
### Coronary Artery Disease in Diabetes



#### Coronary artery disease in diabetes



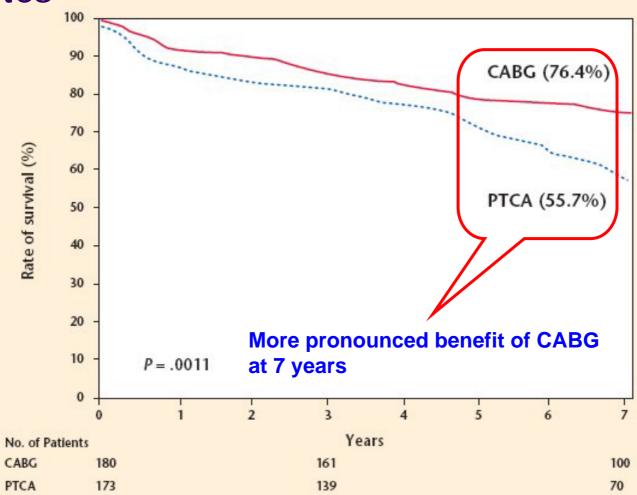
- Cardiovascular disease is the leading cause of death (complications of coronary artery disease)
- Poor hospital and long term mortality in coronary artery disease
- Adverse clinical outcomes following both percutaneous and surgical revascularization



#### PTCA vs. CABG Trials



- Bypass Angioplasty Revascularization Investigation (BARI)
- Coronary Angioplasty Versus Bypass Revascularization Investigation (CABRI)
- Emory Angioplasty Versus Surgery Trial (EAST)
- Arterial Revascularization Therapy Study (ARTS)


#### Bypass Angioplasty Revascularization Investigation (BARI) : 5 year mortality and morbidity



|                               | Treated fo      | r Diabetes      | All Others      |                 |  |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|--|
| Cause of Death                | PTCA<br>(n=170) | CABG<br>(n=173) | PTCA<br>(n=734) | CABG<br>(n=719) |  |
| Cardiac, n (%)                | 35 (20.6)       | 10 (5.8)        | 35 (4.8)        | 34 (4.7)        |  |
| Noncardiac, n (%)             |                 |                 |                 |                 |  |
| Related to atherosclerosis    | 6 (3.5)         | 6 (3.5)         | 3 (0.4)         | 6 (0.8)         |  |
| Medical                       | 13 (7.6)        | 13 (7.5)        | 28 (3.8)        | 26 (3.6)        |  |
| Suicide/accident/other, n (%) | 1 (0.6)         | 2 (1.2)         | 0 (0)           | 3 (0.4)         |  |
| Unclassifiable, n (%)         | 4 (2.4)         | 2 (1.2)         | 4 (0.5)         | 5 (0.7)         |  |
| Total, n (%)                  | 59 (34.7)       | 33 (19.1)       | 70 (9.5)        | 74 (10.3)       |  |

