It is important to find and treat the vulnerable plaques

Myeong-Ki Hong, MD, PhD. Asan Medical Center, Seoul, Korea

Artery

Plaque Rupture

Question: Is it important to find and treat the vulnerable plaques ?

???

가

What is vulnerable plaque?

Underlying Pathologies of "Culprit" Coronary Lesions in ACS patients Ruptured plaques (70%) Stenotic (20%) Non-stenotic (50%) Non-ruptured plaques (30%) **Erosion Calcified nodule Others/Unknown**

Naghavi M. Circulation 2003; 108: 1664-72

Vulnerable plaque

Rupture of fibrous cap

Superficial erosion

Welt & Simon: CCI 2001; 53: 56-63

Criteria for defining vulnerable plaque, based on the study of culprit plaque

Major criteria

- Active inflammation
 - (monocyte/macrophage and sometimes T-cell infiltration)
- Thin cap with large lipid core
- Endothelial denudation with superficial platelet aggregation
- Fissured plaque
- Stenosis > 90%

Minor criteria

- Superficial calcified nodule
- Glistening yellow
- Intraplaque hemorrhage
- Endothelial dysfunction
- Outward (positive) remodeling

Naghavi M. Circulation 2003; 108: 1664-72

Stable vs. Vulnerable Plaque

Stable (obstructive)

- Progressively flow-limiting
- Often causes chest pain
- Detected by X-ray angiography
- Main target of interventional therapies (angioplasty, stents)

Vulnerable (non-obstructive)

- Minimal effect on blood flow
- First symptom is often sudden death
- No established detection method
- Preventative drug therapies; directed therapies still unproven

Thermal Heterogeneity is Detected In Vivo in Human Coronary Atherosclerotic Lesions

Stefanadis et al, Circulation 1999

Plaque Composition In ACS

Schoenhagen et al. Circulation 2000;101:598-603

Types of Vulnerable Plaque

1. Plaque rupture

2. Lipid pool-like images

3. Thrombus alone without above 2 types

Definition of Plaque Rupture

A cavity that communicated with the lumen with an overlying residual fibrous cap fragment

Definition of Lipid Pool-like Images

A pooling of lowechogenic material or echolucent material covered with a highechogenic layer

Definition of Thrombus

An intraluminal mass having a layered or lobulated appearance, evidence of blood flow within the mass, and speckling or scintillation

Question 1: Is it important to find the vulnerable plaques ?

Multiple Vulnerable Plaque

Vulnerable plaque in RCA

Vulnerable plaque in LAD

Vulnerable plaque in LCX

Severity of coronary artery stenosis before AMI

Critical luminal stenosis due to atheroma growth does not cause most ACS.

Rather, thrombosis of a non-critical stenosis caused by lesion disruption causes the majority of ACS.

Welt & Simon: CCI 2001; 53: 56-63

Angioscopic study

Asakura M. JACC 2001;37: 1284-88

IVUS study

The only three-vessel IVUS study in ACS patients:

An incidence of culprit lesion plaque rupture: 37.5% (9/24);

A

At least one secondary (nonculprit) plaque rupture in 79% (19/24) of the patients

Rioufol G, et al. Circulation. 2002;106:804-808.

IVUS study

80% of ACS patients have > 1 ruptured plaque

Prospective comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a threevessel IVUS study in 235 patients.

Myeong-Ki Hong, Cheol Whan Lee, Young-Hak Kim, Seung-Whan Lee, Ki-Hoon Han, Jae-Joong Kim, Seong-Wook Park, and Seung-Jung Park

Asan Medical Center, Seoul, Korea

Circulation 2004; 110: 928-933

Definition of Plaque Rupture

A plaque with cavity that communicated with the lumen with an overlying residual fibrous cap fragment

Incidence of plaque rupture

Question 1: Limitations

- Practical definition of vulnerable plaques before plaque rupture
- Non-invasive diagnostic tool (MSCT, MR, et al)
- Other simple biochemical markers suggesting vulnerable plaque (CRP, other inflammatory markers)

Question 2: Is it important to treat the vulnerable plaques ?

• Treatment or not: Lack of data about natural history

• If it is treated, what types of treatment modalities? Medical (Which drugs?), PCI, CABG

Long-term Follow-up

Angiographic study: multiple complex plaque

Goldstein JA, et al. N Engl J Med. 2000; 343:915–922.

