Clinical measurement of arterial stiffness: augmentation index vs. pulse wave velocity

Jeong Bae Park, MD, PhD, Medicine/Cardiology, Samsung Cheil Hospital, Sungkyunkwan University School of Medicine

,

2005 4 14-16

Arterial Stiffness as a Predictor of Morbidity and Mortality

- Target Organ Damage
 - Pressure-dependent or -independent arterial stiffness and LV hypertrophy.
 Increased stiffness of central arteries

 -independently associated with kidney damage in patients with mild-to-moderate renal insufficiency.
- Cardiovascular Morbidity and Mortality

Relationship Between Markers for Arterial Stiffness and Other Risk Factors for CVD Hypertension Obesity Metabolic syndrome Diabetes Hypercholesterolemia C-reactive protein

Fluctuations in amplitude of flow, pressure, and diameter in a large artery

Propagation of the PP wave from central to peripheral arteries in patients 24, 54, and 68 years of age.

A Model of the Systematic Circulation.

Terminology

Parameter	Definition	Formula
Distensibility	The relative change in vessel diameter (or area) for a given change in pressure	$\Delta D/(\Delta P x D),$ $\Delta A/(\Delta P x A)$
Compliance	The absolute change in vessel diameter (or area) for a given change in pressure	$\Delta D / \Delta P$, $\Delta A / \Delta P$
Elastic modulus	The pressure change required for (theoretical) 100% stretch from resting diameter (inverse of distensibility)	(∆PxD)/∆D
Pulse wave velocity	The speed with which the pulse wave travels along a length of artery	Distance/∆t
Stiffness index (ß)	The ratio of the natural logarithm of SBP/DBP to the relative change in diameter	In(P _s /P _d) / [(D _s -D _d)/D _d)]
Augmentation index	Size of increase or decrease in the pulse height as a result of the reflected wave, or Size of reflected peak (P2/P1)	(P2-P1)/(Ps-Pd), (P2/P1)

I. Compliance

Volume (V)

Def: The absolute change in vessel diameter (or area) for a given change in pressure. ΔD/ΔP or ΔΑ/ΔP

Pressure (P)

dV/dP

I-2. Local Arterial (Aortic) Stiffness : β Stiffness index = Ln (SBP/DBP) / (Dsys-Ddia/Ddia)

II. Pulse wave velocity

The speed with which the pulse wave travels along a length of artery (Distance/ Δt)

Pulse Wave Velocity in Different Arteries

Relation of measured pulse wave velocity and aortic distensibility

Noninvasive measurement of pulse wave velocity by Echocardiogram

High aortic pulse wave velocity is a powerful predictor of coronary artery stenosis and calcification in suspected coronary artery disease patients

Catheter location ; descending aorta just distal to left subclavian artery

T2(rt femolar artery)= 0.21sec

Log PWV adjusted by age, SBP,DBP according to the number of coronary artery stenosis

Park CG et al. 2002 ISH Prague, Czech

Relation between 10-year CVD risk and aortic pulse wave velocity

Relative risk for cardiovascular (CV) mortality according to pulse wave velocity (PWV) and other risk factors

OR	Ρ
2.35	<.0001
14.81	<.0001
2.32	<.0001
1.53	<.0001
1.26	<.001
4.23	<.001
	OR 2.35 14.81 2.32 1.53 1.26 4.23

Relative risk (RR) for CHD and CV events according to PWV, Framingham risk score, and CV risk factors

Parameter	RR	Р
CHD events		
PWV (3.5 m/s)	1.42	<.01
FRS (4 points)	1.51	<.01
Age (10 y)	1.42	<.01
Hypercholesterolemia (yes/no)	2.49	<.01
Sex (M/F)	2.32	<.02
All CV events		
PWV (3.5 m/sec)	1.41	<.001
FRS (4 points)	1.57	<.0001
Age (10 y)	1.47	<.0001
SBP (10 mm Hg)	1.12	.015
PP (10 mm Hg)	1.16	.019
Hypercholesterolemia (yes/no)	1.73	.017
Diabetes (yes/no)	2.16	<.01
Gender (male/female)	1.64	.036

CVD cardiovascular disease; FRS Framingham risk score; PP pulse pressure; SBP systolic blood pressure.

Changes in the brachial-ankle pulse wave velocity between baseline and 3 months after drugs in elderly hypertensive patients

Takami T, 2002 Hypertens Res

III. Augmentation pressure and augmentation index

ejection duration

Systemic Arterial stiffness ; Augmentation index (Alx) by Sphygmocor

Augmentation index Pressure transfer function

Aorta

(Degree of amplification)

Radial artery

Radial pulse applanation tonometry

Typical pressure and flow waves in normotensive subjects: Effect of aging

Pulse wave in normotensive and hypertensive subjects

Middle-aged

BHUS

Changes of Blood Pressure and Vascular Stiffness with Aging

Park JB, Samsung Medical Center

Cardiovascular Risk and Cardio-Arterial Stiffness with Aging

Park JB, 2003

Coronary artery perfusion

(n≈1,000)

Subendocardial viability ratio

Augmenation index and presence of coronary artery disease in younger patients (<60y/o)

Disparate effects of antihypertensive drugs on Vascular Stiffness : 6 months trial

Relationships between Alx, PWV, and age ⁴⁰ R=0.58, ¹⁰ R=0.58,

Kelly RP et al. Hypertension 2001;37:1429 –1433.

Which one is better to estimate vascular characteristics,

augmentation index vs. pulse wave velocity ?

Difference of Local and Systemic Vascular Stiffness

Compliance, $\Delta D/\Delta P$ or $\Delta A/\Delta P$; arterial stiffness at a site

Augmentation index, ∆augmentation/PP ; systemic arterial stiffness

Pulse wave velocity, PWV = D / ∆T ; arterial stiffness at a segment

Better marker of arterial stiffness?

Conclusion

To order to estimate arterial stiffness, systemic arterial stiffness (eg. augmentation index), in addition to one-site stiffness (eg. compliance or β-index) or one-segment stiffness (eg. pulse wave velocity) would be the best.