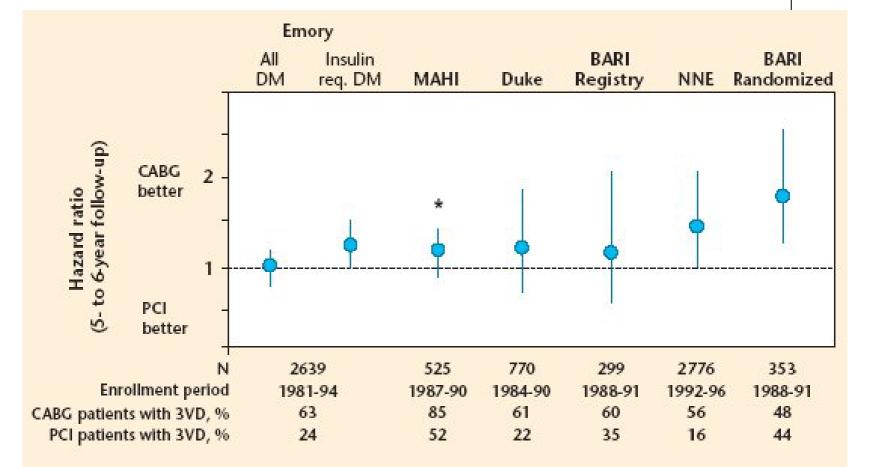
Circulation 1997;96:1761-1769

#### Bypass Angioplasty Revascularization Investigation (BARI) : 7 year outcome in Diabetes








#### Coronary Angioplasty Versus Bypass Revascularization Investigation (CABRI) : 4 year mortality



|              | Morta                   |                     |      |             |  |
|--------------|-------------------------|---------------------|------|-------------|--|
|              | Absolu                  |                     |      |             |  |
| _            | Coronary<br>Angioplasty | Coronary<br>Surgery | RR   | 95% CI      |  |
| Entire group | 10.9%                   | 7.4%                | 1.47 | 0.99 – 2.19 |  |
| Diabetics    | 22.6%                   | 12.5%               | 1.81 | 0.80 - 4.08 |  |
| Nondiabetics | 9.4%                    | 6.8%                | 1.39 | 0.88 – 2.19 |  |

Am J Cardiol 2001;87:947-950

### Survival following revascularization in diabetics vs. nondiabetics



\*Unadjusted



|                                                                     |                                                                                                            |                                                 |                                | Mortalit                   | у                                              |                                                  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------|------------------------------------------------|--------------------------------------------------|--|
| Study                                                               | Patient Profile                                                                                            | Groups                                          | Repeat<br>Revascularization, % | Patients, %                | P<br>Value                                     | Comments                                         |  |
| RITA-1, <sup>28</sup> 1993                                          | 1- to 3-Vessel CAD<br>Angina or ischemia                                                                   | CABG (n = 33)<br>PCI (n = 29)                   |                                | 24.2 at 6.5 y              | .09                                            | 32% Had single-vessel CAD<br>Stents not used     |  |
| EAST, <sup>29</sup> 1994                                            | Multivessel CAD<br>Referred for<br>revascularization                                                       | CABG (n = 30)<br>PCI (n = 29)                   |                                | 10.0 at 3 y<br>6.9 at 3 y  | NA                                             | Single center<br>Stents not used                 |  |
|                                                                     | LVEF >25%                                                                                                  | CABG<br>PCI                                     | Balloon                        | 24.5 at 8 y<br>39.9 at 8 y | .23                                            |                                                  |  |
| CABRI,30 1995                                                       | Multivessel CAD<br>Angina or ischemia<br>LVEF >35%                                                         | CABG (n = 60)<br>PCI (n = 64)                   |                                | 12.5 at 4 y<br>22.6 at 4 y | NA                                             | Stent use rare                                   |  |
| BARI, <sup>31,32</sup> 1996                                         | Multivessel CAD<br>Angina or ischemia                                                                      | CABG (n = 180)<br>PCI (n = 173)                 | 11.1 at 7 y<br>69.9 at 7 y     | 19.4 at 5 y<br>34.5 at 5 y | .003                                           | 81% IMA use<br>Stents not used                   |  |
|                                                                     |                                                                                                            | CABG<br>PCI                                     |                                | 25.6 at 7 y<br>44.3 at 7 y | .001                                           | 2                                                |  |
| ARTS, <sup>33,34</sup> 2001                                         | Multivessel CAD<br>Angina or ischemia<br>LVEF >30%                                                         | CABG (n = 96)<br>PCI with stenting<br>(n = 112) | 3.1 at 1 y*<br>22.3 at 1 y*    | 3.1 at 1 y<br>6.3 at 1 y   | .294                                           | 89% IMA use<br>3.5% Gp IIb/IIIa inhibitor<br>use |  |
|                                                                     | Stent                                                                                                      | CABG<br>PCI                                     | 8.4 at 3 y*<br>41.1 at 3 y*    | 4.2 at 3 y<br>7.1 at 3 y   | .39                                            |                                                  |  |
| AWESOME, <sup>35</sup> 2001 Medically refractory<br>unstable angina | CABG (n = 79)<br>PCI (n = 65)                                                                              | 35 at 1 y†<br>49 at 1 y†                        | 19 at 1 y                      | .27                        | 54% Stent use<br>11% Gp IIb/IIIa inhibitor use |                                                  |  |
|                                                                     | High CABG risk (prior<br>heart surgery, MI<br>within 7 d, LVEF<br><35%, age >70 y,<br>or balloon pump use) | CABG<br>PCI                                     | 46 at 5 y†<br>51 at 5 y†       | 34 at 5 y<br>26 at 5 y     | .27                                            |                                                  |  |

