Beta-Blockers

HYPERTENSION IN DIABETES

General population All patients with DM **Type 1 DM, normal AER** Type 2 DM: At Dx Microalbuminuria Macroalbuminuria

<u>% with BP 140/90</u> 31.3%

65%

30%

50% 40-83% 78-96%

Hypertension 2004; 44: 398, Am J Kid Dis 2004; 43 (May Suppl): S142

EFFECTS OF BP ON DM COMPLICATIONS

- CVD: 75% of all DM deaths
 - 3X in CAD
 - 2X in stroke
 - -2X in mortality
- Microvascular Complications
 - retinopathy, nephropathy, neuropathy

JAMA 2002; 287: 2570 Hypertension 2001; 37: 1053

Multifactorial Intervention and Cardiovascular Disease in Patients with T2 DM (Steno-2 Study)

Gæde P et al. NEJM 2003; 348: 383

	Parameters			
	Conventional Rx	Intensive Rx	P Value	
Ν	63	67		
FBS (mg/dl)	-18	-52	<0.001	
HbA1c(%)	+0.2	-0.5	<0.001	
LDL-C(mg/dl)	-13.0	-47.0	<0.001	
SBP (mm Hg)	-3.0	-14.0	<0.001	
CVD Ri	sk	53%		
Nephro	pathy Progression	61%		
Retinopathy Progression		58%		
Autonomic Neuropathy		63%		
Progre	ession			

EFFECTIVE BP DRUGS IN DM RCTs

	CVD	Microvascular Events
Thiazides	Yes	Yes
ACE-Is	Yes	Yes
ARBs	Yes	Yes
Non-DHP-CCBs	Yes	Yes
DHP-CCBs	Yes	Yes
B-Blockers	Yes	Yes

- BP reduction of 9-11/2-9 mm Hg over 2-5 y
 - CVD 34-70%
 - Microvascular disease 26-46%

Hypertension 2003; 42: 1206

Am J Kid Dis 2004; 43 (May Suppl): S142

Poor quality of blood pressure control amongst hypertensive diabetic patients

- The majority of hypertensive diabetic patients will need a combination of several antihypertensive agents to control BP.
- However, most patients are given a single drug therapy, predominantly ACEI.
 - The fear of beta blocker-associated side effects(?)
 - poor quality of BP control
 - Not decline in cardiovascular mortality
- EURODIAB Study; 3250 T1DM, 24% hypertension, 11% achieved target BP(130/85)

2004 9 ~ 2005 2 CARD PROGRAM 36 3,678

Total patients	3678
Diabetes	1699
Hypertension	1243 (73%)
Medication	759 (61%)
130/80	200 (26%)

,

Conventional treatment with Beta-blockers; Negative Images

- Do Beta Blockers have adverse effect on blood glucose and lipid metabolism?
- Do Beta Blockers mask symptoms of hypoglycemia and prolong hypoglycemia?
- Are Beta Blockers less nephroprotective antihypertensive agents?

Do Beta Blockers have adverse effect on blood glucose metabolism?

- Weight gain
- Insulin sensitivity and DM

Gain in body weight

Fime course

Insulin sensitivity; Possible mechanism

- Lower activity of LPL
- Reduce LCAT activity
- Increase body weight
- Impair first phase insulin secretion
- Reduce insulin clearance
- Reduce peripheral blood flow and increase TPR

Jacob S et al. Am J Hypertens. 1998;11:1258–1265.

Influence of Beta-Blockers on glucose metabolism in 10 Hypertensives with T2DM

Groop L. et al, Acta Med Scand 211; 7-12, 1982

	placebo	Propranolol	Metoprolol
FBG (mmol/L)	7.4 ± 0.4	$8.6 \pm 0.4 *$	7.9 ± 0.3
Serum insulin (µU/mL)	19.1 ± 2.6	27.2 ± 4.6	22.6 ± 4.1
K _G (%/min)	0.61 ± 0.06	0.88 ± 0.15	0.78 ± 0.09

Significance of the difference compared with placebo; * P < 0.02

Metabolic changes according to three agents (Mean ± S.E.)

