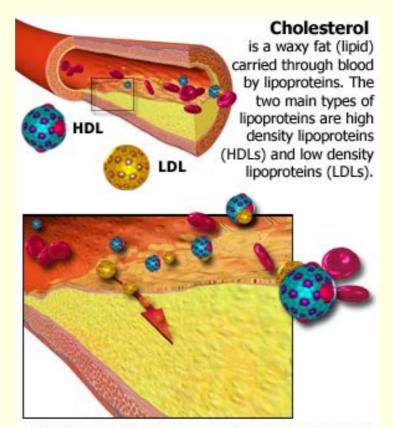
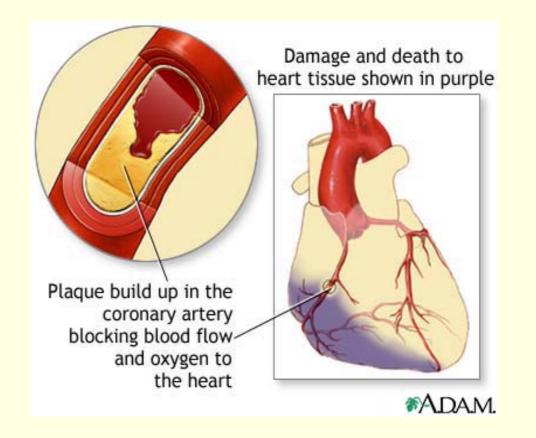
Behind LDL: The Metabolism of ApoB, the Essential Apolipoprotein in LDL and VLDL

#### Sung-Joon Lee, PhD

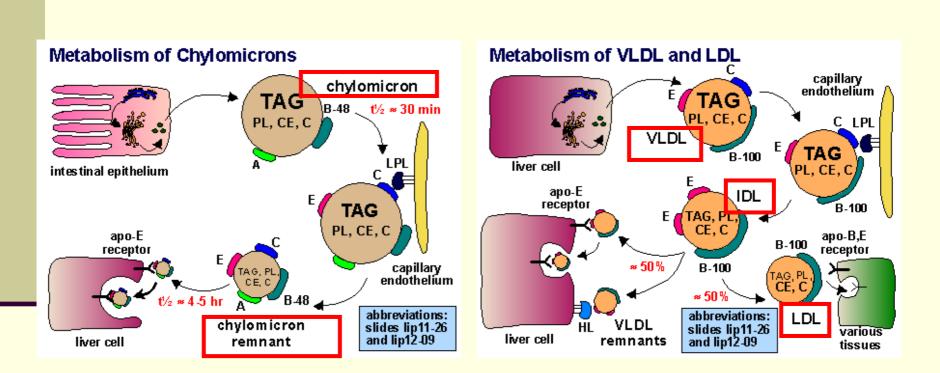

Division of Food Science Institute of Biomedical Science and Safety Korea University

#### **Composition of Lipoproteins: cholesterol carrying particles**

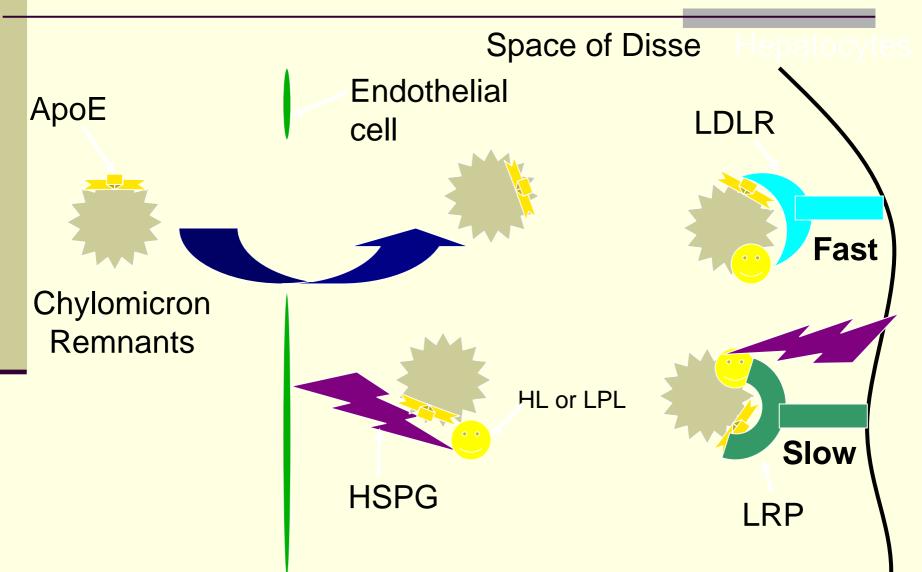
Classification by density


| Comple x          | Source              | Density<br>(g/ml) | %Prot | %TG       | %PL       | %CE   | %C   | %FFA <sup>e</sup> |
|-------------------|---------------------|-------------------|-------|-----------|-----------|-------|------|-------------------|
| Chylom<br>icron   | Intestine           | <0.95             | 1-2   | 85-<br>88 | 8         | 3     | 1    | 0                 |
| VLDL              | Liver               | 0.95-<br>1.006    | 7-10  | 50-<br>55 | 18-<br>20 | 12-15 | 8-10 | 1                 |
| IDL               | VLDL                | 1.006-<br>1.019   | 10-12 | 25-<br>30 | 25-<br>27 | 32-35 | 8-10 | 1                 |
| LDL               | VLDL                | 1.019-<br>1.063   | 20-22 | 10-<br>15 | 20-<br>28 | 37-48 | 8-10 | 1                 |
| *HDL <sub>2</sub> | Intestine,<br>liver | 1.063-<br>1.125   | 33-35 | 5-15      | 32-<br>43 | 20-30 | 5-10 | 0                 |
| *HDL <sub>3</sub> | Intestine,<br>liver | 1.125-<br>1.21    | 55-57 | 3-13      | 26-<br>46 | 15-30 | 2-6  | 6                 |
| Albumi<br>n-FFA   | Adipose<br>tissue   | >1.281            | 99    | 0         | 0         | 0     | 0    | 100               |

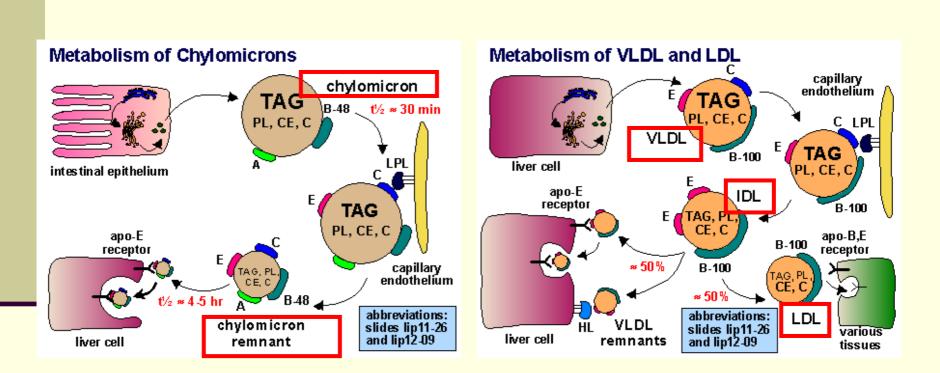
## Good and Bad Cholesterol




HDLs (good cholesterol) carry LDLs (bad cholesterol) away from artery walls. LDLs stick to artery walls and can lead to plaque build-up (atherosclerosis).


