Update on Hypertropic Cardiomyopathy

1

Introduction

- Myocardial hypertrophy without hemodynamic stress(e.g. HT)
- Myocyte disarray(pathology)
- Mutations in sarcometric genes: 0.2%, most common genetic heart disease
- Various phenotype(apHCM,DCMP) and genetic transmission (¼ of family, even old ages)

Normal parallel arrangement of myocyte with myocyte disarray and increased CT

Other characteristics: Hypertrophy Small vessel disease Echocardiographic characteristics

1. Left ventricular Hypertrophy: > 15mm

Asymmetric septal Hypertrophy

(spared posterior wall)

2. Subaortic dynamic obstruction: 1/4

"IHSS" or "HOCM"

- 3. Systolic anterior motion of mitral valve
- 4. Diastolic dysfunction (usu, nl sys)

Diagram of HOCM

Parasternal long axis view

Parasternal short axis view

Base

midventricle

Apical 4C view with CW

Diagnostic Dilemma based on echo

LVH: <u>"Sigmoid" septum(tourtuous aorta)</u>
Hypertensive heart
Athletic heart

2. Subaortic Dynamic Obstruction

Hypertensive heart with hypovolemia

CASE 1 : 69/ F

C.C: chest pain on exertion (3 Month ago) duration: 5 min no sweating P/E: BP 130/70, systolic murmur at apex Lab: cholesterol 184mg/dl, Hb 10g/dl Iron/TIBC 43/368, ferritin:20

ECG

Parasternal short axis view (poor PLAX image(sigmoid septum?)

MI:1.6 **S**4 04 16 SEP 14:19:10 2/0/D/H2 KANG-DONG SACRED HEART H. PDG ECHO KIM JUNG BOON F/70 030358936 3 PDG . 0:40:33 GAIN 60 COMP 55 78BPM 13CM 30HZ~ 10 Р

Apical 4C

Apical 2C

Cardiac Cath after Transfusion

Management Algorithm for HCM

CASE 1: 69/ F

OPD F/U: CCB and BB with Iron supplement

Recently, Postprandial discomfort (2 weeks ago) Admission due to melena with hematochezia Lab: Hb 8.4 g/dl

EGD: Duodenal ulcer with gastric ulcer

ECG at 2nd Admission

MI:1.7

PDG ECHO

GAIN 68 COMP 55 828PM

14 DEC 04 17:09:27 2/0/D/H3

54

F/70 030358936

16CM 30HZ*

YIS

Apical 4C view

19

Apical 4C view with CW Doppler

Provocation of LVOT obstruction

• Valsalva maneuver:

reduction of preload

- Post-PVC: increase of contractility
- Amyl nitrate inhalation:

reduction of prelaod and afterload

C.C: Palpitation and dyspnea

BHx:

PSVT adenosine PSVT . echo: normal CAG: normal Mx: RFCM for AVNRT at EPS

ECG after RFCM

Apical 4C

Transmitral flow by PW

Apical HCM

1/4 of Japan, < 10% in western Longterm outcome: by Eriksson MJ, JACC 2002 Benign prognosis Not associated with SCD 1/3: MI, arrhythmia

56 year/M Routine exam for pilot license In 1984

Circulation 2001 by BarryJ.Maron et al.

Extensive W/U due to ECG change: Stress test and CAG: normal Echo:normal

10 years later De novo development of Apical HCM at a advanced age

Apical 4C view

CASE 3: 67/F

CC: dypnea

Chest PA at Admission

ECG at Admission

PSAX

Diagnostic Dilemma for nonobstructive HCM (esp, no ASH, WT <15mm)

Hypertensive LVH: concentric, WT<15mm Athletic heart: enlarged, <15mm

New methodology: TDI(tissue Doppler image), SRI(strain rate image)

Tissue Doppler Image (long axis from apical window)

HCM Athlete with LVH control (normal EF)

Strain

"stretching". In scientific usage, "<u>deformation</u>". linear strain can be defined by the Lagrangian formula:

Where ε is strain, L₀ = baseline length and L is the instantaneous length at the time of measurement

Data on timing of global events is implanted into normal <u>regional</u> velocity, strain (ϵ) rate, and strain rate (SR)curves to subdivide <u>cardiac cycle</u> into mechanical components.

ICT, Isovolumic contraction time; *IVRT*, isovolumic relaxation time.
Discrimination of Nonobstructive Hypertrophic

<u>Cardiomyopathy</u> From <u>Hypertensive Left</u> <u>Ventricular Hypertrophy</u> on the Basis of Strain <u>Rate Imaging</u> by Tissue Doppler Ultrasonography

Tomoko S. Kato, et al.

(Circulation. 2004;110:3808-3814.)

Diagnosis based on echo and endocardial Bx

IVST/PWT ratio and Systolic Strain(ε_{sys})

Figure 3. Relation between IVST/PWT ratio and ϵ_{sys} in patients with HCM (\bullet) and those with H-LVH (\bigcirc). Optimal cutoff values for discrimination between the 2 groups of patients are indicated.