#### Arterial Revascularization Therapy Study (ARTS) : 1-year clinical ourcome

|                           | Diabetes   |          |        | 1          | Nondiabetes |        |  |
|---------------------------|------------|----------|--------|------------|-------------|--------|--|
|                           | Stent CABG |          | Stent  | CABG       |             |        |  |
|                           | (n=112)    | (n=96)   | р      | (n=488)    | (n=509)     | Р      |  |
| Death, n (%)              | 7 (6.3)    | 3 (3.1)  | 0.294  | 8 (1.6)    | 14 (2.8)    | 0.412  |  |
| Cerebrovascular events    | 2 (1.8)    | 6 (6.3)  | 0.096  | 7 (1.4)    | 6 (1.2)     | 0.722  |  |
| МІ                        | 7 (6.3)    | 3 (3.1)  | 0.294  | 25 (5.1)   | 21 (4.1)    | 0.453  |  |
| Q-wave                    | 6 (5.4)    | 2 (2.1)  | 0.222  | 22 (4.5)   | 20 (3.9)    | 0.649  |  |
| Repeat revascularization* |            |          |        |            |             |        |  |
| CABG                      | 9 (8.0)    | 0        | <0.001 | 19 (3.9)   | 3 (0.6)     | <0.001 |  |
| PTCA                      | 16 (14.3)  | 3 (3.1)  | <0.001 | 57 (11.7)  | 15 (2.9)    | <0.001 |  |
| Event-free                | 71 (63.4)  | 81(84.4) | <0.001 | 372 (76.2) | 450 (88.4)  | <0.001 |  |

#### Circulation. 2001;104:533-538

# Present Era of Drug-Eluting Stent



|                         | Non-Insulin-Requiring |        |        | Insulin-Requiring |        |        |      |
|-------------------------|-----------------------|--------|--------|-------------------|--------|--------|------|
|                         | BMS                   | SES    |        | BMS               | SES    |        |      |
|                         | (n=104)               | (n=93) | р      |                   | (n=44) | (n=38) | р    |
| Angiographic restenosis | 50.7%                 | 12.3%  | <0.001 |                   | 50%    | 35%    | 0.38 |
|                         | n=73                  | n=65   |        |                   | n=28   | n=20   |      |
| TLR                     | 23.1%                 | 4.3%   | <0.001 |                   | 20.5%  | 13.2%  | 0.56 |
| MACE                    | 26.0%                 | 6.5%   | <0.001 |                   | 22.7%  | 15.7%  | 0.58 |

Circulation 2004;109:2273-2278

### Drug-eluting stent: oral medicated vs. insulin medicated in TAXUS-IV

|                       |             |        | <u>RR</u> | <u>TAXUS</u> | <u>Control</u> | P value  |          |
|-----------------------|-------------|--------|-----------|--------------|----------------|----------|----------|
| All                   | +++         |        | 0.27      | 4.4%         | 15.1%          | < 0.0001 |          |
| Non-diabetic          | <b>+ </b> + |        | 0.24      | 3.5%         | 13.2%          | <0.0001  |          |
| Diabetic, oral meds   | <b>+1</b> → |        | 0.33      | 7.9%         | 21.6%          | 0.005    | 12 month |
| Diabetic, insulin     | ++          | •      | 0.32      | 6.2%         | 19.4%          | 0.07     | TLR      |
| LAD                   | +++         |        | 0.31      | 5.8%         | 16.7%          | <0.0001  |          |
| Non LAD               | ++ +        |        | 0.24      | 3.6%         | 14.0%          | <0.0001  |          |
| RVD ≤2.5 mm           | <b>+I</b> → |        | 0.24      | 5.6%         | 20.6%          | <0.0001  |          |
| RVD >2.5-<3.0 mm      | ++ +        |        | 0.29      | 4.3%         | 13.3%          | 0.0003   |          |
| RVD ≥3.0 mm           | <b>+I</b> → |        | 0.32      | 3.5%         | 11.1%          | 0.005    |          |
| Lesion length <10mm   | <b>+I</b> → |        | 0.27      | 4.1%         | 13.4%          | 0.0005   |          |
| Lesion length 10-20mm | +++         |        | 0.30      | 4.4%         | 14.1%          | <0.0001  |          |
| Lesion length >20mm   | <b>+I</b> → |        | 0.23      | 5.5%         | 22.1%          | 0.001    |          |
|                       | 0 0.5 1     | .0 1.5 |           |              |                |          |          |

-

TAVIO

Control

TAXUS better Control better

Relative risk [95% confidence interval]