## Atherosclerosis

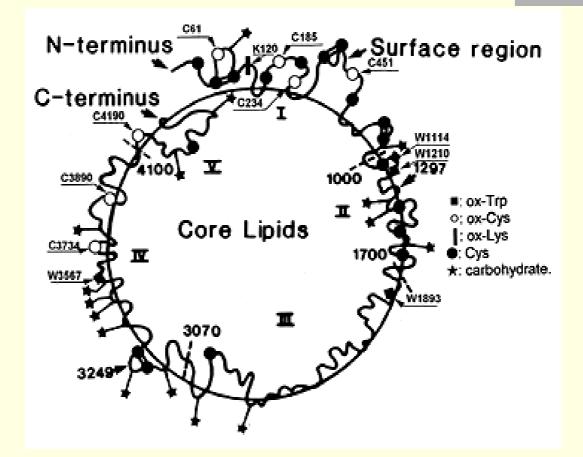



### Metabolic Pathways of ApoB-Lipoproteins: Endogenous vs. Exogenous Pathways



Pathways of Chylomicron Remnants Removal by the Liver

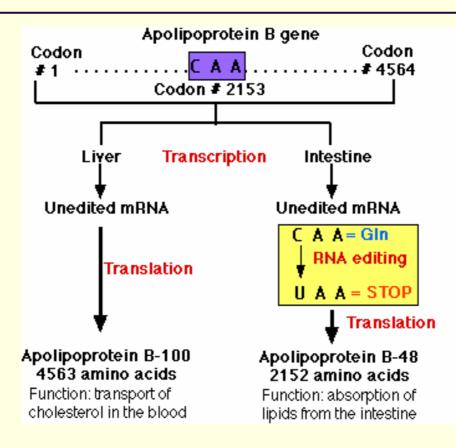



### Metabolic Pathways of ApoB-Lipoproteins: Endogenous vs. Exogenous Pathways



## Many apolipoproteins are associated with the risk for CHD

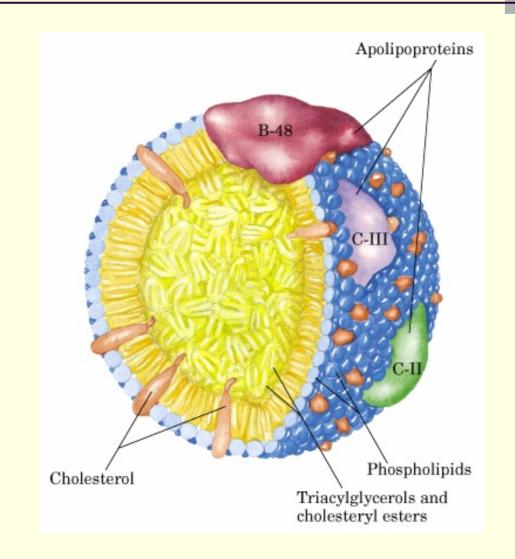
| Туре     | Lipoprotein<br>Association | Function and Comments                                                                      | Association with<br>CHD |  |  |
|----------|----------------------------|--------------------------------------------------------------------------------------------|-------------------------|--|--|
| apoA-I   | CM, HDL                    | major protein of HDL, activates lecithin:cholesterol acyltransferase, LCAT                 | Yes                     |  |  |
| apoA-II  | CM, HDL                    | primarily in HDL, enhances hepatic lipase activity                                         | Unknown                 |  |  |
| apoA-IV  | CM and HDL                 | present in triacylglycerol rich lipoproteins                                               | Yes                     |  |  |
| apoB-48  | СМ                         | exclusively found in CM                                                                    | Yes                     |  |  |
| ароВ-100 | VLDL-LDL                   | major protein of LDL, LDL receptor ligand                                                  | Yes                     |  |  |
| apoC-I   | CM, VLDL,HDL               | may activate LCAT                                                                          | Unknown                 |  |  |
| apoC-II  | CM, VLDL, HDL              | activates lipoprotein lipase                                                               | Unknown                 |  |  |
| apoC-III | CM, VLDL, HDL              | inhibits lipoprotein lipase                                                                | In ApoB, Yes            |  |  |
| apoD     | HDL                        | closely associated with LCAT                                                               | Unknown                 |  |  |
| CETP     | HDL                        | exclusively associated with HDL, cholesteryl ester transfer                                | Yes                     |  |  |
| ароЕ     | CR, VLDL, HDL              | LDL receptor ligand                                                                        | Phenotype, Yes          |  |  |
| apo(a)   | LDL                        | disulfide bonded to apoB-100, forms a complex with LDL identified as lipoprotein(a), Lp(a) | Yes                     |  |  |


# Structure of ApoB-containing Lipoproteins



ApoB is a structural protein for chylomicron, VLDL, IDL, and LDL.

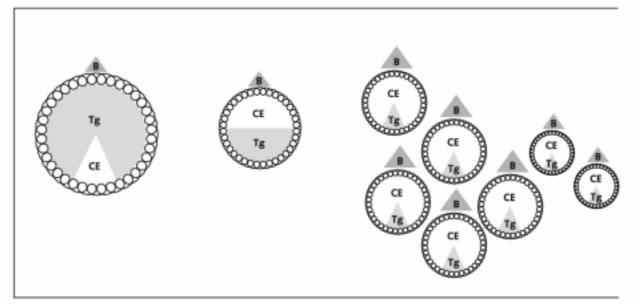
### ApoB100 vs. ApoB48


#### The Role of RNA editing



•27 N-terminal signal sequence; 4536 aa

•Receptor binding site is terminated


## Structure of ApoB containing Lipoproteins



## Relative Number of VLDL, IDL, and LDL

#### Plasma apoB level is correlated with LDL cholesterol.

The relative number of very-low-density lipoprotein (VLDL) (*left*), intermediate-density lipoprotein (*middle*), and low-density lipoprotein (LDL) (*right*) particles.



The LDL particles always greatly outnumber VLDL particles. The LDL particles also differ in composition; in this instance, most LDL particles are LI A rather than LDL B. B = apoB100; CE = cholesterol ester; Tg = triglyceride.

The half life of LDL is nine times longer compared with VLDL.

In circulation, nine times more LDL particles than VLDL particles.

Is apoB more sensitive indicator for CHD risk than LDL?

In cross-sectional studies, HTG with normal apoB is not associated with an increased risk for CHD, whereas HTG with increased apoB is

- Sniderman AD et al. Ann Intern Med. 1982:97:833-9
- Brunzell JD et al. Metabolism. 1976:25:313-20
- Durrington PN et al. Br. Heart J. 1986:56:206-12
- Barbir M et al. Br Heart J. 1988:60:397-403
- Kutika H et al. Atherosclerosis. 1985:55:143-9
- Kwiterovich PO et al. Am J Cardiol. 1993:71:631-9

## ApoB vs. Cholesterol: Studies in not on statin treatment

|                                  | Type of analysis         | Hazard ratio* (95% CI) |                  | p               |                  |
|----------------------------------|--------------------------|------------------------|------------------|-----------------|------------------|
|                                  |                          | LDL-cholesterol        | Apolipoprotein B | LDL-cholesterol | Apolipoprotein B |
| Not on statin treatment          |                          |                        |                  |                 |                  |
| Observational studies            |                          |                        |                  |                 |                  |
| Lamarche et al <sup>3</sup>      | Multiple regression      | NA                     | 1.44 (1.22-1.67) |                 | <0.001           |
|                                  | (tertile data available) |                        |                  |                 |                  |
| Moss et al <sup>4</sup>          | Q4:Q1-3                  | 0.60 (0.30-1.18)       | 2.37 (1.28-4.36) | 0.1399          | 0.057            |
| AMORIS <sup>2</sup>              | Multivariate             |                        |                  |                 |                  |
|                                  | regression               |                        |                  |                 |                  |
|                                  | Males                    | 1.14 (1.01-1.28)       | 1.33 (1.17-1.51) | 0.0234          | <0.0001          |
|                                  | Females                  | 0.85 (0.69-1-05)       | 1.53 (1.25-1.88) | 0.1387          | <0.0001          |
| NPHS <sup>5</sup>                | Q4:Q1                    | 2.60 (1.60-4.40)       | 2.90 (1.82-4.64) | <0.05           | <0.005           |
| Placebo group in clinical trials |                          |                        |                  |                 |                  |
| AFCAPS/TexCAPS <sup>®</sup>      | T3 : T1                  | 1-44† (NA)             | 1·39† (NA)       | NS              | NA               |
| LIPID <sup>7</sup>               | Regression analysis      |                        |                  |                 |                  |
|                                  | Unadjusted               | 1.15 (1.04-1.27)       | 1.64 (1.21-2.21) | 0.008           | 0.002            |
|                                  | Adjusted                 | 1.28 (1.07-1.31)       | 2.07 (1.21-2.24) | 0.002           | 0.001            |

