2005

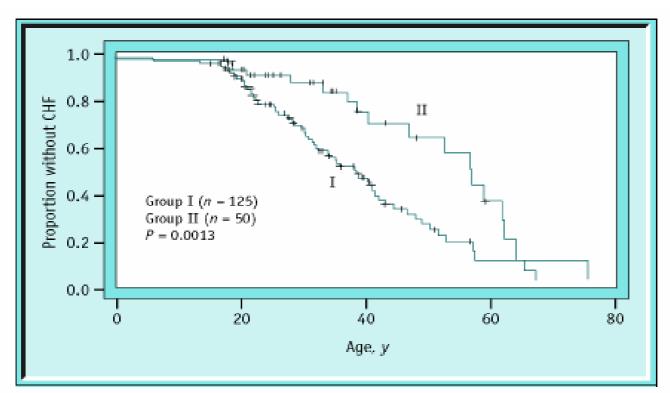
< Pros & Cons >

M/3, cc-TGA, PS, BCPC(+) Double Switch Operation

THE REPORT OF THE PARTY OF THE

Congenitally corrected TGA

- Atrio-Ventricular & Ventriculo-Arterial discordance
 - Physiologically corrected circulation with the morphologic right ventricle (RV) serving as the systemic pump.


Associated lesion	Frequency noted in major series, %
Tricuspid valve abnormalities	90–97
Ventricular septal defect	60-80
Pulmonary stenosis or atresia	55-65
Complete heart block	22-45
	(increases with age)
Aortic regurgitation	25-36
Coronary artery	Up to 45
abnormalities	(in autopsy series)
Dextrocardia	20
Atrial septal defect	12
Systemic right ventricular hypoplasia	Approximately 10

Long-term outcome in cc-TGA

Graham et al. (JACC 2000)

- Freedom from Congestive Heart Failure

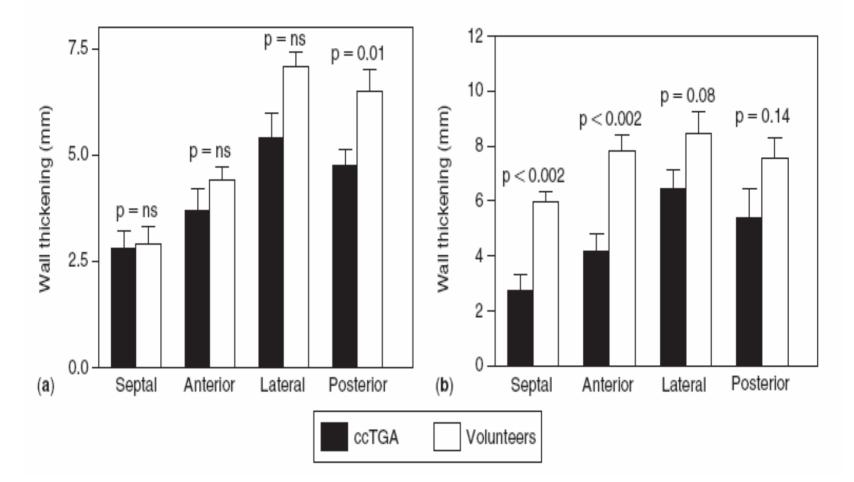
group I - with assoicated lesions

group II -no significant associated lesions

Systemic RV fx

- Hornung et al. (Am J Cardiol 1999)
 - Abnormal RV myocardial perfusion with fixed defects at rest and further reversible defects with exercise nearly universal among the 20 patients with cc-TGAs tested.
 - Tulevski (Cadiol Young 2003)
 - Regional and global right ventricular dysfunction in asymptomatic or minimally symptomatic patients with cc-TGA
 - Right ventricular hypertrophy
 - Progressive ischemia
 - Diastolic dysfx

Systemic RV fx


Table 1. Effects of dobutamine stress.