Circulation. 2004;109:1942-1947

### **New Frontier**

#### Systemic approach to Vascular Biology

#### Systemic approach to Vascular Biology

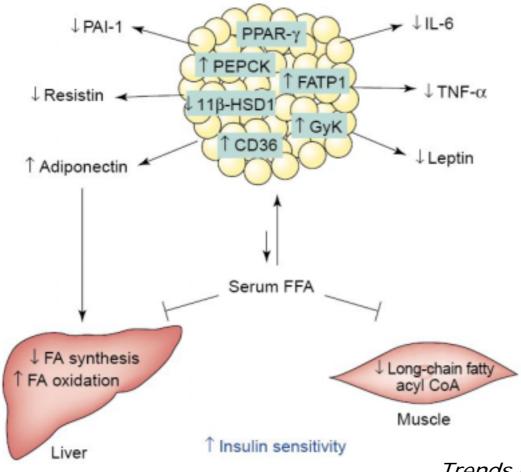


• Peroxisome proliferator activated receptor  $\gamma$  (PPAR- $\gamma$ )

 Advanced glycation end products (AGE) and Receptor for AGE (RAGE)

### Peroxisome proliferator activated receptor $\gamma$ (PPAR- $\gamma$ )




- PPAR-γ ligands
  - Insulin sensitization
  - Promote fatty acid storage in fat depots
  - Regulate the expression of adipocyte-secreted hormones that impact on glucose homeostatsis

#### PPAR-γ agonist trials

- Prevent restenosis after coronary stenting
- Reduce neointimal tissue proliferation after coronary stenting
- Inhibitory effect on carotid artery IMT
- Reduce serum level of cardiovascular disease markers

### Peroxisome proliferator activated receptor $\gamma$ (PPAR- $\gamma$ ) ligand

(b) +PPAR-γ ligand





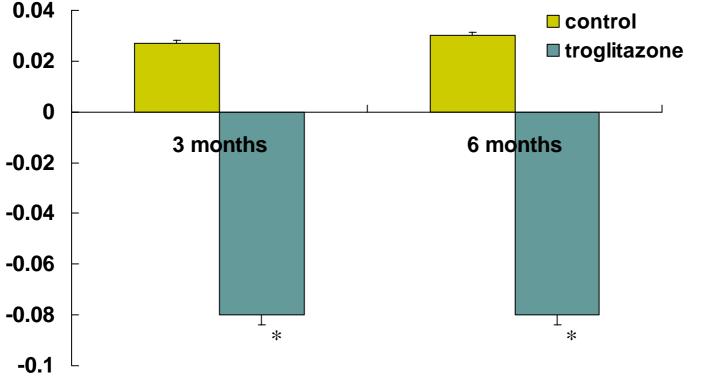
Trends Pharmacol Sci. 2004;25:331-6

### PPAR- $\gamma$ : prevention of restenosis after coronary stenting in type 2 diabetes

|                          | Control         | Rosiglitazone   | Р     |
|--------------------------|-----------------|-----------------|-------|
| n                        | 45              | 38              |       |
| MLD (mm)                 | $1.91 \pm 1.05$ | $2.49 \pm 0.88$ | 0.009 |
| Diameter stenosis (%)    | 40.6±31.9       | $23.0 \pm 23.4$ | 0.004 |
| Lesion length (mm)       | $16.5 \pm 5.2$  | $19.0 \pm 6.1$  | 0.03  |
| Late luminal loss (mm)   | $1.20 \pm 0.97$ | $0.65 \pm 0.73$ | 0.005 |
| Restenosis (% of stents) | 21 (38.2)       | 9 (17.6)        | 0.030 |

Diabetes Care 2004;27;2654-2660

# PPAR-γ: reduction of neointimal tissue proliferation after coronary stent implantation in NIDDM


|                                            | Troglitazone  | Control       | Р       |
|--------------------------------------------|---------------|---------------|---------|
| n                                          | 29 stents     | 33 stents     |         |
| Stent area follow up (mm <sup>2</sup> )    | $7.3 \pm 1.8$ | 7.3 ±2.3      | 0.7995  |
| Lumen area follow up (mm <sup>2</sup> )    | 5.3 ±1.7      | $3.7 \pm 1.7$ | 0.0002  |
| Intimal area follow up (mm <sup>2</sup> )  | $2.0 \pm 0.9$ | $3.5 \pm 1.8$ | <0.0001 |
| Intimal index follow up (mm <sup>2</sup> ) | 27.1 ±11.5    | 49.0 ±14.4    | <0.0001 |