# AMORIS age-adjusted hazard ratio for summary atherogenic indices.

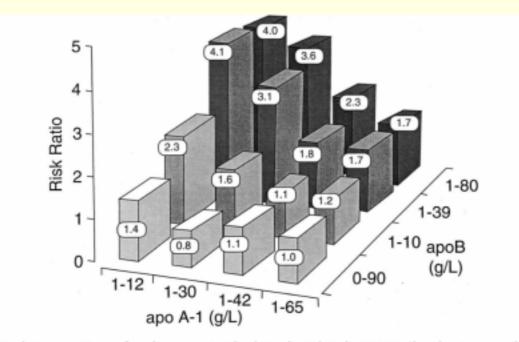
|                                | Men                                  |   | Women                                |   |
|--------------------------------|--------------------------------------|---|--------------------------------------|---|
|                                | HR/SD (95% CI)                       | р | HR/SD (95% CI)                       | р |
| TC/HDL-C<br>vs apoB/A-I        |                                      |   | 1.05 (0.99–1.10)<br>1.33 (1.19–1.49) |   |
| LDL-C/HDL-C<br>vs apoB/A-1     |                                      |   | 1.03 (0.96–1.10)<br>1.36 (1.02–1.40) |   |
| Non-HDL-C/HDL-C<br>vs apoB/A-1 | 0·96 (0·92–1·02)<br>1·59 (1·48–1·72) |   | 1.05 (0.99–1.10)<br>1.33 (1.19–1.49) |   |

TC=total cholesterol; HDL-C=HDL cholesterol; LDL-C=LDL cholesterol; apoB/A-1=apolipoprotein B/A-1; HR/SD=hazard ratio per standard deviation of that variable. In every case, the lipid ratio is compared with the apolipoprotein ratio by multivariate analysis. NS=p $\ge$ 0.05. ApoB vs. Cholesterol: Studies in not on statin treatment

- ApoB is a better predictor of risk than LDL cholesterol.
- Ratio of apoB/apoAI is superior to total cholesterol/HDL cholesterol as an overall index of risk.

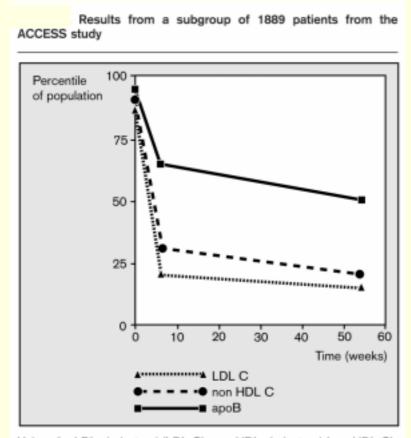
## ApoB vs. Cholesterol: Studies of On statin treatment

|                                                                                         |                                               | Hazard Ratio                         |                                      | P value    |               |
|-----------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|------------|---------------|
|                                                                                         |                                               | LDL                                  | ароВ                                 | LDL        | ароВ          |
| On statin treatment<br>Epidemiological studies<br>Roeters van Lennep et al <sup>a</sup> | Regression analysis                           | 1.16 (0.80-1.67)                     | 3-21 (1-10-9-35)                     | NS         | 0.033         |
| Treated group in clinical trials<br>AFCAPS/TexCAPs <sup>4</sup><br>LIPID <sup>7</sup>   | Regression analysis                           | 1·26† (NA)                           | 1-66† (NA)                           | NS         | <0-001        |
| LIFIU                                                                                   | Regression analysis<br>Unadjusted<br>Adjusted | 1·08 (0·84–1·23)<br>1·20 (1·00–1·45) | 1-49 (1-02–2-17)<br>2-10 (1-21–3-64) | NS<br>0-04 | 0·05<br>0·008 |


NA=not available; T=tertiles; Q=quartiles; NS=p>0.05. \*Hazard ratios from 4S<sup>a</sup> not yet available. †Estimated from graph.

LDL cholesterol versus apolipoprotein B as predictors of vascular events

# ApoB vs. Cholesterol:


- LDL cholesterol is an independent predictor for coronary events in untreated patients.
- The association is weaker in patients in truncated placebo groups of major statin trials than in those in major epidemiology studies.
- ApoB is overall stronger predictor of coronary events than LDL cholesterol.
- ApoB/apoAI is the stronger predictor than total/HDL cholesterol.

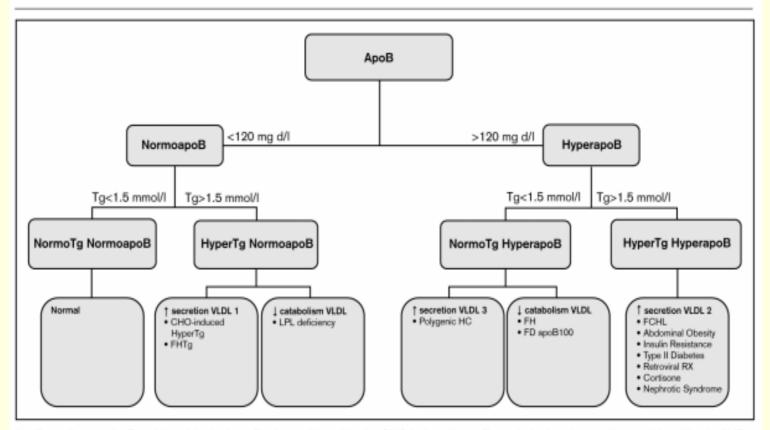
#### Inter-relationship beteen RR, apoB, and apoAI



Results in men <70 years from the Apoprotein-Related Mortality Risk Study (AMORIS). The risk ratios were calculated after adjustment for cholesterol and triglycerides and age. Apo = apolipoprotein. (Reproduced with permission from Lancet.<sup>5</sup>)

# Statin treatment may need to reduce atherogenic lipoprotein particles *per se*.




Statin effectively lowers cholesterol levels but does not reduce apoB sufficiently.

Values for LDL cholesterol (LDL C), non-HDL cholesterol (non-HDL C), and apolipoprotein B (apoB) are presented relative to the population; that is, as percentiles before and after treatment with a statin (from [3\*\*]).

# **Implication for Practice**

- Data suggest apoB and the apoB/apoAI ratio are more sensitive indices of risk for CHD than LDL.
- ApoB-guided statin therapy should be substantially more effective in prevention of vascular events than vascular treatment guided by LDL.
  - Cutoff for >75% is ~110-140 mg/dl depending on the population characteristics.

An apolipoprotein B/triglycerides diagnostic algorithm



ApoB, apolipoprotein; Tg, triglyceridemia; hyperTg, hypertriglyceridemia; CHO-induced hyperTg, carbohydrate-induced hypertriglyceridemia; FHTg, familial hypertriglyceridemia; HC, hypercholesterolemia; FH, familial hypercholesterolemia; FD apoB100, familial defective apoB100; FCHL, familial combined hyperlipidemia; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein.

LDL Containing ApoCIII is an Independent Risk Factors for Recurrent Coronary Events in Diabetic Humans.