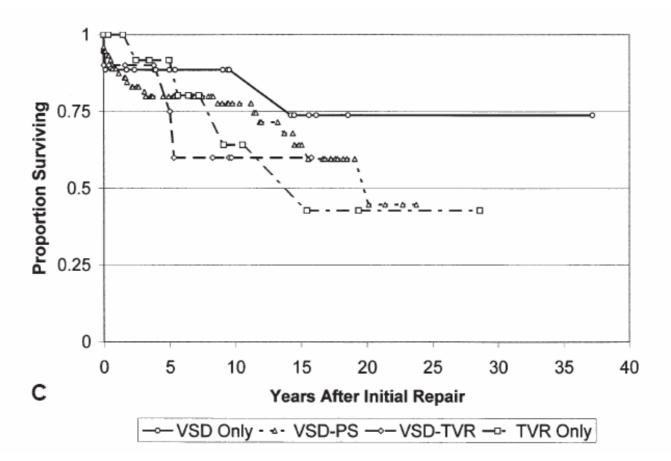
	Segment	ccTGA			Controls			ccTGA vs Controls	
		Rest	Dobutamine	р	Rest	Dobutamine	р	Rest	Dobutamine
Wall motion (mm)	Septal	5.1 (0.5)	5.0 (0.8)	ns	7.1 (0.4)	11.2 (0.6)	< 0.001	< 0.02	< 0.001
	Anterior	7.3 (0.7)	9.5 (1.1)	ns	9.5 (0.3)	13.2 (0.6)	< 0.001	< 0.008	0.02
	Lateral	9.0 (0.7)	10.7 (1.2)	ns	11.6 (0.5)	13.6 (0.8)	0.04	< 0.009	ns
	Posterior	8.5 (0.5)	10.2 (1.6)	ns	11.1 (0.5)	13.2 (0.8)	ns	< 0.01	0.01
	Overall	7.2 (0.5)	8.8 (1.0)	ns	9.8 (0.4)	12.8 (0.4)	< 0.001	< 0.006	< 0.006
Wall thickening (mm)	Septal	2.8 (0.4)	2.7 (0.6)	ns	2.9 (0.4)	6.0 (0.4)	< 0.004	ns	< 0.002
0.000	Anterior	3.6 (0.5)	4.2 (0.6)	ns	4.4 (0.3)	7.8 (0.6)	< 0.007	ns	< 0.002
	Lateral	5.4 (0.6)	6.5 (0.7)	ns	7.1 (0.3)	8.4 (0.8)	ns	ns	ns
	Posterior	4.8 (0.4)	5.4 (1.1)	ns	6.5 (0.5)	7.6 (0.8)	ns	< 0.02	ns
	Overall	4.1 (0.4)	4.7 (0.6)	ns	5.2 (0.4)	7.5 (0.4)	< 0.02	ns	< 0.005
Ejection fraction (%)		44 (3)	48 (5)	ns	64 (5)	72 (4)	< 0.05	< 0.001	< 0.001

Abbreviations: ccTGA: congenitally corrected transposition of the great arteries; ns: not significant. Values between brackets denote standard error of the mean

Systemic RV fx

Theoretical Risk Factors for RV failure in cc-TGA

- Volume overload
- Systemic afterload
- Conduction and rhythm disturbances
- Assoicated LV pressure and geometry
- Coronary artery anomalies
- Surgical injury
- Hypoxemia
- Advancing patient age (bacterial endocarditis, pregnancy)


Conventional repair

				Early mortality	10 yr survival	20 yr survival	Free of reop
Yeh (Toronto)	1999 JTCS	118	1959~ 1997	6%	75%	48%	65% at 10 yrs
Biliciler- Denktas (Mayo)	2001 JTCS	111	1971~ 1996	16%	67%	57% (at 15yr)	59% at 10 yrs
Rutledge (Texas)	2002 Pediatr Cardiol	121 (47)	1952~ 1999		91%	75%	
Hraska (Boston)	2005 JTCS	123 (96)	1963~ 1996	15% at 1yr	68%	59%	

Conventional repair

Yeh et al. (J Thorac Cardiovasc Surg 1999)

