Cardiovascular Molecular Imaging

Kyung-Han Lee, M.D. Samsung Medical Center

Molecular Imaging

The modern tools of molecular & cell biology are being married to state-of-art technology for noninvasive imaging

Imaging molecular/cellular events in living organisms
Monitoring of specific biological processes to Dx & Mx Ds

Functional Imaging vs Anatomical Imaging

Pinwica Worms

Pharmacokinetics of Molecular Probes

Strategy for Molecular Nuclear Imaging

Nuclear Medicine and Molecular Imaging

TIME magazine

Atheroscler. Vulnerable Plaques

- Most common cause of myocardial infarction and CVA
- Angiography cannot identify high-risk plaques
- Plaque rupture is closely related to plaque content, not size
- There is therefore an urgent need for molecular imaging methods to identify plaque at risk of rupture
- Present endeavors include targeting of lipid, thrombus, apoptosis, monocytes, and inflammation

Molecular Imaging of Vulnerable Atherosclerotic Plaque

Near-Infrared Fluorescence

Jaffer, JAMA 2005

White Light

Colorized NIRF Image

FDG Imaging of Atherosclerotic Plaques

Monocyte FDG Uptake During Activation

Lee, J Nucl Med 2004

Endothelial FDG Uptake by Nitric Oxide

Lee, J Nucl Med 2005

Endothelial FDG Uptake During Hypoxia

Lee, J Nucl Med submitted

FDG Imaging of Atherosclerotic Plaques

Rudd, Circulation 2002

Atherosclerosis Imaging Targets

- Lipid accumulation: LDL, Ox-LDL, Apo-B
- Monocyte infiltration: monocytes, CCR2 (MCP-1)
- Apoptosis: phosphatidyl serine (annexin-V)
- Coagulation: fibrin, D-dimer
- Platelet: platelets, GPIIb/IIIa
- Metabolism: activated inflammatory tissue (FDG)

Angiogenesis

Angiogenesis Therapy

- Formation of new capillaries from existing microvessels
- New approaches to treat ischemia include the stimulation of angiogenesis by GFs, stem cells or gene manipulation
- > All studies show a highly variable angiogenic response
- No currently available biomarker imaging approach
- Therefore, new molecular imaging strategies will be critical for defining response to angiogenic therapy

Targeting $\alpha v\beta 3$ Integrins with RGD Tracers

[¹²³I]cRGD

Haubner, J Nucl Med 2001

[¹¹¹In]cRGD Dimers

Cancer Res, 2002

[¹⁸F]cRGD-Glycopeptide

Haubner, Cancer Res 2001

Novel Glucosamine-[^{99m}Tc]RGD Imaging

Specific Integrin Binding

Tumor Imaging

Α

LLC carcinoma

Lee, J Nucl Med, Submitted

[¹²³I]cRGD Imaging of Ischemic Lesions

Lee, J Nucl Med 2005

Angiostatin Inhibits Coronary Angiogenesis

Matsunaga, Circulation 2002

Endothelial Targeting with [123]Angiostatin

Specific Endothelial Binding

Tumor Imaging

Fibrosarcoma bearing rat

Colon cancer bearing mice

Lee, EJNM & Mol Imaging 2003

¹²³I-BH-Angiostatin for Superior Stability

Lee, In preparation

Myocardial Gene Therapy

Principle of Reporter Gene Imaging

Myocardial Imaging of TK Gene Expression

[¹⁸F]FHBG

JC Wu, Circulation 2003

[¹⁸F] FIAU

FM Bengel, Circulation 2003

Myocardial Imaging of NIS Gene Expression

NIS/EGFP.AdV Construction

[¹²³I] Localizes to Virus Injected Site

Time Course of [¹²³I] uptake After Gene Transfer

Functional Effect of NIS Gene & Radioiodine

Virus Titer Dependence of Image-Based Uptake

Colocalization of Radioactivity, GFP & NIS Protein

Correlation Between Image, γ -Count & Fluoresence

Lee, J Nucl Med 2005

Molecular Imaging of Transcriptional Regulation

Doubrovin, PNAS 2001

Molecular Imaging Protein-Protein Interaction

Gal4-BD-P53/TAg and ¹⁸F-FHBG

Luker, PNAS 2002

Myocardial Gene Imaging

- Confirm success of myocardial gene delivery
- Localize spatial relation of gene expression site
- Monitor temporal change of transgene expression
- Study modulation of transgene expression levels
- Study transcriptional regulation within the heart
- Study protein-protein interactions within the heart

Myocardial Cell Therapy

[¹⁸F]FHBG and TK Gene

Wu, Circulation 2003

Cardiovascular Nuclear Molecular Imaging

