Biological Janus:

CETP inhibitor

Hyun-Young Park, MD, PhD
Department of Biomedical Science
National Institute of Health, Seoul, Korea
One of the most promising new approaches in cardiovascular medicine hit the buffers on Dec 2 when Pfizer announced the stopping of its phase III clinical trial development of torcetrapib.

This trial was a large international randomised study of torcetrapib plus atorvastatin versus atorvastatin alone in 15 000 patients with or at risk of coronary heart disease. There had been 82 deaths in the torcetrapib plus atorvastatin group, compared with 51 deaths in the group taking atorvastatin.
The reasons for the failure are still unknown.

Possible reasons

- Hypertension
- Dysfunctional HDL
- Other unknown reason?
HDL and cardiovascular risk
RR of CHD for lipid factor quintiles in ARIC study

Sharrett, AR et al. Circulation 2001;104:1108
Table 3. Randomized Controlled Clinical Trials of Pharmacological Therapies that Modify HDL and Affect Clinical or Surrogate Outcomes of Atherosclerotic Burden

<table>
<thead>
<tr>
<th>Source</th>
<th>Specific Agent(s)</th>
<th>Patients Receiving Treatment, No./Total (%)</th>
<th>Increase in HDL-C Levels, %</th>
<th>Follow-up Duration, y</th>
<th>Outcomes<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinic Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical outcome studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDP, 1975</td>
<td>Niacin</td>
<td>1119/8341 (13.4)</td>
<td>NR</td>
<td>6</td>
<td>Decreased (27%) nonfatal MI</td>
</tr>
<tr>
<td>CDP follow-up, 1986</td>
<td>Niacin</td>
<td>1119/8341 (13.4)</td>
<td>NR</td>
<td>15</td>
<td>Decreased (11%) death</td>
</tr>
<tr>
<td>Stockholm, 1988</td>
<td>Niacin + clofibrate</td>
<td>279/555 (50.3)</td>
<td>NR</td>
<td>5</td>
<td>Decreased (26%) death; decreased (36%) CAD death</td>
</tr>
<tr>
<td>HATS, 2001</td>
<td>Niacin + simvastatin</td>
<td>38/160 (23.8)</td>
<td>26</td>
<td>3</td>
<td>Decreased (90%) first death, MI, stroke, or revascularization</td>
</tr>
<tr>
<td>AFREGS, 2005</td>
<td>Niacin + gemfibrozil + cholestyramine</td>
<td>71/143 (49.7)</td>
<td>36</td>
<td>2.5</td>
<td>Decreased (13%) composite clinical outcome of angina, MI, TIA, stroke, death, and cardiovascular procedures; decreased focal coronary stenosis (secondary outcome)</td>
</tr>
<tr>
<td>Imaging studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS I, 1987</td>
<td>Niacin + colestipol</td>
<td>94/188 (50.0)</td>
<td>37</td>
<td>2</td>
<td>Decreased coronary atherosclerosis</td>
</tr>
<tr>
<td>CLAS II, 1990</td>
<td>Niacin + colestipol</td>
<td>75/138 (54.3)</td>
<td>37</td>
<td>4</td>
<td>Decreased coronary atherosclerosis</td>
</tr>
<tr>
<td>FATS, 1990</td>
<td>Niacin + colestipol</td>
<td>48/146 (32.9)</td>
<td>43</td>
<td>2.5</td>
<td>Decreased coronary atherosclerosis; decreased death, MI, or revascularization (secondary outcome)</td>
</tr>
<tr>
<td>CLAS Fem, 1991</td>
<td>Niacin + colestipol</td>
<td>80/162 (49.4)</td>
<td>38</td>
<td>2</td>
<td>Decreased femoral atherosclerosis</td>
</tr>
<tr>
<td>CLAS IMT, 1993</td>
<td>Niacin + colestipol</td>
<td>39/78 (50.0)</td>
<td>38</td>
<td>4</td>
<td>Decreased carotid IMT (regression also observed at 1 and 2 y)</td>
</tr>
<tr>
<td>SCRIP, 1994</td>
<td>Niacin + colestipol + gemfibrozil + lovastatin + aggressive lifestyle modification</td>
<td>145/300 (48.3)</td>
<td>12</td>
<td>4</td>
<td>Decreased coronary atherosclerosis; decreased frequency of new coronary lesion formation</td>
</tr>
<tr>
<td>ARBITER 2, 2004</td>
<td>Niacin + statin</td>
<td>87/167 (52.1)</td>
<td>21</td>
<td>1</td>
<td>Decreased carotid IMT (P > .05)</td>
</tr>
<tr>
<td>ARBITER 3, 2006</td>
<td>Niacin + statin</td>
<td>87/167 (52.1)</td>
<td>23</td>
<td>2</td>
<td>Decreased carotid IMT</td>
</tr>
</tbody>
</table>

Why CETP?
Table 1. Effect of Lifestyle Modifications on HDL-C Levels and HDL Components