•

Comparative Anatomy of the Ventricles

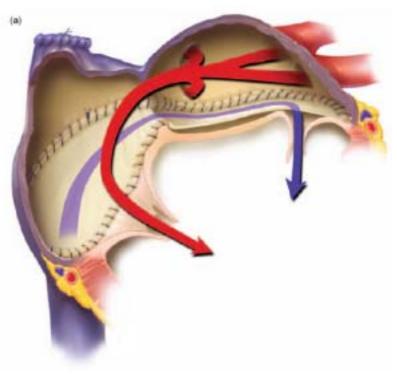
	RV	LV
Trabeculation Wall thickness AV valve	Coarse Round, 30-40% larger than mitral valve and encompassed	Fine Wall thickness Oval shape, reinforced with firm annulus
	by an elastic annulus Leaflets are attached to multiple papillary muscles of differing size including the IVS	Leaflets are anchored by two distinct papillary muscles
Coronary circulation Ventricular architecture	During systole and diastole Suited for the changes in preload	During diastole Suited for the changes in afterload

Anatomic repair

- LV as the systemic ventricle
 - the theoretic advantage of removing the high pressure load from the RV and ameliorating progressive RV and TV dysfunction
- LV 50% of the RV size, LVP>70% of systemic pressure
- Atrial switch (Senning/Mustard)
 - Position of cardiac apex
 - Arterial switch/Rastelli type
 - Normal pulmonary valve, pulmonary outflow tract obstruction (<mild), coronary artery anomalies
 - Good branch PAs with low PVR, Routability of VSD

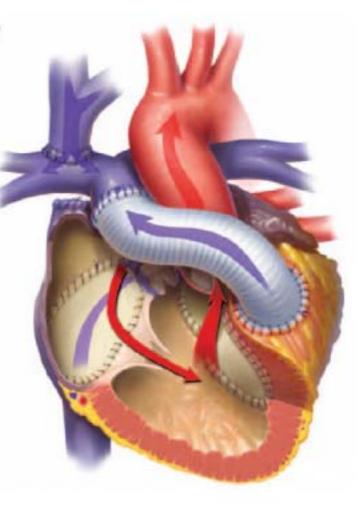
•

•


Anatomic repair

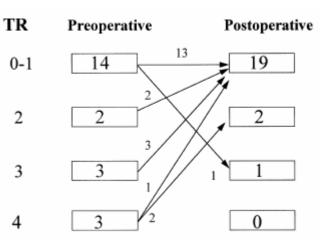
- Predictable disadvantages
 - Venoatrial baffle obstruction
 - Atrial arrhythmia
 - Atrial overload is usually avoided in anatomic correction of cc-TGA (cf. d-TGA)
 - Sinus node dysfunction
 - Long myocardial ischemic time
 - After Rastelli
 - Insufficient space from anatomic RV to PA
 - Conduit compression
 - Reoperation for replacement

Hemi-Mustard procedure


- Reduces complexity of the intraatrial procedure
- Reduces myocardial ischemia time
- Recognized complications, such as SVC obstruction, pulmonary venous obstruction, sinus node dysfx are eliminated.
- mRV-pulmonary trunk conduit will last longer
- If the mRV size is reduced, BCPS may provide superior hemodynamics.

Hemi-Mustard procedure

- Reduces complexity of the intraatrial procedure
- Reduces myocardial ischemia time
- Recognized complications, such as SVC obstruction, pulmonary venous obstruction, sinus node dysfx are eliminated.
- mRV-pulmonary trunk conduit will last longer
- If the mRV size is reduced, BCPS may provide superior hemodynamics.



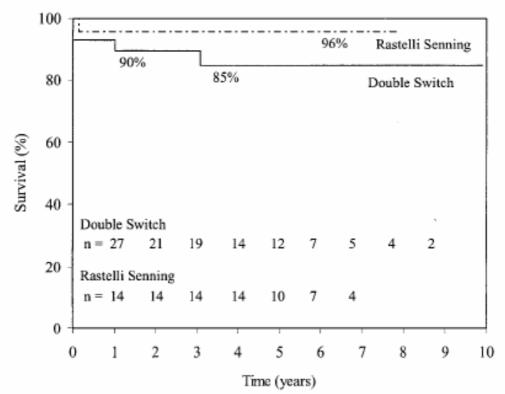
Outcomes after Double Switch

Imamura et al. (Ann Thorac Surg 2000)