Case 4 : 67/M

• 2~3

가 cold sweating

- 30
- Smoking/alcohol (-/-)

ECG at ER -> Cath room for prim. PCI

Left Coronary Artery

Shock during CAG Intubation and IABP

LCA (near orifice)

MI:1.7

NOV

87:16

PDG ECHO PARKSUKGON

63 1:04:12 GAIN 62 COMP 50

16CM 38HZ* 24

88

25 2/2/D/H3 KANG-DONG

Parasternal long-axis view

42

Parasternal short-axis view

ECG at CCU

ECG at CCU: later, repeated VT and VF

Possible mechanisms for myocardial ischemia in HCM

Increased myocardial oxygen demand Myocardial Hypertrophy Diastolic dysfunction Myocyte disarray LV outflow obstruction Arrhythmia

Reduced myocardial perfusion Small vessel disease Abnormal vascular response Myocardial bridges Increased coronary vascular resistance

Etiology of Myocardial Necrosis and Evolution of Congestive Heart Failure in Patients with HCM

- Atherosclerotic coronary artery disease
- Intramural coronary arteries ("small vessel disease")
- Impaired vasodilator reserve of coronary artery
- Elevated left ventricular filling pressure
- Compression of septal perforator
- Myocardial bridging
- Spasm of coronary artery
- Mismatching of supply/demand in oxygen consumption
- Anomalous coronary arteries
- Septal myectomy
- Embolism to a major coronary artery branch
- Intraventricular pressure gradient
- Myocarditis

Case 5:

- DM
 1999 local clinic
 2002 3 , Type I DM Insulin
- Sensory neural hearing loss

2002

Electrocardiography at admission

PLAX

PSAX

A4C

normal BP CAG: normal Lab: no azotemia

First impression? Medication: ACEI and diuretics for CHF

After medication

A4C

Pedigree

A3243G mitochondrial tRNA mutation

- MELAS : Mitochondrial encephalopathy, lactic acidosis, stroke-like episodes
- 1981 Human mitochondrial DNA
- MIDD : Maternally Inherited Diabetes and Deafness

= Mitochondrial diabetes, 1992

Genetic analysis : PCR-RFLP & Sequencing

Cardiac involvement in mitochondrial disease

- Circulation. 1995;91:955-961
- Kagoshima Univ. Japan, Rhuichiro Anan et al.
- <u>Mitochondrial DNA defect</u>가 17
- Kearns-Sayre syndrome (Deletion of mtDNA)
- Ocular myopathy (Deletion of mtDNA)
- MERRF ; myoclonus epilepsy with ragged red fibers (Point mutation of mtDNA, 8344 A to G)
- MELAS (Point mutation of mtDNA, 3243 A to G)

Patien	t Age, y	Sex	Diagnosis	ECG	Chest Radiograph	Echocardiogram	Deletion of mtDNA, kbp	Point N of mtDi	lutation NA
								8344 A→G	3243 A→G
1	15	М	KSS	Complete AV block resulting from HV block	Normal	MR (mild), TR (mild)	+, 5	-	-
2	22	M	KSS	CRBBB, inverted T	Normal	Mitral valve prolapse	+, 5	-	-
3	43	F	KSS (probable)	LAD (-60°), prolonged HV (60 msec)	Normal	Normal	+, 5	-	-
4	17	М	Ocular myopathy	Normal	Normal	ND	+, 5	-	-
5	18	М	Ocular myopathy	RAD (+120°)	Normal	Normal	+, 9.5	-	-
6	21	F	Ocular myopathy	Normal	Normal	ND	+, 5	-	-
7	35	F	Ocular myopathy	Normal	Normal	ND	+, 5.5	-	-
8	39	М	Ocular myopathy	Normal	Normal	ND	+, 3.8	-	-
9	52	М	Ocular myopathy	ST dep, inverted T, VPC	Normal	Diffuse hypokinesis of LV	+, 2.8	-	-
10	36	М	MERRF	ST dep, inverted T, VPC	Cardiomegaly	LVH (ASH) Diffuse hypokinesis of LV	-	+	-
11	37	F	MERRF	ST dep, inverted T,	Cardiomegaly	LVH (ASH)	-	+	-
				LAD (-50°), QS pattern	Congestion	Diffuse hypokinesis of LV			
12	45	M	MERRF	Normal	Normal	Normal	-	+	-
13	12	М	MELAS	Normal	Normal	Normal	-	-	+
14	15	М	MELAS	VPC	Normal	Normal	-	-	+
15	15	М	MELAS	WPW syndrome	Cardiomegaly	LVH (symmetrical)	-	-	+
16	48	F	MELAS	ST dep, inverted T	Normal	Normal	-	-	+
17	54	F	MELAS	APC	Normal	LVH (symmetrical) Diffuse hypokinesis of LV	-	-	+

Table 1. Results of Cardiac and Genetic Analyses in Patients With Mitochondrial Diseases

Cause of Death 1. Sudden cardiac death 2. CHF: LVOT obstruction DCMP

<u>Conversion into DCMP</u>: burned phase of HCM:10% LV remodeling

Pathogenesis of the end-stage phase of HCM

Potential Risk Factors for SCD in HCM

History of SCD Family history of Premature death "Malignant" causal mutations "Malignant" modifier genes History of syncope Magnitude of LVH: 30 mm Extent of myocyte disarray Extent of interstitial fibrosis Early onset of the disease Myocardial ischemia on perfusion tomography Abnormal BP response to exercise Presence of nonsustained VT on Halter