Intimal index = averaged IA/averaged SA x 100%

J Am Coll Cardiol 2000;36:1529-1535

### $\begin{array}{l} \mathsf{PPAR-}\gamma: \text{Inhibitory effect on carotid} \\ \text{artery IMT} \end{array}$





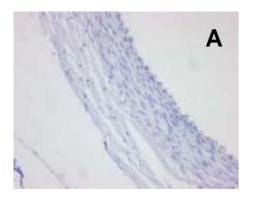
Effect of troglitazone (400mg/day, 6 months) on IMT in type 2 diabetes. \*p,0.001 vs. control

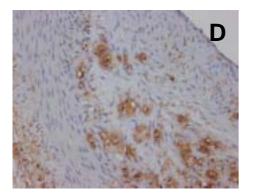


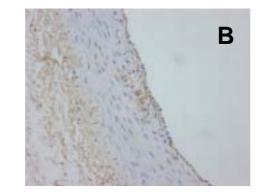
J Clin Endocrinol Metab. 1998;83:1818-20

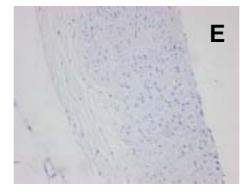
### Advanced glycation end products (AGE) and Receptor for AGE (RAGE)

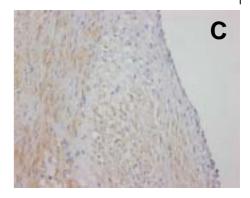



#### • AGE


- Action
- Pharmacological inhibition of AGE
  - Inhibitors of AGE formation : amionoguanidine, OPB-9195
  - AGE-crosslink 'breakers' : PTB, ALT-711
  - Antioxidant
- RAGE
  - Action
  - Soluble RAGE (sRAGE)


#### Advanced glycation end products (AGE): Action


- AGEs in atherosclerosis
  - Accumulation in the vascular matrix : narrowing and occlusion
  - Vascular endothelial dysfunction : procoagulant state, vasoconstriction, hypertension
  - Glycoxidation of LDL : slow degradation of LDL, lipid peroxidation, oxidative stress
  - Monocyte activation : vascular cell proliferation, cytokine release, oxidative stress
  - Trapping of plasma proteins : initiation of complement activation, oxidation

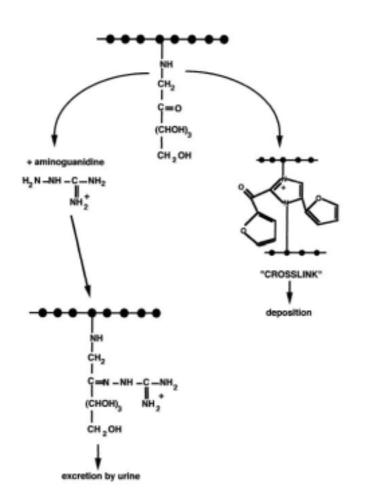

### AGE in balloon injured iliac artery of hypercholesterolemic rabbit





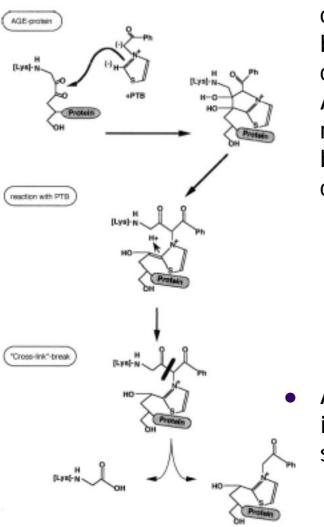




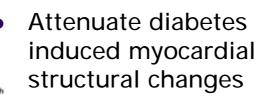


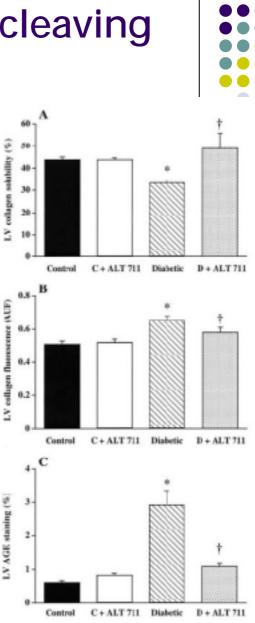

A. Control; B. 7days;
C. 14days; D. 28days;
E. non-injured artery of balloon injured rabbit




#### **Inhibitors of AGE formation**







- Prevent AGE formation
- Prevent collagen to collagen cross-linking, decrease collagen stability
- Reduction of AGE accumulation in the renal glomerulus
- Reduce age associate increase in serum and tissue AGEs
- Not effective in patients with a long history of disease (already extensive tissue accumulation)