<table>
<thead>
<tr>
<th>Therapeutic Intervention</th>
<th>Class of Agent</th>
<th>Specific Agents</th>
<th>Increase in HDL-C Levels, %</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic exercise</td>
<td>Nicotinic acid (vitamin B₃)¹⁴-⁵⁶</td>
<td>Niacin: 1-2 g 2 or 3 times/d Niacin (ER): 1-2 g nightly Niacin (SR): 250-750 mg/d or twice daily ¹</td>
<td>20-30</td>
<td>Increases pre-β-HDL Decreases DGAT2 and hepatic apo A-I catabolism</td>
</tr>
<tr>
<td>Tobacco cessation</td>
<td>Fibric acid derivatives¹⁴,⁶⁷</td>
<td>Fenofibrate (Micronase): 43-200 mg/d Fenofibrate: 48-145 mg/d Gemfibrozil: 600 mg twice daily</td>
<td>10-20</td>
<td>Increases PPAR-α, hepatic apo A-I synthesis, apoC-III, and LPL Decreases DGAT</td>
</tr>
<tr>
<td>Weight loss²⁸-³²</td>
<td>Statins²⁸-⁷⁵</td>
<td>Atorvastatin: 10-80 mg/d Fluvastatin: 20-40 mg nightly Fluvastatin (ER): 80 mg nightly Lovastatin: 10-50 mg nightly Pravastatin: 10-80 mg/d Rosuvastatin: 5-40 mg/d Simvastatin: 5-80 mg/d</td>
<td>5-10</td>
<td>Increases hepatic apo A-I synthesis, PPAR-α, and miRNA synthesis Decreases CETP</td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td>Cannabinoid-1 receptor blocker³¹,³²</td>
<td>Rimonabant: 5-20 mg/d</td>
<td>5-10</td>
<td>Increases adiponectin expression and production, apo A-I</td>
</tr>
<tr>
<td>Dietary factors (n-6 PUFAs, nuts)</td>
<td>Thiazolidinediones⁷⁶-⁷⁸</td>
<td>Pioglitazone: 2-8 mg/d or twice daily Rosiglitazone: 15-45 mg/d</td>
<td>5-10</td>
<td>Increases PPAR-γ, ABCG1, and cholesterol efflux</td>
</tr>
<tr>
<td></td>
<td>Combination pill³⁷</td>
<td>Lovastatin + niacin: 20/500 mg to 20/1000 mg nightly</td>
<td>20-25</td>
<td>As for individual agents</td>
</tr>
</tbody>
</table>

Abbreviations: ABCG1, ATP-binding cassette, subfamily G (WHITE), member 1; CETP, cholesteryl ester transfer protein; DGAT, diacylglycerol O-acyltransferase; LDL-C, low-density lipoprotein-cholesterol; PPAR, peroxisome proliferator-activated receptor; SI conversion factor: To convert HDL-C to mmol/L, multiply by 0.0259.

27% of people in the Omagari area of Japan has G to A mutation at the +1 of intron 14

J Atheroscler Thromb. 2004;11:110
CETP

- Facilitate hepatic cholesterol transport (additional route for delivery of HDL-derived CE via VLDL and LDL)
- Promote cholesterol removal from peripheral cells
- Involved in the generation of lipid poor pre-β-HDL particle
- May directly stimulate hepatic uptake of cholesterol esters from HDL
Do we have enough evidences that CETP inhibition reduce CAD?
CETP and atherosclerosis

Inhibition of CETP in rabbit

CETP inhibition with antisense ODNs against CETP inhibit the atherosclerosis possibly by decreasing the plasma LDL + VLDL cholesterol in cholesterol-fed rabbits.

JBC. 1988;273:5033

CETP inhibitor (JTT-705) that increases HDL cholesterol and inhibits the progression of atherosclerosis in rabbits.

Nature. 2000;406:203
CETP and atherosclerosis
Expression of CETP in Transgenic Mice

CETP increases the extent of atherosclerosis in the apoE0 background

Aortic lesion area in control, CETP-Tg, LCAT-Tg, and LCATxCETP-Tg mice after 16 weeks on an atherogenic HFHC diet.

ATVB 1999;19:1105

JBC 1999;274:36912
CETP and atherosclerosis

Human observational study

Subjects with very high HDL levels (HDL-C ≥ 80 mg/dl) as well as mild-to-moderate HDL elevations (60-79 mg/dl) appear to be protected against CHD, whether or not they have CETP deficiency, a genetic cause of elevated HDL.

Prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of CHD in the elderly: suggestion of a lower rate of coronary events in those with a CETP mutation and a high HDL-C

J Lipid Res. 2004;45:948
CETP and atherosclerosis

Human observational study

Increased CHD in Japanese-American men with mutation in the CETP gene despite increased HDL levels

Prevalence of men with definite coronary heart disease among four strata of HDL cholesterol for two groupings of men with and without a CETP mutation. HDL strata cut-points are approximately equal to quartiles.

