Optimal treatment of heart failure with preserved LV systolic function (HF-PSF)

Jun Kwan Dept. of Cardiology Inha University Hospital

What is **HF-PSF**?

Definition of HF-PSF:
 HF with EF > 45 -50%

 But, still controversial in both pathology & terminology

Is LV systolic function really preserved in HF-PSF?

EF is imperfect to assess LV systolic function

Outcome data of volume reduction

Load dependent

preload: high EFgood contractility in severe MRafterload: low EFpoor contractility in severe AS

Not reflect intrinsic muscle function

Technical Pitfalls of EF

Identification of endocardial border Rhythm beat to beat variation in AF or VPC Load dependent Geometry of LV reduced midwall shortening in LVH

If LV systolic function is preserved, HF-PSF = Diastolic HF ?

- Causes of HF-PSF
- Diastolic HF: pure DHF + DHF with subtle SHF
- Valvular HD
- Pericardial disease
- HF due to circulatory cause
- Cor pulmonale

HF-PSF as a hybrid within the spectrum of HF phenotype

General course of HF

Time Brutsaert DL ACC 2005 Preserved left ventricular systolic function

Reduced left ventricular systolic function

Spectrum of HF phenotype

Spectrum of HF phenotype

Brutsaert DL ACC 2005

Stages of HF from ACC/AHA Guideline

Stage A: identifies the patient who is at high risk for developing HF

Stage B: refers to a patient with structural disorder of the heart but who has never developed symptoms of HF

Stage C: denotes the patient with past or current symptoms of HF

Stage D: designates the patient with end stage disease who requires specialized treatment strategies such as mechanical circulatory support, continuous inotropic infusions, cardiac transplantation, or hospice care Pure DHF or advanced SHF is the extreme of either side of HF

 HF-PSF is one of the hybrids within the spectrum of HF phenotype

Clinical significance of HF-PSF

 Not a minor clinical SD any more 30-60% of HF

 Lower mortality than HF-RSF, but still 30-45% mortality during 4-5 year

Comparable degree of morbidity

Euroheart Failure: Distribution of left ventricular ejection

11,322 patients from 115 hospitals in 24 countries

Cleland et al, EHJ 2003

Kaplan-Meier survival plots of CHF patients with normal and reduced LVEF

Vasan et al. JACC 1999

Study-Year of Publication	No, of Patients (% DHF)	Mean Age (yrs)	CHF Diagnosis	Mortality-SHF	Mortality-DHF	p Value SHF vs, DHF Mor-			
· · · · · · · · · · · · · · · · · · ·						tality			
Studies where mean age <65 yrs									
Warnowicz-1983 (22)	39 (41%)	DHF 63 ± 9 SHF 66 ± 11	Acute pulmonary edema	30% (9 mo)	25% (9 mo)	NS			
Kinney-1989 (11)	91 (48%)	All 64 \pm 10	2 major or 1 major + 1 mi- nors	Median SURVIVAL = 11	Median SURVIVAL = 26	0.01			
Cohn-1990 (12)	623 (13%)	DHF 60 ± 7 SHF 58 ± 8	VO ₂ max <25/ml/kg/min	19% (annualized)	8% (annualized)	0.0001			
Ghali-1992 (13)	78 (28%)	DHF 60 \pm 11	2 major or 1 major + 2 mi- nor§	24% (1 уг)	22% (1 yr)	0.04			
		SHF 59 \pm 14	Ŧ	46% (2 yr)	26% (2 yr)				
Studies where mean age >65	5 yıs				•				
Aronow-1990 (14)	166 (40%)	DHF 84 ± 6	Rales + CXR vascular con- gestion	47% (1 yr)	22% (1 yr)	0.001			
		SHF 81 \pm 8	0	71% (2 yr)	38% (2 yr)				
Taffet-1992 (15)	94 (43%)	DHF 82 \pm na	Framingham	≈24% (1 yr)	$\approx 24\% (1 \text{ yr})$	NS			
		SHF 83 \pm na	5	≈42% (2 yr)	$\approx 30\% (2 yr)$	NS			
McDermott-1997 (16)	192 (46%)	DHF 73 \pm na SHF 72 \pm na	Framingham	35% (27 mo)	35% (27 mo)	NS (0.78)			
Kupari-1997 (17)	41 (51%)	ALL ≈ 80	Othert	54% (4 yr)	43% (4 yr)	NS			
Permenkil-1997 (19)	501 (34%)	DHF 81 ± 6	Other:	38% (1 yr)	28% (1 yr)	p = 0.045			
		SHF 78 \pm 6	,	19% (3-12 mo)	17% (3-12 mo)	p = NS			
Senni-1998 (5)	137 (43%)	DHF 78 \pm 12	Framingham	24% (1 yr)	24% (1 yr)	NS (0.369)			
		SHF 74 ± 13		42% (3 yr)	42% (3 yr)				
McAlister-1999 (18)	566 (21%)	DHF 69 ± 14	Framingham	17% (1 yr)	12% (1 yr)	NS (0.25)			
		SHF 65 ± 14		38% (3 yr)	42% (3 yr)				
Vasan-1999 (4)	73 (51%)	DHF 72 \pm 9	Framingham	64% (5 yr)	32% (5 yr)	p = 0.023			
		SHF 74 \pm 7				Adj*p = 0,13			
Ansari-2001(abstr) (23)	376 (27%)	ALL 72 ± na	Framingham	20% (20 mo)	20% (20 mo)	NS			

