Welcome!

Mark May 14, Sat!

HEART CENTER Gachon international sympOsium for Atherosclerosis HypErtension AnD Stem cell

GO AHEAD Symposium 10th Anniversary of Gil Heart Center

May 14, Saturday, 2005 Gachon Hall, Gil Medical Center

Program Director Eak Kyun Shin, MD, PhD Kwang Kon Koh, MD, PhD, FACC, FAHA

, 4 16 , 2005

Endothelial Function Test as a Marker of Cardiovascular Disease

Seung Hwan Han, MD

Cardiology Gachon Medical School Incheon, Korea

May 14, Saturday, 2005 Gathor Hall, Gil Medical Center Prese Disease Sat Kya 3th, HO, HO Sweg Kar, HO, HO, HO, RECC, KHA

Atherosclerosis: A progressive process

Disease progression

Regulatory Properties of Endothelium

- Vascular tone: Nitric oxide Inflammation
- Hemostasis
- Extracellular matrix
- Local cell growth
- Solute transport

Koh KK. Cardiovasc Res 2000;47:648 (Review) Koh KK. Cardiovasc Res 2002;55:714 (Review)

Vasomotor Balance

Mitogenic Balance

Vascular Smooth Muscle

Endothelium

Anti-Thrombotic Anti-Inflammatory Anti-Atherogenic Anti-Coagulant Fibrinolytic

NO

PGI2

Pro-Thrombotic Pro-Inflammatory Pro-Atherogenic Pro-coagulant Thrombotic

Verma et al. Circulation 2002;105:546.

 $\Gamma - 1$

Oxidants

Endothelial Function Tests

1. Functional Change:

Endothelial vasomotor function test

- 2. Anatomical Change: Carotid IMT, plaque
- 3. Mediators: Biomarkers

(IL, **hs-CRP**, TNF-α, CAMs, MCP-1, MDA, MMP-9, **CD40L**, adiponectin, ..)

Endothelial Vasomotor Function Test

- **1. Coronary Endothelial Assessment**
- 2. Peripheral Endothelial Assessment
 - Non-invasive: Flow-Mediated Dilation
 - Invasive: Plethysmography

Nitric Oxide

- Regulates vasomotor tone
- Inhibits inflammatory cell attachment
- Inhibits platelet aggregation and attachment
- Inhibits release of procoagulant factors
- Inhibits release of growth factors

Koh KK. Cardiovasc Res 2000;47:648 (Review) Koh KK. Cardiovasc Res 2002;55:714 (Review)

Flow-Mediated Dilation (FMD)

Baseline 1

Reactive Hyperemia

Baseline 1

Reactive Hyperemia

Sensitivity and Specificity of FMD Tests in Predicting CAD

FMD% (n = 122)	72/101; 71.3% (61.4-79.6)	17/21; 81% (58.1-94.6)
Myocardial Perfusion Imaging (n = 34)	30/30; 100.0% (88.4-100.0)	0/4; 0.0% (0-60.2)
Exercise ECG testing (n = 112)	75/91; 82.4% (73.0-89.6)	12/21; 57.1% (34.0-78.2)
Angina Pectoris (n = 112)	96/101; 95.1% (88.8-98.4)	5/21; 23.8% (8.2-47.2)
Test	Sensitivity (95% CI)	Specificity (95% CI)