- 27 patients operated at the Cleveland Clinic
- Age at operation : 3 Mo ~ 55 yrs
- 22 Double switch operation
 - 10 Senning + ASO
 - mean CPB time 210min, ACC time 107min
 - 12 Senning + Rastelli
 - mean CPB time 194min, ACC time 101min
- 6 Previous banding
- no early or late mortality
- Only 2 patients required pacemakers
- TV function improved in all patients except one.
- No systemic or pulmonary venous obstruction or atrial arrhythmia
- follow-up : mean 27.8 (1 ~ 58) Mo

- Ilbawi et al. (Ann Thorac Surg 2002)
 - 12 pts
 - mean age at op. : 9 ± 3.6 Mo
 - Mustard + Rastelli(10) or ASO (2)
 - Concomitant TV valvuloplasty(2) and VSD enlargement (1)
 - 1 hospital death
 - 1 Pacemaker insertion
 - 1 SVC obstruction
 - All survivors had normal LV fx with good hemodynamic parameters and all remained asymptomatic
 - mean follow-up of 7.6 (0.5 to 10) years

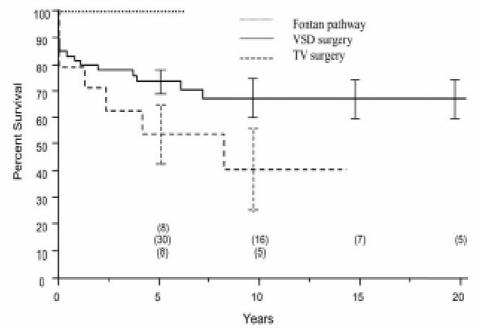
.


- Imai et al. (Semin Thorac Cardiovasc Surg 2001)
 - 76 pts
 - Mean age at op. : 6.6±3.6 yrs (3 Mo ~ 15 yrs)
 - 47 Mustard and 29 Senning
 - 14 ASO, 40 Rastelli, 21 REV
 - 14 previous banding
 - hospital mortality : 7.9%
 - no hospital deaths in the last 22 patients
 - Mean follow-up : 4.9 yrs
 - 4 late deaths
 - 2 reoperation

- Langley et al. (J Thorac Cardiovasc Surg 2003)
 - 54 pts
 - Median age at op. 3.2 yrs (7 wks ~ 40 yrs)
 - Senning + ASO (29) or Rastelli (22)
 - 9(31%) Previous banding
 - hospital mortality : 5.6%
 - median follow-up : 4.4 yrs
 - 2 late deaths
 - 94% of survivors in NYHA Fc I

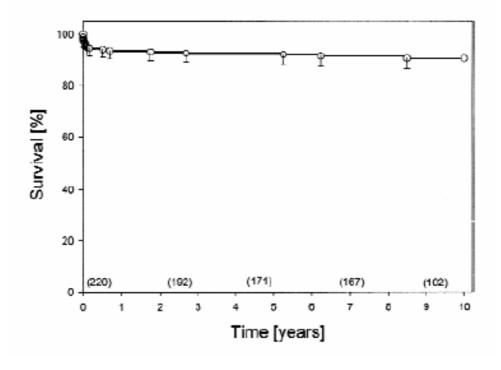


- Langley et al. (J Thorac Cardiovasc Surg 2003)
 - survival


- Langley et al. (J Thorac Cardiovasc Surg 2003)
 - Freedom from reop.

Outcomes after Fontan op.

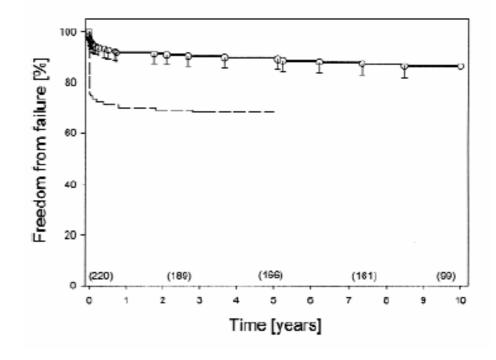
- Hraska et al. (J Thorac Cardiovasc Surg 2005)
 - Long-term outcome of surgically treated patients with cc-TGA
 - 17 Fontan patients