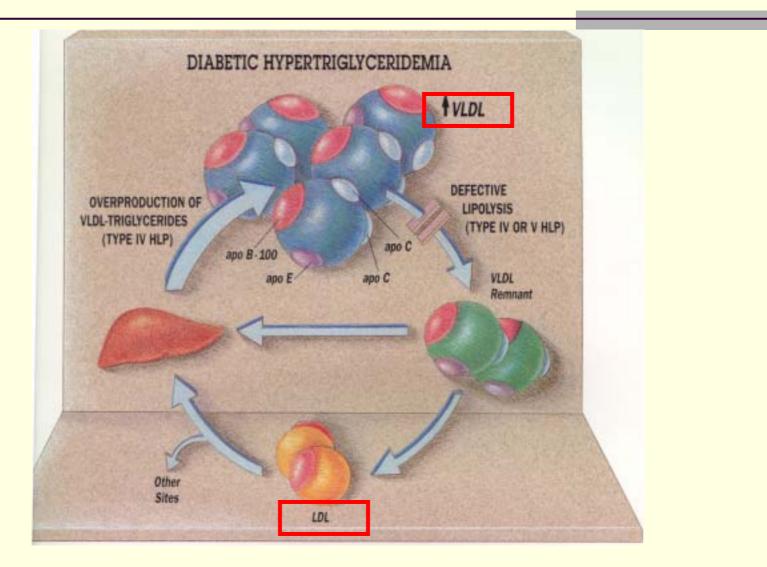
Sung-Joon Lee 1, Hannia Campos 1, Lemuel Moye 2, Frank M. Sacks 1.

1 Harvard School of Public Health, Department of Nutrition; 2 Texas School of Public Health.

## **Risk Factors for Atherosclerosis**

- Modifiable risk factors
  - By life-style
    - Smoking
    - Obesity
    - Physical inactivity
  - By pharmacotherapy and or life-style
    - Lipid disorders

Diabetes


- Hypertension
- Unmodifiable risk factors
  - Age
  - Male gender
  - Genetics

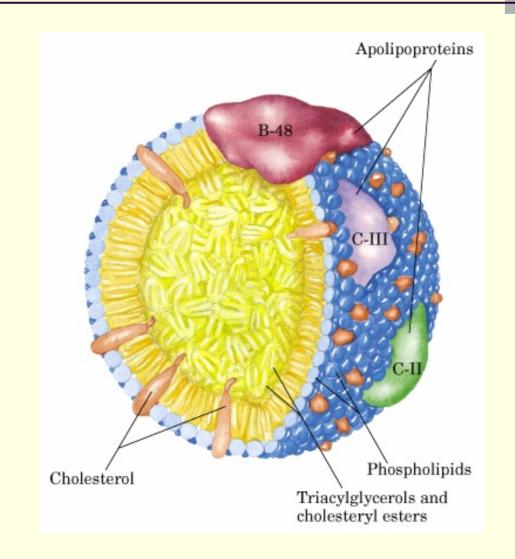
The Risk of Coronary Heart Disease (CHD) in Diabetes Mellitus (DM).

 Patients with diabetes mellitus (DM) have 2-3 times higher ageadjusted risk of CHD than nondiabetic patients.

 Hypertriglyceridemia and the level of LDL cholesterol do not explain the high risk of CHD in patients with diabetes.

# Diabetic Dyslipidemia




# **Research Question**

What lipoproteins can explain the high risk of CHD in patients with diabetes?

– Since VLDL and LDL particles are heterogeneous in composition and metabolic pathway, it is possible that certain VLDL or LDL types are more atherogenic than other types and are associated with the risk of heart disease.

 ApoCIII may be associated with risk of CHD in patients with diabetes.

## Structure of ApoB containing Lipoproteins



# Apolipoprotein CIII

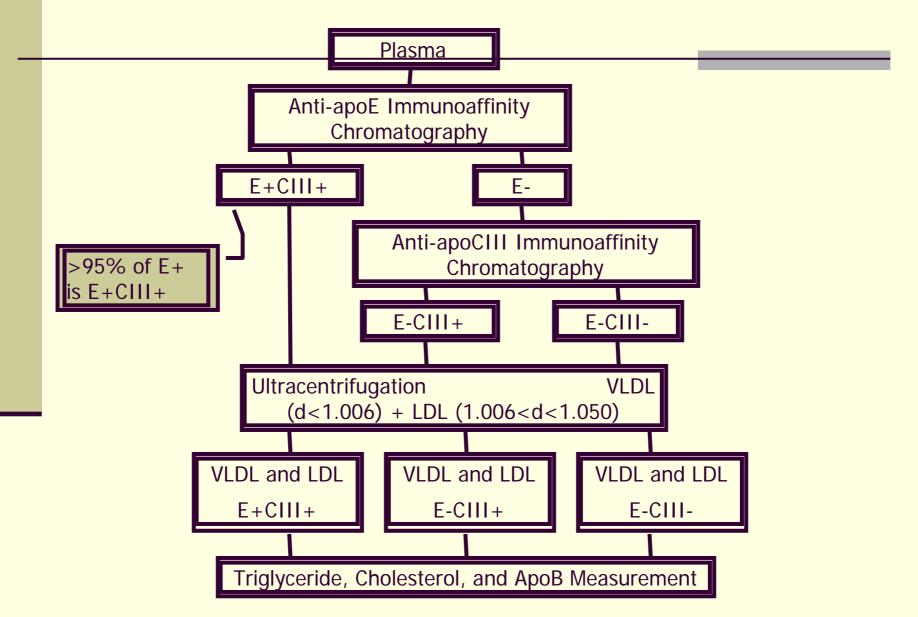
- ApoCIII
  - Inhibitor for lipoprotein lipase.
  - Inhibitor for receptor-mediated particle clearance: both apoB- and apoE-dependent.
  - The gene expression and fasting/postprandial plasma levels of apoCIII are elevated in DM.
  - The apoCIII level in apoB lipoproteins (VLDL+LDL) is a risk factor for CHD in DM.

# Apolipoprotein E

- ApoE
  - A ligand for LDL-R and LRP.
  - Anti-oxidant property: both liver- and macrophagederived apoE.
  - Its level in VLDL+LDL is a risk factor for CHD.
  - Multiple logistic model considering both apoE and apoC3 together: the apoC3 but not apoE was an independent risk factor for coronary events.

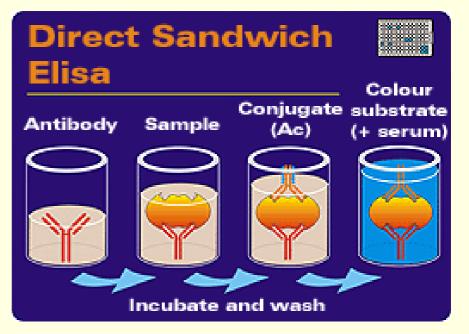
# **Selected Clinical Trials of Statin Therapy for Prevention of Coronary or CHD Events**

| Trial              | Previous MI | Lipids                      | Before lipid<br>lowering,<br>mmol/L<br>(mg/dL) | Decrease in<br>cholesterol,<br>mmol/L(mg<br>/dL) | CHD event<br>reduction, % |
|--------------------|-------------|-----------------------------|------------------------------------------------|--------------------------------------------------|---------------------------|
| WOSCOPS            | -           | Total<br>cholesterol<br>LDL | 7.0(272)<br>5.0(192)                           | 0.52(20)<br>0.67(26)                             | 31                        |
| AFCAPS/TexCA<br>PS | -           | Total<br>cholesterol<br>LDL | 5.7(220)<br>4.0(156)                           | 0.47(18)<br>0.65(25)                             | 36                        |
| 4S                 | +           | Total<br>cholesterol<br>LDL | 6.7(261)<br>4.9(188)                           | 0.65(25)<br>0.91(35)                             | 34                        |
| CARE               | +           | Total<br>cholesterol<br>LDL | 5.4(209)<br>3.6(139)                           | 0.52(20)<br>0.72(28)                             | 24                        |
| LIPID              | +           | Total<br>cholesterol        | 5.7(219)<br>3.9(150)                           | 0.47(18)<br>0.65(25)                             | 24                        |


WOSCOPS: J Shepherd et al: West of Scotland Coronary Prevention Study Group. N Engl J Held 333:1301, 1995.AFCAPS/TexCAPS: JR Downs et al: Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279:1615, 1998.4S: Anonymous: The Scandinavian Simvastin Survival Study. Lancet 344:1383, 1994.CARE: FM Sacks et al: Cholesterol and Recurrent Events Trial (CARE) Investigators. N Engl J Med 335:1001, 1996.LIPID: Anonymous: The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group. N Engl J Med 339:1349, 1998.