### AGE-crosslink 'breakers': AGE cleaving agents



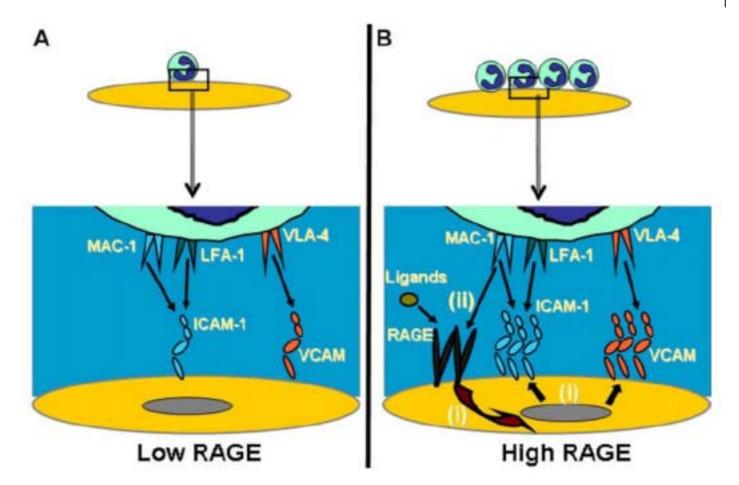
Breaks the carboncarbon bond between two carbonyls of an AGE crosslink : remove irreversibly bound AGEs from connective tissue





Circ Res. 2003;92:785-792

#### **AGE receptors**

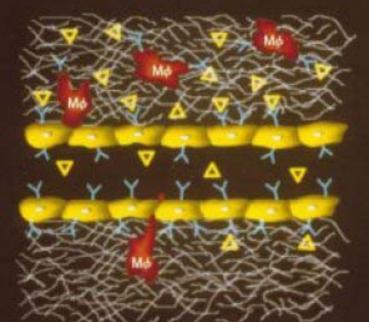

#### • RAGE (receptor for AGE) :

- AGE scavenger
- Intracellular signaling receptor
- Inflammatory response
- Macrophage scavenger type II and type II receptor
- Oligosaccaharyl transferase-48 (AGE-R1)
- 80K-H phosphoprotein (AGE-R2)
- Galectin-3 (AGE-R3)