Effect of β-Blockade on Metabolic Parameters in Diabetic Hypertensive Patients

Giugliano D. Ann Intern Med. 1997;126:955-959

Change From Baseline at 6 Months(%)

Glycemic Effects in DM; Carvedilol – Metoprolol Comparision in Hypertensives(GEMINI) trial Bakris GL et al., JAMA 2004; Vol 292, No 18: 2227

No. of Participants

Carvedilol	454	390	449	452	453	454
Metoprolol	654	550	643	655	655	657

Glycosylated Hemoglobin (HbA1c) at Baseline and Each Maintenance Month by Treatment in the Modified Intention-to-Treat Population

Glycemic Effects in DM; Carvedilol – Metoprolol Comparision in Hypertensives(GEMINI) trial

	Car	vedilol (n=	454)	Metoprolol (n=657) Treatment Differ		Difference		
Parameter	Baseline	After 5Mo	%change	Baseline	After 5Mc	%change	%change	p-value
HR/min	73.7	67	-6.7	74.5	66.0	-8.3	1.6	<.001
Mean ACR(mg/g)	13.3	11.1	-14.0	12.0	13.3	2.5	-16.2	.003
Mean HOMA-IR	6.0	5.8	-9.1	5.8	6.2	-2.0	-7.2	.004
Mean plasma								
glucose(mg/dL)	147.0	154.7	6.6	147.4	158.6	10.6	-4.0	.10
Mean serum								
insulin(µIU/mL)	21.6	19.6	-19.4	21.2	20.2	-15.1	-4.2	.51
Mean BW(kg)	98.2	97.2	0.17	97.0	98.2	1.2	-1.0	<.001

Bakris GL et al., JAMA 2004; Vol 292, No 18: 2227

Sensitivity to insulin during treatment with atenolol and metoprolol Thomas P et al, BMJ vol 298, 29 April 1989

Plasma insulin and glucose concentrations during intravenous glucose tolerance test in 60 hypertensive patients receiving atenolol (top) and metoprolol (bottom)

Effect of Beta-Blockers on Insulin Sensitivity in Hypertensive Patients

Change Above or Below Baseline (%)

Jacob S et al. Am J Hypertens. 1998;11:1258-1265.

β-Blockers and the Risk of Developing New-Onset Diabetes Mellitus

25% Increased Risk Atenolol RR 1.25 (1.12-1.37) 28% Increased Risk β-blocker RR 1.28 (1.04-1.57)

Prospective study of 9193 patients with hypertension aged 55 to 80 and followed for 4.8 years. Analysis of 7998 without diabetes at baseline.

RR, relative risk.

- 1. Dahlöf B et al. Lancet. 2002;359:995–1003.
- 2. Gress TW et al. N Engl J Med. 2000;342:905-912.

Prospective study of 12 550 patients without diabetes aged 45 to 64 and followed for 6 years. Multivariate analysis of 3804 who had hypertension at baseline.

COMET: New-Onset Diabetes Related Adverse Events in CHF

Endpoints include adverse events of diabetic coma, diabetes mellitus, peripheral gangrene (diabetic foot), decreased glucose tolerance, or hyperglycemia in a patient classified as not having diabetes at baseline. COMET, Carvedilol or Metoprolol European Trial. 3029 CHF patients randomized to carvedilol (n=1511, mean dose 42 mg) or metoprolol tartrate (n=1518, mean dose 85 mg) and followed for a mean of 58 months.Event rates: metoprolol 13.0%, carvedilol 10.6%. Data on file. GlaxoSmithKline.

Do Beta Blockers have adverse effect on Lipid metabolism?