Schroeder et al. Am Heart J 1999;138:731

Prognostic Value of Endothelial Vasomotor Function

Study	Population	Vascular Bed	Test of Endothelial Function	No. of Patients	Follow-Up, mo	Clinical Events
Al Suwaidi et al ³⁶	CAD	Coronary resistance vessels	Acetylcholine	157	28	MI, cardiovascular death, revascularization, CHF
Schächinger et al ³⁷	CAD	Epicardial coronary arteries	Acetylcholine and flow-mediated dilation	147	92	MI, cardiovascular death, revascularization, unstable angina, ischemic stroke
Halcox et al ³⁸	CAD	Epicardial coronary arteries and resistance vessels	Acetylcholine	308	46	MI, cardiovascular death, unstable angina, stroke
Perticone et al ³⁹	Hypertension	Forearm resistance vessels	Acetylcholine	225	32	Cardiac, cerebrovascular, peripheral vascular
Heitzer et al⁴⁰	CAD	Forearm resistance vessels	Acetylcholine	281	54	MI, cardiovascular deaths, ischemic stroke, revascularization
Neunteufl et al41	CAD	Brachial arteries	Flow-mediated dilation	73	60	MI, revascularization
Gokce et al ⁴²	PAD	Brachial arteries	Flow-mediated dilation	187	1	Cardiovascular death, MI, unstable angina, stroke
Modena et al ³²	Hypertension, postmenopausal	Brachial arteries	Flow-mediated dilation	400	67	Cardiovascular events
Gokce et al ⁴³	PAD	Brachial arteries	Flow-mediated dilation	199	14	Cardiovascular death, MI, unstable angina, stroke
Targonski et al ⁴⁴	Risk factors, but normal coronary arteries	Coronary resistance vessels	Acetylcholine	503	16	Cerebrovascular events

Ganz et al. Circulation 2003;108:2049

Endothelial Vasomotor Function Test had a Long-Term Prognostic Value for CV Events

Carotid Intima-Media Thickness (IMT)

B-Mode Ultrasound Examination of the Carotid Artery

Example of B-Mode Ultrasound Imaging

Increased IMT is an Independent Predictor of Future Cardiovascular Events

High-resolution ultrasound measurements of the intima and media of the common and internal carotid artery made in **5858 subjects** \geq **65 years of age**. New MI or stroke served as outcome variables in subjects without clinical CVD (n=4476) over a median follow-up of **6.2 years.** O'Leary DH et al. *N Engl J Med.* 1999;340:14-22.

Plaque Size had the Greatest Prognostic Value Among all Ultrasound Parameters

1686 patients, CV events: Stroke, MI.

Spence JD, et al. Stroke 2002;33:2916

High-sensitivity CRP (hs-CRP)

CRP Level and Cardiovascular Risk

CRP level (mg/L) Repeat test in one month **Exclude other process** 10 **High Risk** 3 **Intermediate Risk** 1 Low Risk

Circulation 2003;107:499.

Prospective Studies Relating Baseline CRP Levels to the Risk of First CV Events

		1					
Culler MRFIT 1996	CHD Death			10012	-		\rightarrow
Ridker PHS 1997	MI			_		• · · ·	
Ridker PHS 1997	Stroke		-		- C		
Tracy CHS/RHPP 1997	CHD		-				
Ridker PHS 1998,2001	PAD			-	-		
Ridker WHS 1998,2000,2002	CVD				_		-
Coenig MONICA 1999	CHD			-			
Roivainen HELSINKI 2000	CHD						\rightarrow
Mendall CAERPHILLY 2000	CHD			_			
Danesh BRHS 2000	CHD		_	_	-		
Sussekloo LEIDEN 2001	Fatal Stroke	-	_		_		
owe SPEEDWELL 2001	CHD			-			
Packard WOSCOPS 2001	CV Events*		-				
Ridker AFCAPS 2001	CV Events*		-	_			
Rost FHS 2001	Stroke	-					
Pradhan WHI 2002	MI,CVD death						
Albert PHS 2002	Sudden Death			-			
Sakkinen HHS 2002	MI			-			
	0	1.0	2.0	3.0	4.0	5.0	6.0
		Polot	ivo Diek /	upportur	lowor au	artila)	
			ENDER PROPERTY I	A REAL PROPERTY AND A		Average in the second second	

Ridker et al. Circulation 2003;107:363.

CRP is a Stronger Predictor of Risk Than LDL Cholesterol Among Apparently Healthy Women

Women's Health Study 27939 women, The median values: CRP 1.52mg/L, LDL cholesterol 123.7mg/dl

Ridker PM, et al. N Engl J Med 2002;347:1557.

hsCRP Provides Prognostic Information at all Levels of Framingham Risk Score and LDL cholesterol

Ridker PM, et al. Women's Health Study. N Engl J Med 2002;347:1557.