Treatment of "HF-PSF"

Hundreds of papers

The evidence

Virtually none!!

Theoretical treatment of HF-PSF

Sx targeted Tx

Consider pathophysiology

Disease targeted Tx

Mechanism targeted Tx

Sx targeted Tx

Decrease diastolic pressure

- Reduce LV volume with diuretics or nitrate
- Enhance LV relaxation
- Maintain atrial contraction: keep sinus rhythm
- Prevent tachycardia or rate control in A fib. with HR limiting Ca antagonist or beta blocker:
- Use inotropic agents with caution (prevent excess contractility)

Consider Pathophysiology (Pressure-Volume Loop in HF-PSF)

Even small volume reduction may be quite effective for Sx improvement

Consider Pathophysiology (Frank-Starling LV Function Curve)

Even small volume reduction may result in significant BP decrease

Disease targeted Tx

Resolve causative and aggravating factor HiBP: JNC targeted BP control with ACE I or ARB AS or LVOT obstruction: Surgical resolution prevent or regress LVH reduce mortality and morbidity CAOD: prevent / treat myocardial ischemia

Mechanism Targeted Treatement

 Modify myocardial and extramyocardial mechanism

Modify intracellular and extracellular mechanism

Blunt neurohormonal activation Prevent / regress LVH

Angiotensin II Direct and indirect effects in organ damage

Inhibition of the Renin Angiotensin System

Differences between pharmacological treatment of HF-RSF and HF-PSF

	HF-RSF	HF-PSF
Diuretics	high dose	smaller dose
ACE, ARB	increase CO prevent LV dilatation need titration	BP control prevent, regress LVH yes or no titration
B blocker	B receptor 1 need titration	slow HR, LV filling 1 no titration
Ca antagonist	contra-Ix	slow HR, improve relaxation

Treatment of "HF-PSF"

Hundreds of papers

The evidence

Virtually none!!

Lack of Clinical Evidence

All evidence based therapy is for patients with *low* LVEF CHF

How should CHF with "preserved LV systolic function" (or "diastolic dysfunction") be treated?

Randomised trials in HF-PSF

Symptoms/functional capacity as endpoints

Published randomised trials of treatment of "diastolic heart failure"

Calcium channel blocker

2 placebo-controlled trials with Verapamil (n ~20)

Improve Sx, exercise tolerance

Serato et al. Am J Cardiol 1990 Hung et al. Int J Clin Pract 2002

ACE inhibitor

Philbin et al. Am Heart J 1997

350 pts of EF \geq 40% but non-randomised

Aronow et al. Am J Cardiol 1993 (Enalapril)

21 pts of >80 yrs, EF \ge 50% improve CT ratio, EF, NYHA class and exercise tol. too small No, uncontrolled, not double-blind

Randomised trials in HF-PSF

Morbidity/mortality outcomes as endpoints

Randomised trials of treatment of HF-PSF

Completed

Beta-blocker (propranolol)
 Digitalis glycoside (digoxin)
 ARB (candesartan)

Ongoing

ACE inhibitor (perindopril)
 Beta-blocker (nebivolol)
 ARB (irbesartan)

Proposed

Aldosterone-blocker (spironolactone/eplerenone?)