Carvedilol vs metoprolol effects on fasting cholesterol and TG in hypertensives

	Meto	oprolol	Carvedilol			
	Week 0	Week 12	Week 0	Week 12		
HDL cholesterol	52.2 ±2.6	46.2 ±2.7*	49.5 ±3.2	49.1 ±3.1		
LDL cholesterol	155.5 ±9.2	155.8 ±9.4	148.3 ±9.9	149.0 ±9.9		
Triglycerides	155.5 ±12.1	174.5 ±27.4*	157.5 ±24.6	158.2 ±27.2		

**p*<0.05 versus week 0. HDL, high-density lipoproteins; LDL, low-density lipoproteins All values in mg/dl.

Jacob (1996)

EFFECTS OF β-BLOCKER TREATMENT ON METBOLIC RISK FACTORS

and the second states	Triglycerides	HDL	Total
		Cholesterol	Cholesterol
Propranolol	+25%	-10%	+9%
Metoprolol*	+30%	-7%	-1%
Atenolol*	+18%	-9%	=
Pindolol	=	=	=
Dilevalol	-22%		-6%
Carvedilol	=	=	=
Celiprolol	-15%	+5%	=

Jacob S et al. Am J Hypertens. 1998;11:1258–1265.

Influence of carvedilol on lipid metabolism in patients with dyslipidaemia

Hauf-Zachariou (1993)

Changes in lipid profiles after 6 months treatment with carvedilol and enalapril

Change after 6 months (%)

Do Beta Blockers mask symptoms of hypoglycemia ?

- Beta blockers could diminish the adrenergic counter reaction to low BG concentrations.
- Some of these studies ; diminished of tremor and palpitation most of them ; increased sweating.
- Four recent studies ; beta 1 blockers are not associated with an increased risk of severe hypoglycemia.

Beta-1 blockers do not mask hypoglycemia but may change the pattern of symptoms by increasing the sweating.

Clausen SN et.al. Acta Med Scand 222; 57-63, 1987, Barnett AH, BMJ,2;976, 1980

Effect of Metoprolol on the counter regulation and Recognition of Prolonged hypoglycemia in TIDM Clausen SN et al, Acta Med Scand 1987; 222; 57-63

Glucose, freee insulin, GH, cortisol, epinephrine and nor-epinephrine levels during infusion of insulin (2.4U/h) between 0 and 180 min, in eight insulin dependent diabetes (mean \mp SEM), metoprolol experiment (-), control experiment (\bigcirc - \bigcirc)

Do Beta Blockers prolong hypoglycemia?

- Under <u>unselective beta blocker</u> treatment, prolongation of hypoglycemia has been described .
- Under <u>selective beta-1 blocker</u> treatment, the recovery from hypoglycemia <u>was not</u> impaired amongst patients with insulin or OHA

Corrall R. et al, Eur J Cli Invest ,1981, 11, 279-283

Glucose levels in response to hypoglycaemia in control, propranolol and metoprolol studies.

Corrall R. et al, Eur Cli Invest ,1981, 11, 279-283

Are Beta Blockers less nephroprotective antihypertensive agents?

- ACEI ; more effective than beta-blockers to the reduction of proteinuria, equally effective to the decline of GFR in diabetic nephropathy.
- The selective beta-1 blocker metoprolol had equal beneficial nephroprotective effects on all histological parameters as compared with the ACEI enalapril.
- No evidence for a less pronounced nephroprotective effect of beta blockers on progression of diabetic nephropathy as measured by valid clinical parameters, i.e. the decline of GFR or renal histology

Sawicki PT, Nephrol Dial Transplant 1997; 12; 1890, Rudberg S.et.al.Diabetologia, 1999, 42: 589

Effects of different antihypertensive drugs on human diabetic proteinuria

Weidmann P., Nephrol Dial Transplant,1993 8; 582-584

	and the second	Average	changes (%) in
Type of therapy	Number of patients	Mean systemic blood pressure	Urinary albumin or protein excretion
Conventional	131	-10	-17
(diuretics and/or β blocker)			
ACE inhibitors	589	-15	-52
Ca antagonists			
all	191	-13	-4
nifedipine	85	-13	+21
all except nifedipine	106	-12	-24
diltiazem + verapamil	52	-17	-23