Long-term Results; Lateral Tunnel Fontan

Stamm et al. (J Thorac Cardiovasc Surg 2001)

- 220 Fontan patients, Mean FU 10.2±0.6 yrs
- Survival : 93% at 5yr, 91% at 10 yr

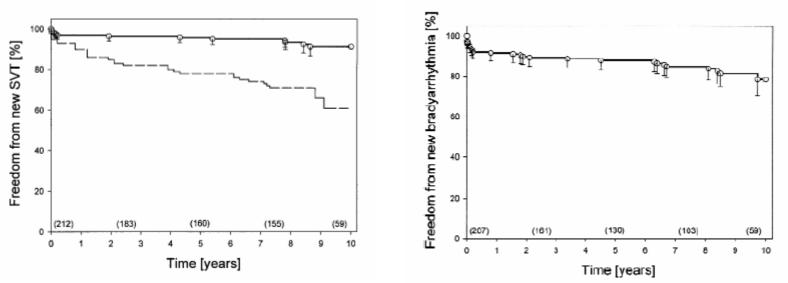


•

Long-term Results; Lateral Tunnel Fontan

Stamm et al. (J Thorac Cardiovasc Surg 2001)

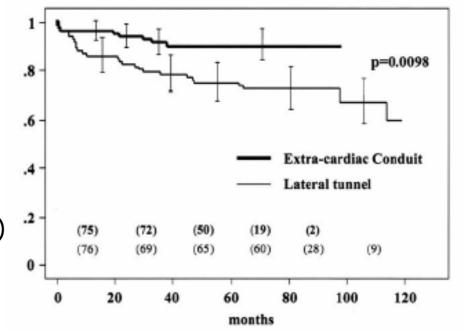
- 220 Fontan patients, Mean FU 10.2±0.6 yrs
- Freedom from Fontan failure : 90% at 5yr, 87% at 10yr



Long-term Results; Lateral Tunnel Fontan

Stamm et al. (J Thorac Cardiovasc Surg 2001)

- 220 Fontan patients, Mean FU 10.2±0.6 yrs
- Freedom from new bradyarrhythmia : 88% at 5yr, 79% at 10yr



Midterm results of Extracardiac conduit Fontan

Nakano et al. (J Thorac Cardiovasc Surg 2004)

- 88 lateral tunnel vs. 79 extracardiac conduit
- 8 yr survival 93.2% vs.
 94.9%
- SVT 15.9% vs. 5.1%(5~11%)

Freedom from cardiac related event

Thromboembolic Cx after Fontan

- Monagle and Karl (*Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu* 2002)
 - Review of 8 studies, total 1585 patients
 - thromboses : 3 ~ 16%
 - stroke or arterial emboli : 3 ~ 19%
 - Coon et al. (Ann Thorac Surg 2001)
 - echocardiographic findings in 592 Fontan patients
 - Intracardiac thrombus : 52 pts (8.8%)
 - Freedom from thrombus : 92% at 1yr, 82% at 10yr
 - The appearance of thrombus was not influenced by the type of operation or the presence of fenestrations.
 - stroke : 8/52 pts(15%).
 - frequency of thrombus occurrence closely resembled previously published curves for the development of arrhythmia and protein-losing enteropathy

•

Thromboembolic Cx after Fontan

- Seipelt et al. (Ann Thorac Surg. 2002)
 - 85 pts
 - Thromboembolic event : 13 pts (15.3%)
 - 1st peak occurred within the first postoperative year, 2nd peak beyond 10 years of follow-up.
 - The type of operation had no influence on the rate of thromboembolism.
 - missed by transthoracic echocardiography alone

Chun et al. (Am J Cardiol. 2004)

- 139 patients
- Stroke : 7 pts (3.6%)
- Events occurred between 2 weeks and 9 years postop.
- 2 strokes occurred in patients receiving aspirin and warfarin,
 2 receiving aspirin alone, and 3 with no anticoagulation