CRP, Metabolic Syndrome, and Prediction of CV Events in the Framingham Offspring Study

Both CRP and MetS are independent predictors of new CVD events over 7 years

Circulation. 2004;110:380.

Elevated CRP Levels and Impaired Endothelial Vasoreactivity in Patients with CAD

Fichtlscherer et al. Circulation 2000;102:1000

CRP as a Mediator of Atherosclerosis

CRP inhibits BM-derived endothelial progenitor cell survival and differentiation.

Szmitko et al.Circulation 2003;108:1917

CD40L on vascular endothelial, SMCs, and Mononuclear phagocytes, mediates a broad Gamut of proatherothrombotic functions

Patients with unstable angina have Elevated Plasma Levels of sCD40L

Aukrust P, et al. Circulation 1999;100:614.

sCD40L is an Important Prognostic Indicator in Acute Coronary Syndromes

Varo N, et al. OPUS-TIMI 16 Trial. Circulation 2003;108:1049.

The Effects of Simvastatin, Losartan, and Combined Therapy on sCD40L in Hypercholesterolemic, Hypertensive Patients

Seung Hwan Han, Kwang Kon Koh, Eak Kyun Shin, Michael J. Quon

J Am Coll Cardiol (submitted)

Combined Therapy and Losartan Reduces Plasma Levels of sCD40L

Adiponectin

Adiponectin can directly stimulate NO production from endothelium via activation of AMP-activated protein kinase

Han SH, Koh KK, et al. Circulation (Review, submitted)

Adiponectin has Anti-inflammatory and Anti-atherogenic effects

Shimada K et al. Clinica chimica Acta 2004;344:1.

Adiponectin and Endothelial Function

Strain-gauge phethysmography Ouchi N, et al. Hypertension 2003;42:231.

Negative Relationship between Adiponectin and CRP

Ouchi N, et al. Circulation 2003;107:671.

High Plasma Adiponectin Concentrations are Associated with Lower Risk of MI in Men

Risk

Health Professionals Follow-up Study Pischon T, et al. JAMA 2004;291:1730.

6 yrs

follow-up

Additive Beneficial Effects of Losartan Combined with Simvastatin in Treatment of Hypercholesterolemic, Hypertensive Patients

Kwang Kon Koh, Seung Hwan Han Eak Kyun Shin, .. Michael J. Quon*

Cardiology, Gachon Medical School, Incheon, Korea Diabetes Unit, NIH, USA*

Circulation 2004:110:3687.

Combined Therapy or Losartan Alone Significantly Increases Insulin Sensitivity

Adiponectin

*QUICKI=Quantitative Insulin-Sensitivity Check Index, a surrogate index of insulin sensitivity, QUICKI = 1/[log(insulin)+log(glucose)] *Koh KK, et al. Circulation 2004;110:3687.*

QUICKI

Additive Beneficial Effects of Fenofibrate Combined with Atorvastatin In Treatment of Combined Hyperlipidemia

Kwang Kon Koh, Seung Hwan Han Eak Kyun Shin, Michael J. Quon*

Diabetes Unit, NIH, USA*

ACC 2005, Orlando, USA JACC 2005 (May)

Combined Therapy or Fenofibrate Alone Significantly Increases Adiponectin Levels

Conclusions (I)

 The endothelial dysfunction plays an important role in the pathogenesis of atherosclerosis.

 Endothelial function tests such as endothelial vasomotor function test, carotid artery IMT, biomarkers (hs-CRP, CD40L, adiponectin, etc..) are useful predictors of CV events.

Conclusions (II)

 The endothelial function tests are useful research tools to evaluate mechanisms of atherosclerosis and the effects of cardiovascular drugs.

 Further investigations for the development of more simple, reliable, cost-effective endothelial function tests are warranted.

Free Registration. Join Us! Enjoy your personal time with Circulation Editorial Team!

GO AHEAD Symposium 10th Anniversary of Gil Heart Center

May 14, Saturday, 2005 Gachon Hall, Gil Medical Center

HypErtension

A D

Stem cell

Program Director Eak Kyun Shin, MD, PhD Kwang Kon Koh, MD, PhD, FACC, FAHA