# Study Design

• We conducted a prospective, nested case-control study among 242 diabetic patients from the CARE trial.


• The cases were diabetic patients with at least one of the following recurrent coronary event during 5year follow-up: fatal, or non-fatal myocardial infarction (MI), CABG, or PTCA. The controls were diabetic patients without a recurrent coronary event or a stroke during the follow-up.

### Isolation of Lipoproteins Containing ApoCIII



## Apolipoprotein Measurement in Human Plasma

- Sandwich ELISA assay
- Fast and sensitive
- Well-established method
- Inter and intra-CV is ~5-7%

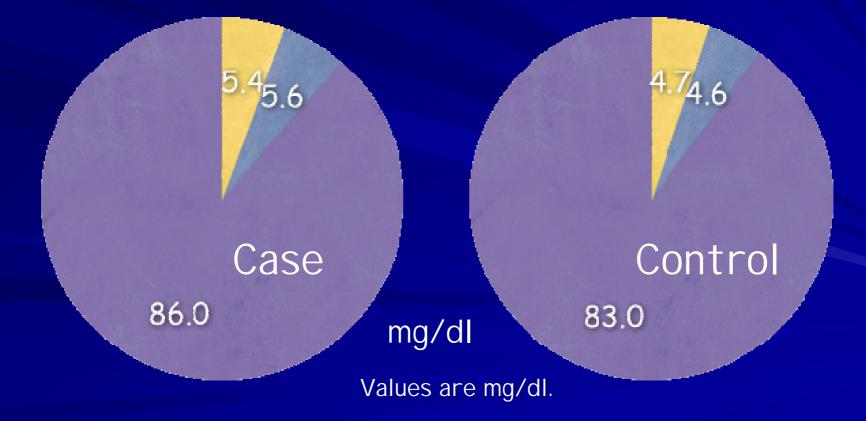


# Baseline Characteristics in case and control groups.

|                     | Controls | Cases  | P Value |
|---------------------|----------|--------|---------|
| n                   | 121      | 121    |         |
| Triglyceride, mg/dL | 165±69   | 164±66 | 0.88    |
| Cholesterol, mg/dL  |          |        |         |
| Total               | 206±17   | 207±16 | 0.74    |
| LDL                 | 135±14   | 136±14 | 0.66    |
| HDL                 | 38±10    | 38±9   | 0.95    |
| non-HDL             | 168±18   | 169±16 | 0.77    |
| Glucose, mg/dL      | 143±49   | 149±52 | 0.35    |
| Age, y              | 61±8     | 61±9   | 0.72    |
| Male sex            | 83       | 83     | 1       |
| White race          | 86       | 87     | 0.71    |
| Alcohol, drinks/wk  |          |        | 0.30    |
| None                | 76       | 73     |         |
| 1-4                 | 17       | 17     |         |
| 5-10                | 5        | 3      |         |
| ≥11                 | 2        | 10     |         |

# Baseline Characteristics in case and control groups.

|                                    | Controls | Cases  | P Value |
|------------------------------------|----------|--------|---------|
| Current smoker                     | 11       | 16     | 0.26    |
| Systolic blood pressure            | 131±20   | 134±19 | 0.19    |
| Diastolic blood pressure           | 77±10    | 78±11  | 0.46    |
| Diabetes                           | 100      | 100    | _       |
| Hypertension                       | 49       | 63     | 0.61    |
| Angina                             | 21       | 33     | 0.04    |
| CABG                               | 35       | 19     | 0.006   |
| PTCA                               | 27       | 26     | 0.77    |
| LVEF                               | 52±13    | 51±12  | 0.65    |
| Body mass index, kg/m <sup>2</sup> | 29±5     | 29±5   | 0.41    |
| Waist circumference, cm            | 99±12    | 102±16 | 0.06    |
| Medication use                     |          |        |         |
| Oral hypoglycemic                  | 40       | 50     | 0.09    |
| $\beta$ -blockers                  | 35       | 43     | 0.19    |
| ACE inhibitor                      | 21       | 24     | 0.65    |
| Diuretics                          | 21       | 23     | 0.76    |
| Insulin                            | 13       | 20     | 0.17    |
| Estrogen                           | 2        | 2      | 0.65    |

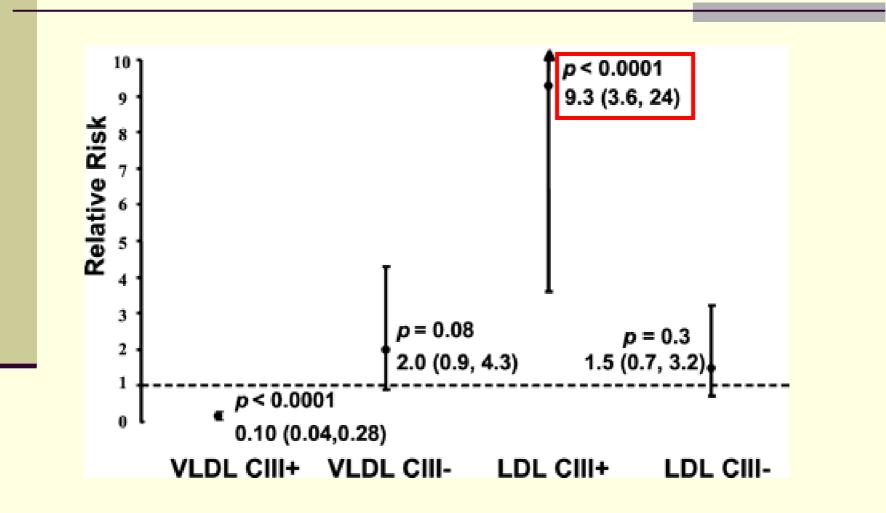

Particle concentration (ApoB), cholesterol and triglyceride levels in apoB lipoproteins containing apoC3 or apoE