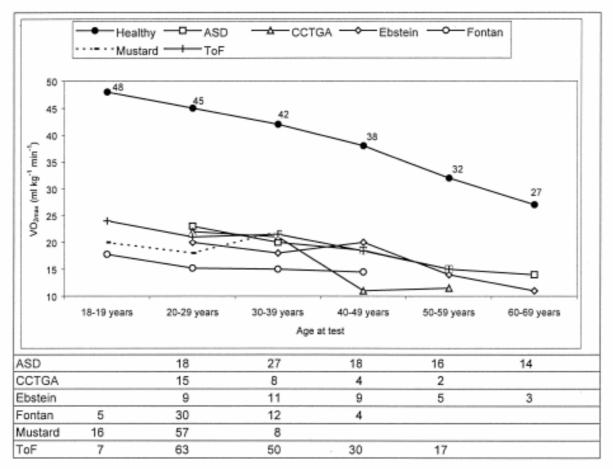
•

•

Aerobic capacity in CHD

(Fredriksen et al. AJCC 2001)

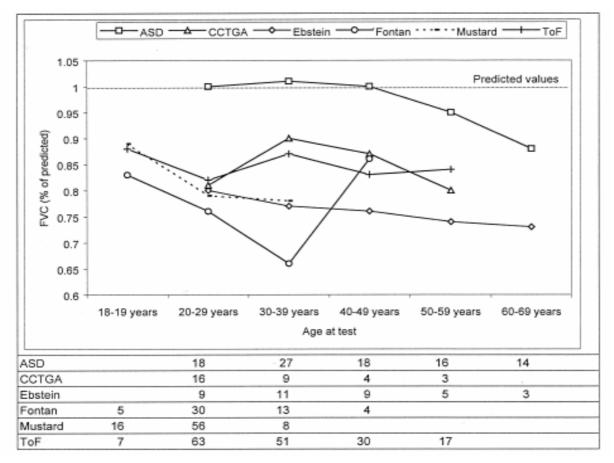
Exercise test and static lung fx


TABLE 4 Mean ± SD Exercise Test and Static Lung Function Data for the Entire Sample, Subdivided into Diagnostic Groups								
	Max. Oxygen Uptake (ml·kg ⁻¹ min ⁻¹)	Max. Heart Rate (beats/min)	<u> </u> Élood	Max. Diastolic Blood Pressure (mm Hg)	Oxygen Saturation (%)	% FVC Predicted		
All ASD CCTGA Ebstein Fontan Mustard ToF	$19.8 \pm 6.9 \\ 19.8 \pm 7.3 \\ 19.7 \pm 7.4 \\ 18.6 \pm 7.1 \\ 15.9 \pm 4.0 \\ 20.0 \pm 6.3 \\ 21.1 \pm 7.2 \\ \end{array}$		161 ± 29 - 152 ± 19 - 150 ± 30 170 ± 29	81 ± 13 77 ± 18	94 ± 5 	85 ± 17 97 ± 20 84 ± 15 77 ± 3 74 ± 17 81 ± 13 84 ± 17		
*Men and women are analyzed together. The number of patients is listed in Table 3. Max. – maximal.								

Aerobic capacity in CHD

(Fredriksen et al. AJCC 2001)

Maximal O2 uptake



Aerobic capacity in CHD

(Fredriksen et al. AJCC 2001)

Static lung function - FVC

Pathologic anatomy of cc-TGA

(Van Praagh et al. Am Heart J 1998)

- 33 autopsy case with two ventricles
- With IVS(22%), Ebstein's anomaly was always present, Pulmonary outflow tract obstruction never occurred, aortic outflow tract obstruction was frequent(43% 3/7)
- With VSD(78%), Ebstein's anomaly less common(44%), straddling or overriding of TV(24%), pulmonary outflow tract obstruction (56%), aortic outflow tract obstruction(4%)
- Malformation of the RV sinus and of the TV : 30/32(94%) cases of cc-TGA with situs solitus
 - Ebstein;s anomaly, with dysplasia of the TV and of the RV sinus 10/32(59%)
 - Hypoplasia of the RV sinus 11/32(34%)
 - Straddling 5cases, TS 5 cases, TV overriding 1 1case
 - Sparing of the LV was always observed in 100% of the classical cc-TGA {S,L,L/D}
- Systemic Rt coronary artery insufficiency with angiographically normal coronary arteries

•

Pathologic anatomy of cc-TGA

(Van Praagh et al. Am Heart J 1998)

- Patients with classical corrected TGA {S,L,L} and two ventricles almost never have two normal ventricles
- The morphologically right ventricle is a one coronary ventricle;
- The normal tricuspid value is not designed to close a circular systemic atrioventricular orifice
- The papillary muscles of the morphological left ventricle are a well-balanced pair;
- The radiations of the conduction system favor the morphologically left ventricle.