Progressive Left Ventricular Remodeling in Patients With Hypertrophic Cardiomyopathy and Severe Left Ventricular Hypertrophy

Rajesh Thaman et al. J Am Coll Cardiol 2004;

Left ventricular <u>remodeling</u> is common in patients with <u>severe LVH</u> and contributes to <u>the low prevalence</u> of severe LVH seen in <u>middle age and beyond.</u>

Table 2.	Changes	in I	Echocardiographic	Measurements During	
Follow-U	Jp		•••	-	

		95% CI			
	Mean ± SD	Lower	Upper	p Value*	
LVEDD (mm)	5.5 ± 6.6	7.1	4.0	< 0.00001	
LVESD (mm)	5.0 ± 6.8	6.6	3.4	< 0.00001	
FS (%)	-3.9 ± 11.9	-1.1	-6.7	0.008	
LAD (mm)	4.3 ± 6.5	5.8	2.7	< 0.00001	
MLVWT (mm)	-5.2 ± 4.4	-4.1	-6.2	< 0.00001	
Mitral valve					
Anterior septum	-3.8 ± 4.5	-2.7	-4.8	< 0.00001	
Posterior septum	-2.6 ± 4.6	-1.5	-3.7	0.00002	
Posterior wall	-0.5 ± 2.8	0.2	-1.2	0.1	
Lateral wall	-1.2 ± 2.8	-0.5	-2.0	0.002	
Papillary muscle					
Anterior septum	-4.4 ± 4.5	-3.3	-5.5	< 0.00001	
Posterior septum	-2.9 ± 4.3	-1.8	-4.0	< 0.00001	
Posterior wall	-0.2 ± 2.7	0.5	-0.8	0.6	
Lateral wall	-1.1 ± 3.2	-0.3	-2.0	0.01	
Apex					
Anterior wall	-1.5 ± 3.8	-0.5	-2.6	0.005	
Posterior wall	-0.4 ± 2.1	0.2	-1.0	0.2	

*Two-tailed.

CI - confidence interval; other abbreviations as in Table 1.

Microvascular function by MCE: small vessel disease Intravenous MCE and Horizontal perfusion images using thallium-201 scintigraphy: Inoue K, AJC 2004

control subject

nonobstructive HCM

HCM-HF

Coronary flow: CFR CVR

TABLE 2 Coronary Flow Velocity Recordings in Patients WithSymptomatic Hypertrophic Cardiomyopathy and in Controls

CFR, CVR		Patients	Controls	p Value
	Age (yrs) Heart rate (beats/	53 ± 17 63 ± 11	53 ± 14 74 ± 9	NS NS
Coronary Hemodynamics in Patients	Mean aortic pressure (mm Hg)	96 ± 16	95 ± 12	NS
With <u>Symptomatic Hypertrophic</u>	Average peak systolic velocity (cm /s)	6 ± 4	13 ± 5	0.03
	Average peak diastolic velocity	34 ± 12	24 ± 5	NS
Eric H. Yang et al	(cm/s)			
	Diastolic to systolic velocity ratio	5.7 ± 3	1.8 ± 5	0.03
Am J Cardiol 2004;94:685–687	Systolic velocity time integral (cm)	-2.2 ± 5.3	4.0 ± 1.1	0.01
, , , , , , , , , , , , , , , , , , ,	Diastolic velocity time integral (cm)	26.3 ± 14.8	12.2 ± 3.9	0.003
Llain a Danalan muidawina	Total velocity time	24.1 ± 14.7	16.2 ± 4.0	NS
Using Doppier guidewire	Coronary diameter	3.1 ± 0.4	2.6 ± 0.3	0.02
CFR: IC adenosine and Ach	Coronary blood flow	52 ± 19	33 ± 11	0.03
	Coronary resistance	2.12 ± 0.91	3.13 ± 0.93	0.05
	(mm Hg/ml/min) Coronary flow	2.1 ± 0.7	3.4 ± 1.0	0.02
	reserve			
	Diastolic deceleration rate (cm/s ²)	40.7 ± 13.2	27.5 ± 8.5	0.03

Management for HCM

Echo-guided percutaneous septal ablation

- Tx strategies
- 1. Medical therapy
- 2. Reduction of myocardial septum
 - : <u>Systolic PG at Rest 50mmHg</u>

after provocation 100mmHg

3. Implantation of ICD

Test injection of echocontrast agents Before ethanol injection in septal branch

Septal perforator prox Contrast injection Septal perforator subdiv Contrast injection

Optimal morphologic and hemodynamic results of PTSMA

Characteristics of HOCM refractory to Medical treatment and Selection of Surgical Methods By Hirasawa Y, J Card Surg 2005

RT-3D with Contrast echo(perflurocarbon) Parasternal Apical

LAD and septal perforator

3D-RT: parasternal view

3D-RT: parasternal short axis view