| Control subjects | Cases                                                                                                   | P-value*                                                                                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N=121            | N=121                                                                                                   |                                                                                                                                                                                                                               |
|                  |                                                                                                         |                                                                                                                                                                                                                               |
| 4.7 ± 1.7        | 5.4 = 2.4                                                                                               | 0.0001                                                                                                                                                                                                                        |
| 19± 6.1          | 20 ± 7.1                                                                                                | 0.005                                                                                                                                                                                                                         |
| 11 ± 5.2         | 12 = 5.7                                                                                                | 0.08                                                                                                                                                                                                                          |
|                  |                                                                                                         |                                                                                                                                                                                                                               |
| 4.6 ± 2.4        | 5.6 ± 3.2                                                                                               | 0.0002                                                                                                                                                                                                                        |
| 18 ± 9.7         | 20 = 11                                                                                                 | 0.02                                                                                                                                                                                                                          |
| 6.8±3.5          | 7.9 ± 3.9                                                                                               | 0.01                                                                                                                                                                                                                          |
|                  |                                                                                                         |                                                                                                                                                                                                                               |
| 83±25            | 86 ± 27                                                                                                 | 0.003                                                                                                                                                                                                                         |
| 112 ± 29         | 112 ± 29                                                                                                | 0.13                                                                                                                                                                                                                          |
| 17±5.2           | 19 ± 7.7                                                                                                | 0.02                                                                                                                                                                                                                          |
|                  | N=121<br>4.7 ± 1.7<br>19 ± 6.1<br>11 ± 5.2<br>4.6 ± 2.4<br>18 ± 9.7<br>6.8 ± 3.5<br>83 ± 25<br>112 ± 29 | N=121N=121 $4.7 \pm 1.7$ $5.4 \pm 2.4$ $19 \pm 6.1$ $20 \pm 7.1$ $11 \pm 5.2$ $12 \pm 5.7$ $4.6 \pm 2.4$ $5.6 \pm 3.2$ $18 \pm 9.7$ $20 \pm 11$ $6.8 \pm 3.5$ $7.9 \pm 3.9$ $83 \pm 25$ $86 \pm 27$ $112 \pm 29$ $112 \pm 29$ |

N=121/group. Values are mean±std. \*P-values are calculated from paired t-test.

### Composition of LDL in case and control groups.






### Relative risks and recurrent coronary events for lipoprotein concentration and composition

|   |            |         |     | (             | Quartiles     |               | Mean values are<br>apolipoprotein B     |
|---|------------|---------|-----|---------------|---------------|---------------|-----------------------------------------|
|   |            | -       | 1   | 2             | 3             | 4             | concentrations<br>(mg/dl).<br>Adjusted: |
|   | VLDL CIII+ | Mean    | 0.8 | 1.4           | 2.3           | 3.9           | Baseline<br>triglyceride, LDL           |
|   | adjusted   | RR (CI) | 1   | 0.5 (0.2,1.0) | 0.6 (0.3,1.3) | 0.5 (0.2,1.1) | cholesterol, HDL cholesterol, age,      |
|   |            | p       |     | 0.06          | 0.2           | 0.07          | gender, exercise,<br>waist              |
|   | VLDL CIII- | Mean    | 0.9 | 1.9           | 2.4           | 3.8           | circumference,<br>CABG, angina,         |
|   | adjusted   | RR (CI) | 1   | 1.0 (0.4,2.3) | 0.5 (0.2,1.3) | 2.3 (1.0,5.3) | glucose, oral<br>hypoglycemic use,      |
|   |            | p       |     | 1.0           | 0.2           | 0.05          | and treatment group (placebo or         |
| Γ | LDL CIII+  | Mean    | 4.5 | 5.9           | 7.2           | 10.4          | pravastatin) were included. RR=         |
| Т | adjusted   | RR (CI) | 1   | 3.0 (1.2,7.6) | 1.7 (0.6,4.7) | 6.6 (2.6,17)  | Relative risk,<br>CI=95%                |
| L |            | p       |     | 0.02          | 0.3           | <0.0001       | confidence<br>interval.                 |
|   | LDL CIII-  | Mean    | 42  | 55            | 65            | 86            | "LDL" includes the<br>IDL fraction. In  |
|   | adjusted   | RR (CI) | 1   | 1.0 (0.4,2.2) | 1.6 (0.7,3.7) | 2.2 (0.9,5.0) | the nomenclature<br>of Alaupovic,9      |
|   |            | Р       |     | 0.9           | 0.2           | 0.07          | CIII+ is Lp-B:C<br>and CIII- is Lp-B.   |

Lee et al. Arterioscler Thromb Vasc Biol. 2003 May 1;23(5):853-8.

Multivariate analysis of VLDL and LDL types as predictors of recurrent coronary events in diabetes. The apoB concentrations of VLDL and LDL particle types were included together. The LDL fraction includes IDL.



Lee et al. Arterioscler Thromb Vasc Biol. 2003 May 1:23(5):853-8.

#### Conclusion

• ApoCIII+ LDL (E+CIII+, E-CIII+) are independent predictors of recurrent coronary events in diabetic patients beyond standard lipid measurements (LDL, HDL, and triglyceride).

ApoCIII + LDL may be particularly atherogenic, more so the major LDL particles (the E-CIII- type), since a small increase in concentration is associated with a 6-fold increase in risk.

In multivariate analysis, the LDL particle concentrations of E+CIII+ was not protective (RR=2.40, p=0.04). This finding suggests that apoCIII may have a dominant role in atherogenicity of the lipoprotein particles.

# Can pravastatin reduce apoCIII-containing LDL?

To test whether pravastatin, an HMG CoA reductase inhibitor, reduces LDL apoCIII+ as well as LDL apoCIII-, which represents conventional LDL particles.

#### Study Design

- 45 age- and sex-matched placebo-pravastatin pairs were randomly selected among diabetic patients from the CARE.
- Lipoprotein types were isolated with affinity chromatography, the levels of particle types were measured at both baseline and after 1 year of treatment, and the baseline-1 year differences were compared between the placebo and the pravastatin groups.

### Baseline characteristics of the placebo and pravastatin groups with diabetes mellitus

|                          | Placebo      | Pravastatin  |         |
|--------------------------|--------------|--------------|---------|
| Variable                 | (n = 45)     | (n = 45)     | p Value |
| Age (yrs)                | 60 ± 9       | 62 ± 8       | 0.3     |
| Caucasian                | 39 (87%)     | 39 (87%)     | 1.0     |
| Men                      | 35 (78%)     | 35 (78%)     | 1.0     |
| Current smoker           | 6 (13%)      | 6 (13%)      | 1.0     |
| Coronary bypass          | 11 (24%)     | 14 (31%)     | 0.5     |
| Coronary angioplasty     | 13 (29%)     | 10 (22%)     | 0.5     |
| Hypertension             | 24 (53%)     | 22 (49%)     | 0.7     |
| Exercise (>3 times/wk)   | 23 (51%)     | 25 (56%)     | 0.7     |
| Blood pressure (mm Hg)   |              |              |         |
| Systolic                 | 129 ± 19     | $134 \pm 25$ | 0.4     |
| Diastolic                | 76 ± 10      | 79 ± 11      | 0.3     |
| Blood glucose (mg/dl)    | $148 \pm 44$ | 147 ± 49     | 0.9     |
| Body mass index (kg/m²)  | 29 ± 5       | 31 ± 6       | 0.16    |
| Waist circumference (cm) | $102 \pm 13$ | $104 \pm 14$ | 0.5     |
| Oral hypoglycemic        | 23 (51%)     | 14 (31%)     | 0.06    |
| Insulin                  | 12 (27%)     | 7 (16%)      | 0.2     |
| β blockers               | 19 (42%)     | 15 (33%)     | 0.4     |

Data are presented as number of patients (percent) in the population and mean  $\pm$  SD. p Values were calculated from paired t tests.

# Plasma lipid concentration at baseline and one year of treatment

|                                                    | Placebo Group (n = 45) |                     | Pravastatin Group (n = 45) |                    |                   |                 |                       |              |
|----------------------------------------------------|------------------------|---------------------|----------------------------|--------------------|-------------------|-----------------|-----------------------|--------------|
|                                                    | Mean                   | ± SD                |                            | Mean               | ± SD              |                 | Pravastatin/          | 'Placebo     |
| Variable                                           | Baseline               | 1-Yr                | p Value                    | Baseline           | 1-Yr              | p Value         | % Change <sup>†</sup> | p Value      |
| Total cholesterol (mg/dl)                          | 206 ± 18               | $207 \pm 56$        | 0.58                       | 208 ± 18           | 172 ± 34          | 0.0002          | -18%                  | 0.006        |
| LDL cholesterol (mg/dl)<br>HDL cholesterol (mg/dl) | 135 ± 16<br>38 ± 9     | 134 ± 31<br>39 ± 10 | 0.70<br>0.23               | 137 ± 14<br>37 ± 9 | 93 ± 28<br>38 ± 8 | <0.0001<br>0.94 | -31%<br>-2%           | 0.01<br>0.21 |
| Triglyceride* (mg/dl)                              | $148 \pm 44$           | $150 \pm 54$        | 0.55                       | 159 ± 50           | 166 ± 55          | 0.69            | -1%                   | 0.62         |

\*Triglyceride values are geometric mean ± SD.