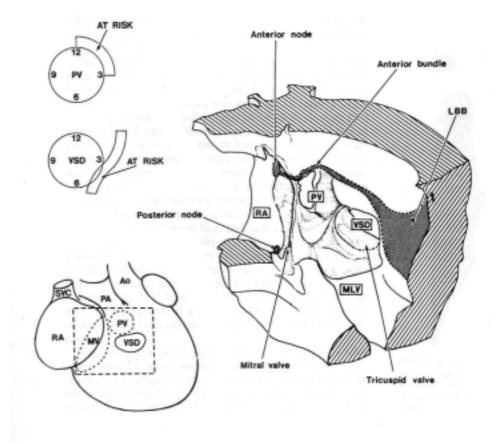
•

Pathologic anatomy of cc-TGA

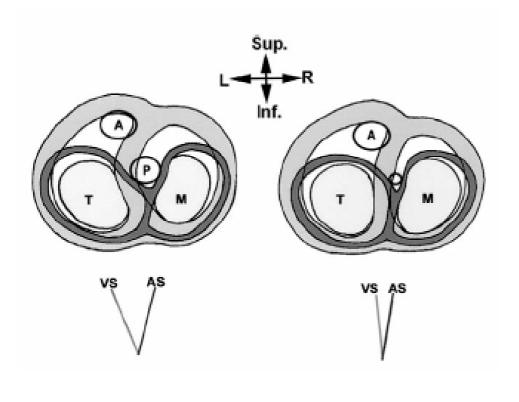
(Van Praagh et al. Am Heart J 1998)

- Many anatomic features suggest that the LV-MV system will be a better long-term pumping system than the RV-TV. Thus the RV-TV system in corrected
- cc-TGA "needs" an arterial switch operation even more than does the RV-TV system in physiologically uncorrected D-TGA50 because the RV sinus and the TV in corrected TGA almost always are malformed

Conclusion

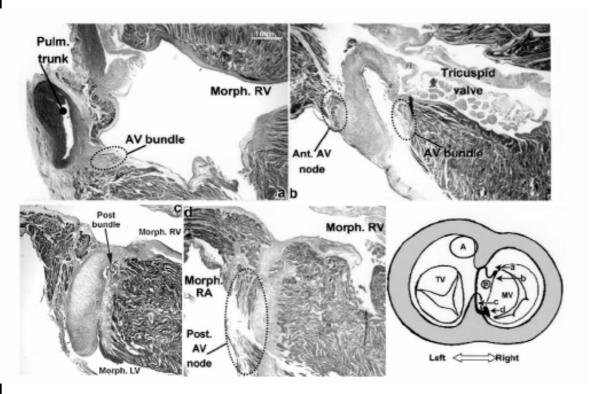

- Conventional repair, which leaves the morphologic RV as the systemic ventricle, has resulted in high incidence of tricuspid regurgitation (TR) and progressive dysfunction of the RV.
- The advent of the Double Switch operation, which restores the morphologic left ventricle (LV) as the systemic ventricle, has yielded favorable outcomes at early follow-up.
- Although long-term follow-up is needed to evaluate the potential superiority of this procedure, several theoretical advantages are expected.

.



Conduction system in cc-TGA

Conduction system in cc-TGA



SINC

- Hosseinpour et al. Ann Thorac Surg 2004
- Pulmonary trunk/Ao ratio < 0.6

Minimal septal malalignment 0-5 degrees

Conduction system in cc-TGA

Hosseinpour et al. Ann Thorac Surg 2004

posterior node in addition to anterior bundle -> slinglke arrangement of the AV conduction system