Synthesis of reported effects of different antihypertensive treatments on proteinuria in diabetic patients with incipient or clinical nephropathy

Overview of controlled, randomized, prospective studies of at least 2years duration comparing -blockers with ACEI on T1DM patients with Diabetic Nephropathy

	Decline of GFR in the (mL/min/year)				
Study	ACEI group	-blocker group			
Björck et al.	Enalapril; -2	Metoprolol; -6			
Elving et al.	Captopril; -5	Atenolol; -4			
Sawicki et al.	Ramipril; +1	Metoprolol; ±0			

Björck S,et al BMJ. 8;304:339,1992 Elving LD,et al Diabetologia. 37:604,1994 Sawicki PT,et al. Nephrol Dial Transplant 12:1890,1997

Compare histological parameters between ACEs, Beta- Blocker & reference groups

all the second se	Enalapril		Meto	prolol	Reference	ce	
	Group1		Gro	Group2		Group3	
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up	
BMT(nm)	570(120)	593(94)	610(93)	602(84)	562(90)	702(173) ^b	
Vv(mes/glom)(%)	19.6(5.0)	19.3(5.3)	21.3(2.5)	23.8(2.8)	21.2(2.9)	28.2(7.2)	
Vv(met/glom)(%)	10.7(2.6)	11.2(4.0)	11.2(1.2)	12.9(1.6)	12.2(1.3)	13.3(1.9)	
Matrix star volume(µm³)	26.8(9.5)	30.8(14.7)	29.5(5.6)	35.7(10.1)	28.2(7.2)	37.1(15.7) ^a	
Index DGP	94.4(22.6)	101.2(27.1)	101.7(13.2)	108.8(17.1)	96.6(13.2)	120.6(30.9) ^b	

BMT, Vvmes/glom; Vvmat/glom, matrix star volume, index DGP at baseline and follow-up ^a: p = 0.04, ^b: p = 0.007 vs baseline Mean (SD)

BMT : Basement membrane thickness Vvmes/glom; Vvmat/glom : mesangial and matrix volume fractions overall diabetic glomerulopathy index : index DGP + matrix star volume

Rudberg S.et.al.Diabetologia, 1999, 42: 589

The incidence of renal failure in T2DM patients treated with the Beta-Blocker or The ACEI

	Absolute risk					
	Patients with clinical end points		(events p	ber 1000		
			patient	patient years)		
	Captopril	Atenolol	Captopril	Atenolol	Р	Relative risk for
	(n=400)	(n=358)			value	captopril (99% CI)
Renal failure	4	4	1.3	1.4	0.90	0.91 (0.15 to 5.64)
microalbuminuria	31%(16)	26%(20)				

The number of patients with renal failure after 8 years of followup was <u>exactly the same</u> in the atenolol and the captopril group

UKPDS, BMJ VOL. 317 12 SEPTEMBER 1998

Beta Blockers and Diabetics with CAD

Beta- Blocker treatment of Diabetics after AMI is more effective than of Non Diabetics

Study	Nondiabetic	Diabetic
	patients	Patients
Beta-Blockers and acute reduction of morta		
(Relative risk reduction. %)		
Goteborg Metoprolol Trial (1395)	36	58
MIAMI Trial(5778,metoprolol)	12	50
ISIS I(16,000 ,atenolol)	15	22
Malmberg et al.(metoprolol)	29	69
Betablockers and long-term reduction, of n	nortality after AMI	
(Relative risk reduction. %)		
BHAT (propranolol)	25	35
Gundersen et al.(timolol)	34	63
Kjekshus at al. (2024)	49	56

Overview of acute (up to 3 months) and long-term (more than 1 year) effects of beta blocker treatment after acute myocardial infarction (AMI) on relative mortality in patients with and without diabetes.