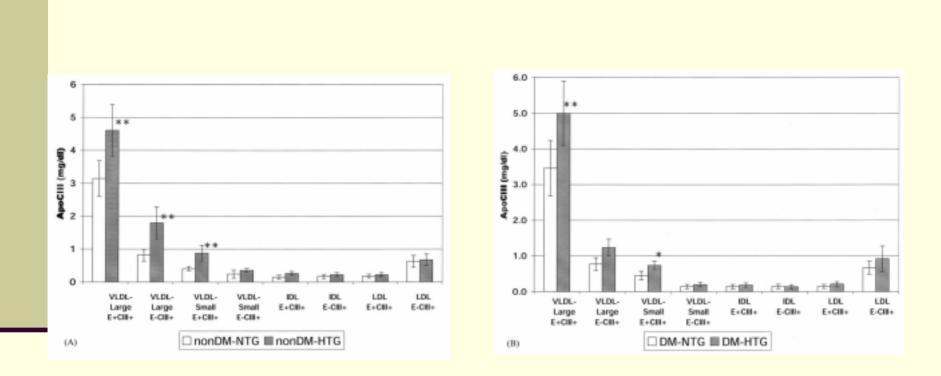
<sup>†</sup>Percent change means the percentage difference between the 1-year baseline difference in the placebo and the 1-year baseline difference in the pravastatin group.

## Particle concentration and cholesterol and triglyceride levels

TABLE 3 Particle (apo-B) Concentration and Cholesterol and Triglyceride Levels in Apo-B Lipoproteins Containing Apo-CIII or Apo-E at Baseline and After One Year of Treatment in Placebo and Pravastatin Groups

|                                  | Placebo (n $= 45$ ) |               |          | Pra           | Pravastatin (n = 45) |          |           | Pravastatin/Placebo |  |
|----------------------------------|---------------------|---------------|----------|---------------|----------------------|----------|-----------|---------------------|--|
|                                  | Baseline            | 1 Yr          | p Value  | Baseline      | 1 Yr                 | p Value  | % Change* | p Value             |  |
| VLDL E+CIII+                     |                     |               |          |               |                      |          |           |                     |  |
| Apo-B                            | $1.9 \pm 1.4$       | $2.1 \pm 1.3$ | 0.3      | $2.0 \pm 1.5$ | $2.3 \pm 1.5$        | 0.3      | 1%        | 1.0                 |  |
| Cholesterol                      | 12 ± 9              | $13 \pm 10$   | 0.5      | $13 \pm 8$    | $14 \pm 12$          | 0.4      | 3%        | 0.8                 |  |
| Triglycerides<br>VLDL E-CIII+    | 67 ± 56             | 79 ± 63       | 0.3      | 64 ± 46       | 79 ± 57              | 0.09     | 6%        | 0.8                 |  |
| Apo-B                            | $0.8 \pm 0.6$       | $1.1 \pm 0.8$ | 0.002    | $1.0 \pm 1.1$ | $1.4 \pm 1.7$        | 0.04     | -9%       | 0.9                 |  |
| Cholesterol                      | $3.6 \pm 3.0$       | $4.5 \pm 3.4$ | 0.11     | $4.4 \pm 4.2$ | 6.2 ± 8.0            | 0.09     | 17%       | 0.5                 |  |
| Triglycerides<br>VLDL E-CIII-    | 20 ± 17             | $28 \pm 22$   | 0.03     | $23 \pm 22$   | $37 \pm 48$          | 0.02     | 26%       | 0.3                 |  |
| Аро-В                            | $3.2 \pm 1.4$       | $3.4 \pm 1.6$ | 0.6      | $3.6 \pm 1.8$ | $3.5 \pm 3.8$        | 0.9      | -8%       | 0.7                 |  |
| Cholesterol                      | 6.3 ± 3.2           | $7.3 \pm 4.0$ | 0.09     | $7.3 \pm 3.4$ | $6.9 \pm 6.9$        | 0.8      | -21%      | 0.3                 |  |
| Triglycerides<br>IDL+LDL E+CIII+ | $20 \pm 10$         | $22 \pm 12$   | 0.17     | 21 ± 11       | $20 \pm 18$          | 0.8      | -16%      | 0.4                 |  |
| Аро-В                            | $4.2 \pm 1.6$       | $3.3 \pm 1.2$ | < 0.0001 | 6.5 ± 3.6     | $2.3 \pm 1.2$        | < 0.0001 | -42%      | 0.02                |  |
| Cholesterol                      | 20 ± 6              | $14 \pm 7$    | < 0.001  | $25 \pm 11$   | $10 \pm 7$           | < 0.001  | -29%      | 0.002               |  |
| Triglycerides                    | 12 ± 7              | 11 ± 9        | 0.8      | 12 ± 7        | 9 ± 5                | 0.003    | -28%      | 0.5                 |  |
| IDL+LDL E-CIII+                  |                     |               |          |               |                      |          |           |                     |  |
| Apo-B                            | $5.6 \pm 3.2$       | $4.5 \pm 3.2$ | 0.01     | $5.7 \pm 3.6$ | $3.6 \pm 2.6$        | 0.0001   | -17%      | 0.7                 |  |
| Cholesterol                      | $21 \pm 11$         | $16 \pm 11$   | < 0.001  | $23 \pm 14$   | 11 ± 7               | < 0.001  | -25%      | 0.2                 |  |
| Triglycerides                    | $7.9 \pm 3.8$       | 10 ± 9        | 0.12     | 7 ± 3         | 7 ± 6                | 0.9      | -24%      | 0.7                 |  |
| IDL+LDL E-CIII-                  |                     |               |          |               |                      |          |           |                     |  |
| Аро-В                            | 86 ± 29             | 92 ± 24       | 0.3      | 92 ± 29       | 72 ± 22              | 0.0002   | -29%      | 0.002               |  |
| Cholesterol                      | $111 \pm 25$        | $114 \pm 35$  | 0.7      | 129 ± 43      | 85 ± 31              | < 0.001  | -36%      | < 0.000             |  |
| Triglycerides                    | $18 \pm 5$          | 19 ± 4        | 0.07     | $18 \pm 5$    | 16 ± 6               | 0.02     | -22%      | 0.003               |  |

Values (mg/dl) are mean ± SD.


\*Percent change means the percentage difference between the 1-year baseline difference in the placebo and the 1-year baseline difference in the pravastatin group.

#### Conclusion

 Our results show that apoCIII+ LDL particles as well as the major type of LDL, the E-CIII- subtype, are reduced by pravastatin therapy.

 Since the percentage reduction in apoCIII+ LDL is similar to the reduction in LDL E-CIII-, the benefit from reducing apoCIII+ LDL could be more important than the lowering of LDL E-CIII.