Beta-blocker - propranolol

Randomised trial: lack of placebo (control) group

- 158 patients 62 (mean 81 yrs) with NYHA II/III CHF, > 2 months diuretic therapy, prior Q-wave (>6months) MI and LVEF > 0.40
- Excluded valve disease, COPD
- Propranolol 30mg tid or no propranolol for 32 months

Effects of propranolol in HF-PSF

Digoxin in HF-PSF

GOOD?

Reduces HR and favorable autonomic actions sympatho-inhibitory pro-parasympathetic suppress RAAS

Increases intracellular calcium and impairs myocardial relaxation?

Digitalis investigation group

- 7,788 patients with CFH
- NYHA Class I-IV
- Sinus rhythm
- LVEF 0.45 main trial (n=6800)
 LVEF > 0.45 ancillary trial (n=988)
- Qualitatively similar effects on mortality/morbidity in the LVEF > 0.45 subgroup No further information

CHARM Program

3 component trials comparing candesartan to placebo in patients with symptomatic heart failure

Primary outcome for each trial: CV death or CHF hospitalisation The first major outcome study in this type of CHF to complete

CHARM-Preserved: Primary outcome

CV death or CHF hospitalisation

CHARM-Preserved:

Primary and secondary outcomes

Cano	lesartan	Placebo	Covariate adjusted		
	_			p-value	p-value
CV death CHF hosp. - CV death	333 170	366 170	0.89	0.118 0.918	0.051
- CHF nosp.	241	276		0.072	0.047
CV death, CHF hosp, MI	365	399	0.90	0.126	0.051
MI, stroke	388	429	0.91	0.078	0.037
CV death, CHF hosp, MI, stroke, revasc	460	497		0.123	0.130
			0.8 1.0	1.2	
			esartan Hazard etter ratio	placet bette	r

CHARM-Preserved: Investigator reported CHF hospitalisations

CHARM-Preserved: Patients with single or multiple CHF hosps.

p=0.014 test for difference in distribution

CHARM-Preserved, the largest trial of HF-PSF, provided a direct information on Tx of HF-PSF, despite a moderate benefit, that candesartan reduces the number of hospital admission for CHF ARBs in HF-PSF: why should they work?

 Angiotensin II seems to play a causal role in LVH

 Angiotensin II reduces LV relaxation/increases LV stiffness

 ARBs regress LVH, fibrosis and improve diastolic function

More to Evaluate

- In comparison with ACE-I ?
- Same target dose as HF-RSF ?
 - Not need to reduce afterload as much as HF-RSF to increase CO & prevent LV remodeling
 - Not need to suppress N-H as much as HF-RSF
 - More prominent BP lowering effect in HF-PSF with no association with clinical improvement (CHARM)
- More effective in combination with ACE-I ?

Randomised trials of treatment of HF-PSF

Completed

Beta-blocker (propranolol)
 Digitalis glycoside (digoxin)
 ARB (candesartan)

Proposed

Aldosterone-blocker (spironolactone/eplerenone?)

Ongoing

- ACE inhibitor PEP-CHF (perindopril)
 - 1000 pts of >70yrs, EF ≥ 40%
- Beta-blocker SENIORS (nebivolol)

2000/3 pts of >70yrs, EF ≥ 40%

- - I-PRESERVE (irbesartan)
 - pts of >60yrs, $EF \ge 45\%$

Conclusion

- Current recommendations for treatment of *HF-PSF* are based not only on the pathophysiological theory but also sparse data or extrapolations from trials involving related disorders (HF-RSF).
- For evidence based therapy for *HF-PSF*, further large randomized clinical trials, including several ongoing trials, should be initiated and completed in the future.