Angiographic study

One previous study using coronary angiography:

1. 40% of patients with an AMI had multiple complex plaques,

2. These patients had an increased incidence of recurrent ACS, repeat intervention (particularly of non–infarct-related lesions), and CABG in the subsequent year.

Goldstein JA, et al. N Engl J Med. 2000; 343:915-922.

Changes of DS in non-culprit complex plaque as detected at first (I) and follow-up (II) coronary angiography

Lee SG et al, Am Heart J 2004;147: 281-286

Change in morphology of complex plaques

Evolution of Spontaneous Atherosclerotic Plaque Rupture With Medical Therapy: Long-Term Follow-Up With IVUS (14 patients, 28 ruptured plaques)

Conclusions—Nearly 2 years of follow-up found that spontaneous coronary atheromatous plaque rupture without significant stenosis detected on first acute coronary syndrome healed without significant plaque modification in 50% of cases with medical therapy. (Rioufol G, et al. *Circulation*. 2004;110:2875-2880.)

Angioscopic Follow-Up Study of Coronary Ruptured Plaques in Non-culprit Lesions

 The study population was 30 patients with 50 ruptured plaque lesions. The mean angioscopic follow-up period was 13<u>+</u> 9 months.

2) The healing rate according to the angioscopic follow-up period (23% at \leq 12 months vs. 55% at >12 months, p 0.044).

3) The percent DS at the healed plaque increased from baseline to follow-up (12.3% vs. 22.7%, respectively; p 0.0004).

4) The serum CRP level at follow-up was the independent predictor of healing of ruptured plaques

Takano M, Am J Coll Cardiol 2005; 45:652-8

Serial IVUS Findings in Patients with Untreated Ruptured Coronary Plaques: Evidence of Both Plaque Stabilization and Lesion Progression

Myeong-Ki Hong, Cheol Whan Lee, Young-Hak Kim, Bong-Ki Lee, Jae-Joong Kim, Seong-Wook Park, and Seung-Jung Park

Asan Medical Center, Seoul, Korea

Clinical outcomes (n=28)

	Statin (n=14)	Control (n=14)	Ρ
Complete healing	4	0	0.049
Incomplete healing	0	1	
No significant changes	10	10	
Progression to a focal stenosis requiring PCI	0	3	0.11

Changes of ruptured plaque area

Predilection site of Vulnerable Plaque-**Clustering of Vulnerable Plaque**

Coronary Artery Spatial Distribution of AMI Occlusions

The Site of Plaque Rupture in Native Coronary Arteries: a Three-Vessel IVUS Analysis.

Myeong-Ki Hong, Cheol Whan Lee, Young-Hak Kim, Ki-Hoon Han, Jae-Joong Kim, Seong-Wook Park, and Seung-Jung Park

JAm Coll Cardiol 2005; (in press)

Event-free Survival in **RAVEL**:

Death, MI, CABG, Re-PCI

_	Sirolimus	Control		P-value	# events prevented p 1,000 patients
Overall	4.1	16.6		0.0001	124
Male	4.4	16.6		0.0001	122
Female	3,4	16.5	·	0.0007	130
Diabetes	6.9	22.3		0.0006	154
No Diabetes	3.2	14.3		0.0001	111
LAD	5.1	19.8	F-F	0.0001	147
Non-LAD	3.4	14.3		0.0001	109
Small Vessel (<2.)	75) 6.3	18.7		0.0001	125
Large Vessel	1.9	14.8		0.0001	128
Short Lesion	3.2	16.1		0.0001	129
Long Lesion (>13.	5) 5.2	17.4		0.0001	122
Overlap	4.5	17.7		0.0003	131
No Overlap	3.9	16.1	Sirolimus better	0.0001	121

SIRIUS

TLR Events

TAXUS IV

Restenosis Rate

Di

R١

		RR	TAXUS	Control	Р	
l .	- I	0.30	7.9	26.6	<0.0001	
on-diabetic	- -	0.35	8.5	24.4	<0.0001	
abetic, oral meds	- -	0.19	5.8	29.7	0.003	
abetic, insulin	• -- •	0.18	7.7	42.9	0.007	
۱D		0.42	11.3	26.9	0.004	
on-LAD	- i	0.22	5.7	26.4	<0.0001	
/D ≤2.5 mm		0.27	10.2	38.5	<0.0001	
/D 2.5-3.0 mm	- -	0.24	6.7	27.8	0.0001	
/D ≥3.0 mm	- I	• 0.45	6.8	15.2	0.10	
n length <10 mm	- 	0.29	5.6	18.9	0.01	
n length 10-20 mm	- 	0.28	7.2	25.8	<0.0001	
n length >20 mm	- I	0.36	14.9	41.5	0.004	
	0 0.5 1	.0 1.5				

RR 195% CI

IVUS analysis (A: comparison)

Meta-Analysis Comparing Drug-Eluting Stents With Bare Metal Stents in 10 Randomized trials of 5,066 Patients with 6-12 Months Follow-up.