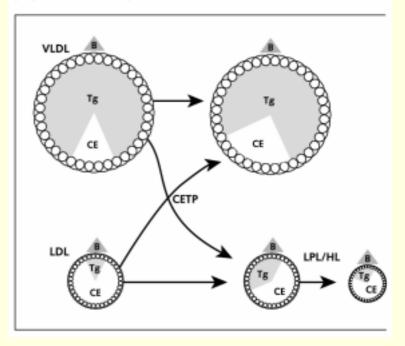
# Apolipoprotein CIII concentrations in HTG and NTG groups



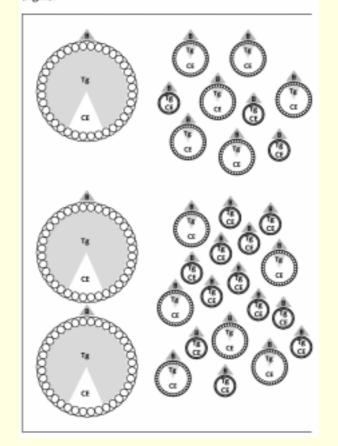
A shows DM groups while B shows non-DM groups. Lee at al. Atherosclerosis. 2003 167:293-302.

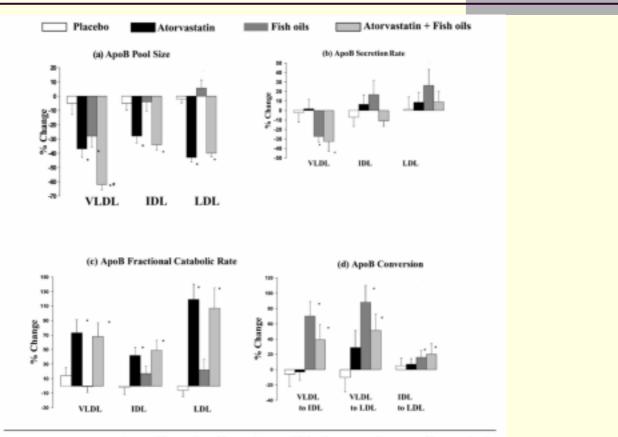
#### Conclusion

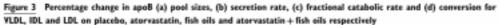
- ApoB is a stronger predictor for CHD risk than cholesterol.
- ApoCIII-LDL is potent atherogenic lipoprotein particles in diabetic patients with previous MI.
- ApoCIII-LDL is reduced by 1-year of pravastatin therapy.
- ApoCIII-LDL exists similar level in both diabetic and non-diabetic patients with previous MI.


# Watch out apoB as well as LDL!

#### Thank you 🙂


#### Formation of Small Dense LDL


- Transfer of TG from VLDL to LDL results in formation of TG rich LDL.
- TG rich LDL is a good substrate for LPL
- LPL degrades TG component in LDL resulting in the generation of small dense LDL.
- The rate of this pathway depends on hepatic VLDL secretion
  - Hypertriglyceridemia is associated with the prevalence of small dense LDL


Formation of small, dense low-density ipoprotein (LDL) particles.



ApoB lipoprotein particles in healthy persons (*left*) and those with hypertriglyceridemic hyperapoB (*right*).







\*P < U.H. compared with the placebo group; \*\*P < 0.05 compared with the atomization or fish oil groups. (2) (2003) American Diabetes Association from Diabetes, 51, 2377–2386. Reprinted with permission of the American Diabetes Association.</p>

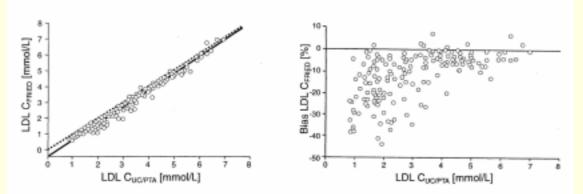



FIGURE 2. (Left Overall relation between low-density lipoprotein (LDL) cholesterol measured by beta quantitation (LDL C<sub>UC/PTA</sub>) and LDL cholesterol calculated by the Friedewald (Fried) formula. Beta quantitation is performed first by removal of very low-density lipoprotein by ultracentrifugation (UC) and then precipitation of LDL with phosphotungstic acid/Mg Cl2 (PTA). (Reproduced with permission from *Clin Chem Lab Med.*<sup>14</sup>)

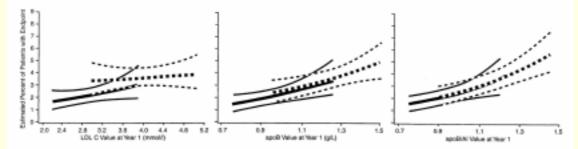



FIGURE 3. (Left Relation between risk in the placebo group (dashed line) and the treated group (solid line) and the level of low-density lipoprotein cholesterol (LDL-C) at 1 year. (Center) The same relations for apolipoprotein (apo) B and apo B/apoAI (right). (Adapted from Circulation.<sup>10</sup>)

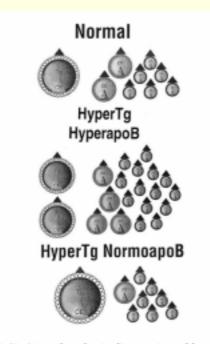
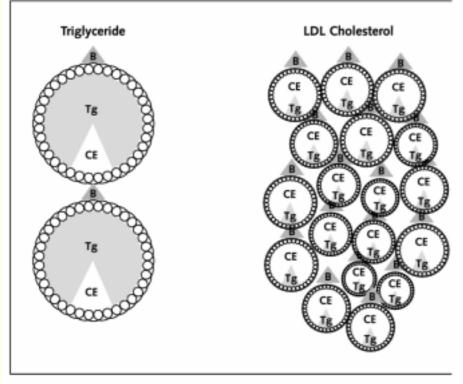



FIGURE 4. (Top) Very low-density lipoprotein and low-density lipoprotein particle number and composition in a normal subject. (Middle) A patient with hypertriglyceridemic (hyperTg) hyperapo B. (Bottom) A patient with hyperTg normapo B. apo = apolipoprotein.


| Case | TG<br>(mg/dL) | TC<br>(mg/dL) | Non-HDL-C<br>(mg/dL) | LDL-C<br>(mg/dL) | HDL-C<br>(mg/dL) | Apo B<br>(mg/dL) |
|------|---------------|---------------|----------------------|------------------|------------------|------------------|
| 1    | 370           | 197           | 161                  | 94               | 36               | 69               |
| 2    | 266           | 254           | 211                  | 157              | 43               | 144              |
| 3    | 400           | 300           | 265                  |                  | 35               | 90               |
| 4    | 400           | 300           | 265                  |                  | 35               | 140              |

| TABLE 2 | TABLE 2 Diagnostic Utility of Apolipoprotein B in Hypercholesterolemia |                             |                  |  |  |
|---------|------------------------------------------------------------------------|-----------------------------|------------------|--|--|
| Case    | TG<br>(mg/dl)                                                          | LDL Cholesterol<br>(mg/dL)  | Apo B<br>(mg/dL) |  |  |
| 1       | 100                                                                    | 165                         | 110              |  |  |
| 2       | 200                                                                    | 165                         | 145              |  |  |
| 3       | 100                                                                    | 350                         | 160              |  |  |
| Apo = c | apolipoprotein; LDL = low-density lipop                                | rotien; TG = triglycerides. |                  |  |  |

|      | TG      | LDL Cholesterol | Apo B   | HDL Cholestero |  |
|------|---------|-----------------|---------|----------------|--|
| Case | (mg/dL) | (mg/dL)         | (mg/dL) | (mg/dL)        |  |
| 1    | 120*    | 135             | 100     | 45             |  |
| 2    | 120     | 135             | 130     | 45             |  |
| 3    | 100     | 130             | 90      | 25             |  |
| 4    | 100     | 130             | 125     | 25             |  |

### Composition of ApoB Lipoproteins: VLDL vs LDL

Differences between lipoprotein lipids and lipoprotein particles in a patient with a plasma triglyceride level of 3 mmol/L (264 mg/dL) and a low-density lipoprotein (*LDL*) cholesterol level of 3 mmol/L (116 mg/dL).



B = apoB100; CE = cholesterol ester; Tg = triglyceride.