- Bezafibrate Infarction Prevention Study
 19% of the 14,417 recruits , 2723 Patients with T2DM and CAD which one third received beta-blockers.
 After 3 years, a 43% reduction in cardiac events with beta-blockers (7.8% vs 14%)
 - 42% reduction in cardiac mortality compared to the no-beta-blocker groups.
 - Increasing divergence of survival curves with time

Beta-Blockers and Diabetics with Hypertension

- **STOP-2**
- UKPDS
- LIFE

STOP-2(719 hypertensive diabetics); Frequency of Events Per 1000 Patient Years

Events per 1000 patient years

Hansson L, et al. Lancet. 1999;354:1751-1756.

Clinical End-Point Risk Reduction in1148 Type 2 Diabetes by UKPDS trial(38)

"Tight" vs "Less Tight" BP Control

BP reduction with "tight" control = 10/5 mm Hg (144/82 vs 154/87 mm Hg). 29% of "tight control" patients required three or more drugs.

UK Prospective Diabetes Study Group. BMJ, 317:703, 1998

UKPDS 39. In diabetics, tight control of BP result in fewer cardiovasrcular event.

Clinical end point	Absolute risk (events per 1000 patient years)		P value	Relative risk for tight control (95% CI)	3234 37 Contract 2007
	Captopril (n=400)	Atenolol (n=358)			
Any diabetes related end point	53.3	48.4	0.43	1.10 (0.86 to 1.41)	
Deaths related to diabetes	15.2	12.0	0.28	1.27 (0.82 to 1.97)	→
All cause mortality	23.8	20.8	0.44	1.14 (0.81 to 1.61)	
Myocardial infarction	20.2	16.9	0.35	1.20 (0.82 to 1.76)	_
Stroke	6.8	6.1	0.74	1.12 (0.59 to 2.12)	
Perpheral vascular disease	1.6	1.1	0.59	1.48 (0.35 to 6.19)	
Microvascular disease	13.5	10.4	0.30	1.29 (0.80 to 2.10)	

0.1110FavoursFavours-CaptoprilAtenolol

UKPDS Group. BMJ. 1998;317:713-720.

Effect of the ACEI captopril and the cardioselective betablocker atenolol within the tight-control group

UK Prospective Diabetes Study Group. BMJ, 317:713, 1998

Cardiovascular Drug & Therapy 2002; 457-470

LIFE: 1195 Diabetes Subgroup Composite of CV death, stroke, and MI

Lindholm LH et al. *Lancet*. 2002;359:1004-1010.

Prospective Hard-event Trials in Hypertension involving Beta Blockers

- Astron	Carlos Tor Landard Con	Mean age	Starting BP	Pulse-Pressure
Trial	Drugs	(yr)	(mmHg)	(mmHg)
Studies with fav	ouable to beta-l	olockers		
IPPPSH	oxyprenolol	52	173/108	65
MRC-mild	Propranolol	51	161/98	63
MAPHY	Metoprolol	52	167/108	59
UKPDS	Atenolol	56	159/94	65
Studies with un	favouable to bet	a-blockers		
HEP	atenolol	69	196/99	97
MRC-elderly	atenolol	70	185/91	94
LIFE(whole)	atenolol	67	174/98	76
LIFE(DM)	atenolol	67	177/96	81

Why happen the different result between UKPDS & LIFE Study ?

	UKPDS	LIFE
Age	Younger & middle age	Elderly
Mean age	56.3(56)	67.4(Around 70 years)
Vascular system	Relatively compliance	non- compliant, stiff
pulse pressure(mmHg)	65	81
B1 receptor response	Relatively preserve	Decreased

Beta-1 selective blocker, vasodilating betablocker;

less adverse effects on glucose and lipid metabolism
not mask hypoglycemic symptom &prolong hypoglycema
not less nephroprotective than ACEI
primary and secondary cardioprotective effect in antihypertensive treatment and after MI

There is no evidence-based reason to withhold these agents from diabetic patients with hypertension.

Conclusion The Bad Guys Come good.

 B1 selective blockers should be considered for the first line therapy in younger/middle age hypertensives with T2DM

•1st line Rx with ACE-I if post-MI, CHF in Diabetic Hypertensives

THANK YOU FOR YOUR ATTENTION

by H. Wabucht