### RAGE : central player in the inflammatory response



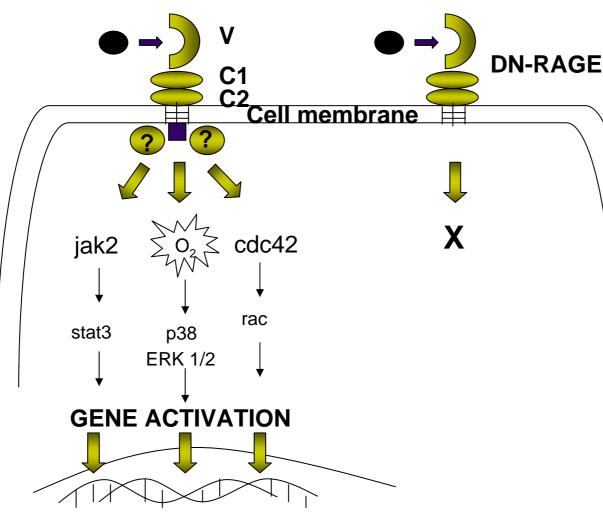



#### Microbes Infect. 2004;6:1219-25

### RAGE : 2 hit model of vascular pertubation

Stage 1: AGE/Aβ-RAGE interaction

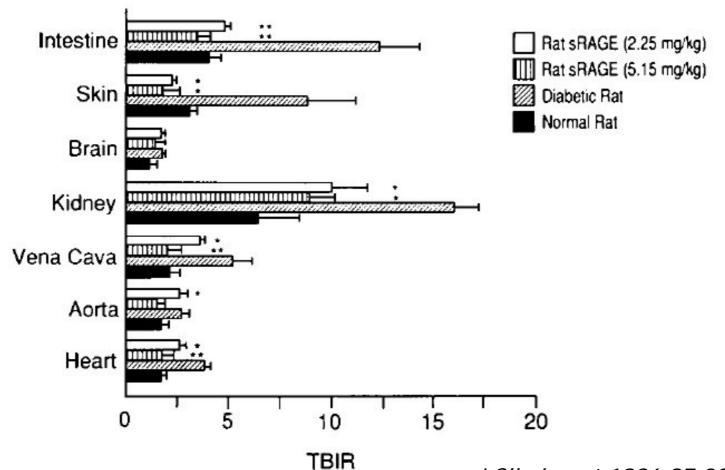
RAGE -




Stage 2: Superimposed...

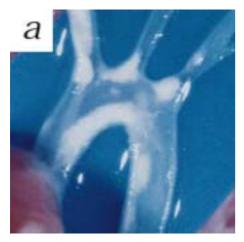
- Modified lipoprotein accumulation (atherosclerosis)
- Tissue injury/bacterial infection (wound repair)
- Ischemia/hemorrhage (cerebral amyloid angiopathy)
- Proinflammatory stimuli (chronicity of inflammation)



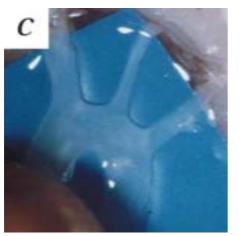

### Signaling pathways activated by RAGE/ligand interaction



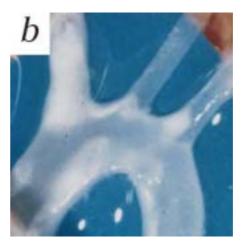



Pharm Res. 2004 ;21:1079-86.

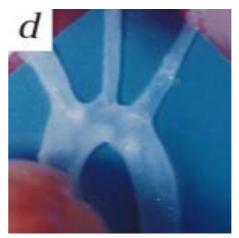
RAGE : Effect of sRAGE infusion on vascular permeability in streptozocin treated rats assessed using the tissue-blood isotope ratio(TBIR) method




