RR (95% CI)
Stroke			
ACEI vs placebo	-5/-2		0.72 (0.64, 0.81)
CA vs placebo	-8/-4		0.62 (0.47, 0.82)
Coronary heart disea	se		
ACEI vs placebo	-5/-2		0.80 (0.73, 0.88)
CA vs placebo	-8/-4		0.78 (0.62, 0.99)
Heart failure			
ACEI vs placebo	-5/-2		0.82 (0.69, 0.98)
CA vs placebo	-8/-4		1.21 (0.93, 1.58)
Major CV events			
ACEI vs placebo	-5/-2	•	0.78 (0.73, 0.83)
CA vs placebo	-8/-4		0.82 (0.71, 0.95)
CV mortality			
ACEI vs placebo	-5/-2		0.80 (0.71, 0.89)
CA vs placebo	-8/-4		0.78 (0.61, 1.00)
Total mortality			
ACEI vs placebo	-5/-2	•	0.88 (0.81, 0.96)
CA vs placebo	-8/-4		0.89 (0.75, 1.05)
	0.5	Favors 1.0 Favors Active Control	2.0

Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. 2003;362:1527-1535.

BP-Lowering Treatment Trialists *Comparisons of Different Active Treatments*

	fference n Hg)	Relative Risk	RR (95% CI)
Stroke			
ACE Inhibitor vs D/BB	2/0	•	1.09 (1.00, 1.18)
CA vs D/BB	1/0	•	0.93 (0.86, 1.01)
ACE Inhibitor vs CA	1/1		1.12 (1.01, 1.25)
CHD			
ACE Inhibitor vs D/BB	2/0	+	0.98 (0.91, 1.05)
CA vs D/BB	1/0	+	1.01 (0.94, 1.08)
ACE Inhibitor vs CA	1/1		0.96 (0.88, 1.05)
HF			
ACE Inhibitor vs D/BB	2/0	+	1.07 (0.96, 1.19)
CA vs D/BB	1/0	•	1.33 (1.21, 1.47)
ACE Inhibitor vs CA	1/1	-	0.82 (0.73, 0.92)
0.5 Favors 1.0 Favors 2.0 First Listed Second Listed			

Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. 2003;362:1527-1535.

BP-Lowering Treatment TrialistsComparisons of Different Active Treatments

	(mm Hg)	Relative Risk	RR (95% CI)
Major CV events			
ACEI vs D/BB	2/0		1.02 (0.98, 1.07)
CA vs D/BB	1/0	•	1.04 (0.99, 1.08)
ACEI vs CA	1/1	•	0.97 (0.92, 1.03)
CV mortality			
ACEI vs D/BB	2/0	+	1.03 (0.95, 1.11)
CA vs D/BB	1/0		1.05 (0.97, 1.13)
ACEI vs CA	1/1		1.03 (0.94, 1.13)
Total mortality			
ACEI vs D/BB	2/0	+	1.00 (0.95, 1.05)
CA vs D/BB	1/0		0.99 (0.95, 1.04)
ACEI vs CA	1/1	•	1.04 (0.98, 1.10)
	0.5 F i	Favors 1.0 Favorrst Listed Second L	s 2.0 isted

Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. 2003;362:1527-1535.

Prevention of Stroke by BP lowering drugs

Is more reduction of BP related with greater prevention of stroke?

BP-Lowering Treatment Trialists

 $A = CA \ vs$ placebo; B = ACE inhibitor vs placebo; C = more intensive vs less intensive blood-pressure-lowering; D = ARB vs control; E = ACE inhibitor vs CA; F = CA vs diuretic or -blocker; CA -blocker.

Randomized Groups (mm Hg)

Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. 2003;362:1527-1535.

Randomized Groups (mm Hg)

Prevention of Stroke by BP lowering drugs

Is treatment beneficial in isolated systolic hypertension in the elderly?

Systolic BP, Not Diastolic BP, Predicts CVD and CHD Mortality

Observational Study of 4714 Middle-Aged Hypertensive Men

Benetos et al. Arch Intern Med. 2002;162:577-581.

Risk of Stroke Death According to Systolic BP and Diastolic BP in MRFIT

SHEP Trial: Design

- N: 4736; 43% male
- Age: ≥60 years
- BP: systolic BP 160-219 mm Hg and diastolic BP <90 mm Hg</p>
- Design: placebo-controlled, double-blind
- Active treatment: chlorthalidone (atenolol as step 2)
- Systolic BP difference: 12 mm Hg
- Duration: 4.5 years

SHEP Trial: Endpoints

Active Therapy vs Placebo

Systolic Hypertension in Europe (Syst-Eur) – with Nitrendipine

nitrendipine 2398, placebo 2297, SBP160-219, DBP <95, >60 years-old follow for 2 years Staessen JA et al. Lancet. 1997

SHEP and Syst-Eur: Key Results

	SHEI	P Syst-Eur
Reduction in SBP (mmHg)	27	23
Risk Reduction, %		
All-cause mortality	13	14
All cardiovascular endpoints	32	31
Fatal and nonfatal stroke	36	42
Cardiac endpoints	25	26

Benefit of CCB in stroke

- The benefit of antihypertensive therapy in preventing stroke is wellrecognized.
- In the randomized, placebo-controlled Syst-Eur and Syst-China trials, CCB-based therapy **reduced the incidence of stroke** by **42**% (p=0.003) and **38**% (p=0.01) respectively, compared with placebo.

Cardiovascular risk and Pulse pressure in elderly

Risk of Causing Widened PP When Treating SH

• In treatment group of SHEP, and increase of 10 mmHg in PP on therapy was independently predictive of significant increases in the risks of stroke (24% increased risk) and heart failure (32%)

Viola Vaccarino, et al. Am J Cardiol 2001;88:980-986

Relative Risk of Stroke Death According to PWV: Multivariate Models

Parameters	Relative Risk	95% CI	Р
Model including PWV			
$\chi^2 = 39.0$			
PWV (4 m/s)	1.39	1.08-1.72	0.022
Age (10 y)	1.80	1.37–2.35	0.001
Smoking	3.34	1.06-10.50	0.03
Model including pulse pressure			
$\chi^2 = 30.3$			
PP (10 mm Hg)	1.19	0.96–1.47	0.10
Age (10 y)	2.39	1.54–3.71	0.001

Laurent et al. Stoke 2003;34:1203-1206

DBP and Risk of Stroke J shaped relation in treated ISH

Conclusions

- BP lowering in hypertensives is effective in the primary and secondary prevention of stoke.
- For primary prevention, whether any antihypertensive class is superior to the others is uncertain.
- For secondary prevention, diuretics alone or its combination with ACEi can achieve reduction in risk of stroke.
- Controlling isolated systolic hypertension in the elderly is important.