TABLE 2 Clinical Outcomes											
	Sample size		c .			Outcomes With Drug-eluting Stents			Outcomes With Bare-metal Stents		
			Follow-up	Death	AMI	Thrombosis	Death	AMI	Thrombosis		
Trials	DES	Control	(mo)	(cardiac)	(Q wave)	(1st mo)	(cardiac)	(Q wave)	(1st mo)		
TAXUS-I	31	30	12	O (0)	0 (0)	0 (O)	0 (0)	0 (0)	0 (0)		
TAXUS-II	266	270	12	O (0)	8 (3)	3 (1)	2 (1)	14 (3)	0 (0)		
TAXUS-IV	662	652	12	ND (9)	23 (5)	4 (2)	ND (8)	31 (2)	5 (4)		
ASPECT	117	59	6	1 (ND)	3 (0)	4 (4)	0 (0)	1 (0)	0 (0)		
ELUTES	152	38	12	1 (1)	2 (0)	1 (1)	0 (0)	0 (0)	1 (1)		
DELIVER	522	519	9	5 (ND)	6 (2)	2 (ND)	5 (ND)	5 (1)	0 (0)		
RAVEL	120	118	12	2 (0)	4 (2)	0 (0)	2 (1)	5 (1)	0 (0)		
SIRIUS	533	525	9	5 (ND)	15 (4)	2 (1)	3 (ND)	17 (2)	4 (1)		
E-SIRIUS	175	177	9	2 (1)	8 (2)	2 (2)	1 (0)	4 (0)	0 (0)		
C-SIRIUS	50	50	9	o (oj	1 (0)	1 (1)	o (oj	2 (0)	1 (0)		
AMI = acute myocardial infarction; DES = drug-eluting stent; ND = no data available.											

Katritsis DG, Am J Cardiology 2005; 45: 652-8

Effectiveness of Sirolimus-Eluting Stent Implantation for Coronary Narrowings <50% in Diameter

Angela Hoye, MB, ChB, Pedro A. Lemos, MD, Chourmouzios A. Arampatzis, MD, Francesco Saia, MD, Kengo Tanabe, MD, Muzaffer Degertekin, MD, Joost Daemen, Pieter C. Smits, MD, PhD, Eugene McFadden, MB, ChB, Sjoerd H. Hofma, MD, Georgios Sianos, MD, PhD, Pim de Feyter, MD, PhD, Willem J. van der Giessen, MD, PhD, Ron T. van Domburg, PhD, and Patrick W. Serruys, MD, PhD

 A consecutive series of 20 patients were treated with sirolimus-eluting stent implantation for 23 angiographically mild de novo lesions (defined as a diameter stenosis <50% by quantitative coronary angiography).

• At a mean follow-up of 399 ± 120 days, the survivalfree of major adverse events was 95%, with no patient requiring target lesion revascularization. Am J Cardiol 2004;94: 112-114

After stent

Pre

After stent

Angioplasty Summit

6-month follow-up

In the previous era of bare metal stents

The proximal LAD lesion location was a risk factor for restenosis; therefore, strategies were developed to avoid unnecessary intervention.

In the current era of drug-eluting stents

• The proximal LAD lesion location is no longer associated with a higher rate of restenosis.

• It may be time to evaluate the clinical efficacy of drug-eluting stent implantation in mild to moderate proximal LAD stenosis lesions with potentially vulnerable plaque.

Concepts of Provisional DES implantation for vulnerable plaques

Transformation of the target plaque *from vulnerable plaque to scar tissue* without any increase of sudden death, AMI and restenosis.

cardiac death

fatal myocardial infarct

Statin Drug-eluting stenting Statin?

?

Question 2: Limitations

- Lack of control group
- Too small number of study patients to draw the conclusions
- in previously published data
- Need for randomized study to compare the efficacy between stent vs. statin with larger number of patients.

Conclusion

Combination of 1) Need for systemic therapy (statin), and 2) Consideration of local interventional treatment, additionally and very aggressively

Thanks for your attention