J Clin Invest 1996;97:238-243


### Effect of sRAGE on accelerated atherosclerosis in diabetic apoE mice

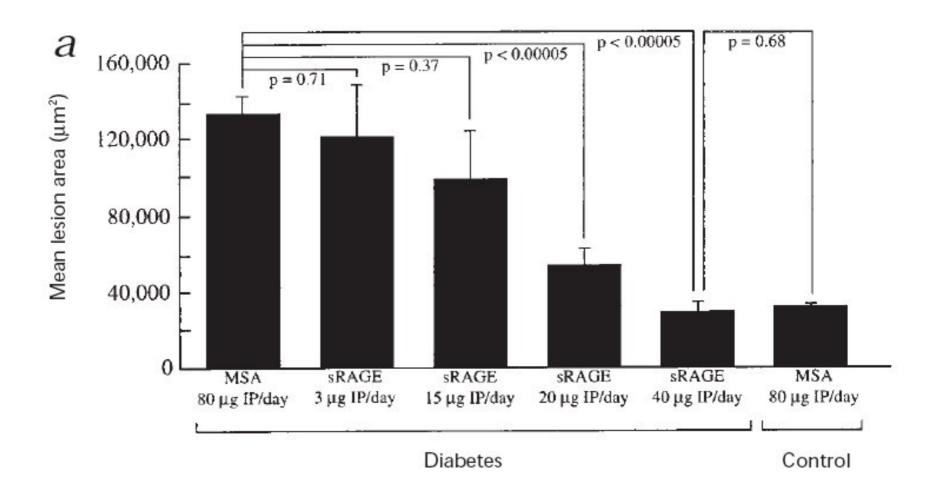



MSA at 80 mg/day



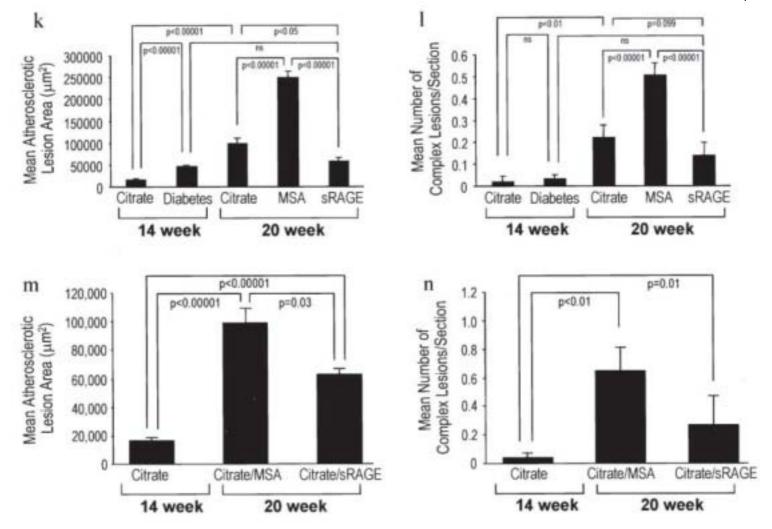
sRAGE 20 mg/day




sRAGE at 3 mg/day

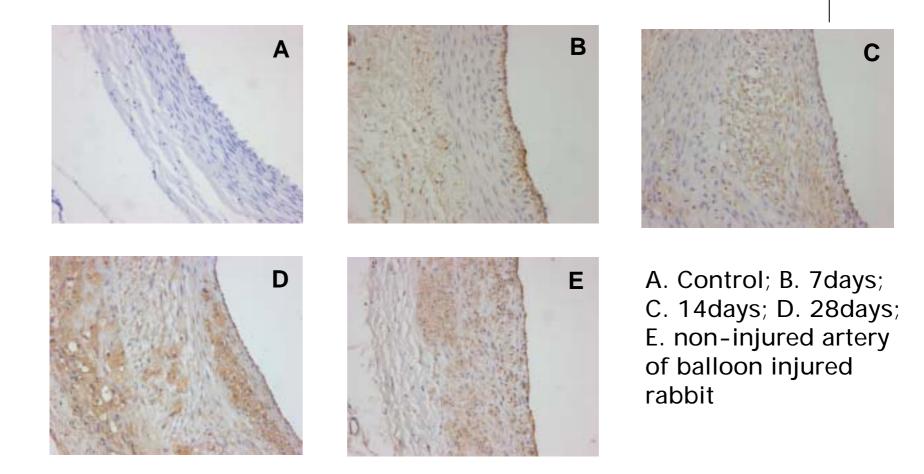


sRAGE 40 mg/day Nat Med. 1998;4:1025-1031

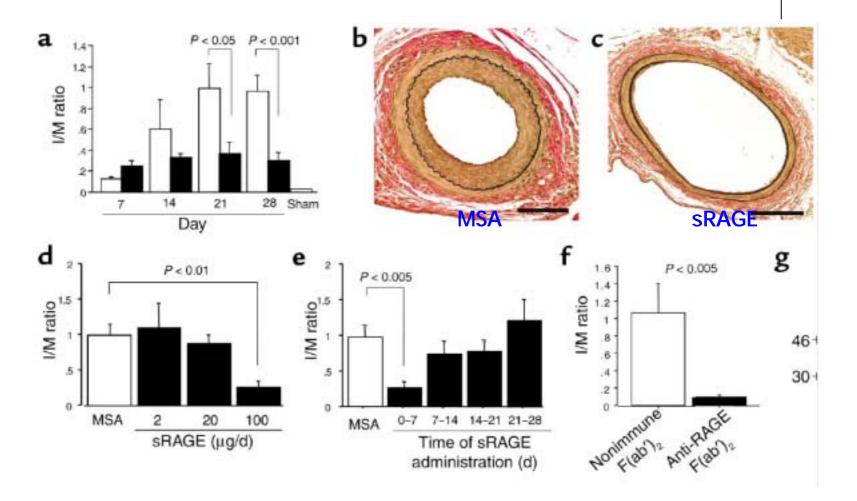



sRAGE suppression accelerated atherosclerosis in diabetic Apo E null mice in a dose-dependent manner




#### Nat Med. 1998;4:1025-1031

## Blockade of RAGE suppress progression of established atherosclerosis in apoE-null mice




Circulation. 2002;106:2827-2835

### Overexpression of RAGE in balloon injured iliac artery of hypercholesterolemic rabbit



### RAGE blockade and neointimal expansion after acute arterial injury



J Clin Invest. 2003;111:959-972

### Conclusion

- Coronary revascularization
  - CABG or PCI
  - Left main stenosis
  - Multi-vessel disease
  - Long lesion
  - High risk patients
- Systemic therapy