JCI 1996;97: 2917
CETP and atherosclerosis

Clinical Trials

Table 3. Randomized Controlled Clinical Trials of Pharmacological Therapies that Modify HDL and Affect Clinical or Surrogate Outcomes of Atherosclerotic Burden (cont)

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Specific Agent(s)</th>
<th>Patients Receiving Treatment, No./Total (%)</th>
<th>Increase in HDL-C Levels, %</th>
<th>Follow-up Duration, y</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILLUSTRATE, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>591/1188 (49.7)</td>
<td>61</td>
<td>2</td>
<td>No decrease in coronary atherosclerosis progression by IVUS</td>
</tr>
<tr>
<td>RADIANCE 1, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>450/904 (49.6)</td>
<td>54</td>
<td>2</td>
<td>No decrease in carotid atherosclerosis progression by IMT</td>
</tr>
<tr>
<td>RADIANCE 2, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>377/752 (50)</td>
<td>63</td>
<td>1.8</td>
<td>No change in maximum intima-media thickness</td>
</tr>
</tbody>
</table>

Apo A-I–Directed Therapies

<table>
<thead>
<tr>
<th>Study</th>
<th>Specific Agent(s)</th>
<th>Patients Receiving Treatment, No./Total (%)</th>
<th>Increase in HDL-C Levels, %</th>
<th>Follow-up Duration, y</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo A-I Milano, 2003</td>
<td>ETC-216</td>
<td>45/57 (78.9)</td>
<td>NR</td>
<td>5 wk</td>
<td>Decreased coronary atheroma volume on IVUS</td>
</tr>
<tr>
<td>ERASE, 2007</td>
<td>Reconstituted HDL (CSL-111)</td>
<td>111/183 (60.7)</td>
<td>NR</td>
<td>6 wk</td>
<td>No decrease in coronary atheroma volume on IVUS</td>
</tr>
</tbody>
</table>

Abbreviations: AFROCS, Armed Forces Regression Study; apo A-I, apolipoprotein A-I; ARTERIAL, Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol; BECANT, Bezafibrate Coronary Atherosclerosis Intervention Trial; BIP, Bezafibrate Infarction Prevention Study; CAD, coronary artery disease; CDP, Coronary Drug Project; CLAS, Cholesterol Lowering Atherosclerosis Study; CLAS Fem, femoral atherosclerosis group of CLAS; CLAS IMT, carotid ultrasound group of CLAS; DAIS, Diabetes Atherosclerosis Intervention Study; ERASE, Effect of rHDL on Atherosclerosis-Safety and Efficacy Trial; FATS, Familial Atherosclerosis Treatment Study; FIELD, Fenofibrate Intervention and Event Lowering in Diabetes Study; HATS, HDL-Atherosclerosis Treatment Study; HDL-C, high-density lipoprotein cholesterol; HHS, Helsinki Heart Study; ILLUSTRATE, Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation Trial; IMT, intima-media thickness; IVUS, intravascular ultrasound; LEADER, Lower Extremity Arterial Disease Event Reduction Trial; LOCAT, Lopid Coronary Angiography Trial; MI, myocardial infarction; NR, not reported; RADIANCE, Raising Atherosclerotic Disease Changes by Imaging with a New CETP Inhibitor Trial; SPRINT, Stanford Coronary Risk Intervention Project; TIA, transient ischemic attack; VA-HIT, Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial; WHO, World Health Organization.

*Death indicates all-cause mortality.
CETP activity and CAD

Effect of plasma TG

Increased concentrations of CETP are associated with an increasing risk of future CAD in healthy individual with elevated TG level (\(>1.7 \) mmol/L)

These prospective data support the hypothesis that pharmacological CETP inhibition may reduce the risk of CAD in humans, but only in those with high triglyceride levels.

Circulation. 2004;110:1418
CETP inhibition
Action mechanism

- Increase the HDL cholesterol?
 - Yes
- Increase the reverse cholesterol transport?
Effects of CETP in Normo TG and Hyper TG

ATVB 2003;23:160

CETP inhibition

Affect RCT

Possibly reduce small dense LDL
Effect of CETP in cholesterol efflux

HDL₂

HDL₃

Media

Cellular

Cholesterol efflux induced by HDL from MΦ

*Case: CETP deficiency

Homozygous CETP deficiency failed to promote CE efflux from cholesterol-loaded human MΦ (HDL₂)

HDL from CETP-deficient subjects shows enhanced CE efflux from MΦ (apoE- & ABCG1-dependent pathway)

JBC 1994;116:257

J Clin Invest. 2006; 116: 1435
Role of CETP in regulating macrophage cholesterol efflux via ABCA1 and ABCG1

ATVB 2007;27:257
CETP
RCT: Animal experiments

Aortic lesion area in control, CETP-Tg, LCAT-Tg, and LCATxCETP-Tg mice after 16 weeks on an atherogenic high fat, high cholesterol diet.

Plasma kinetics of $[^3]$HCE HDL from C57BL/6, LCAT-Tg, and LCATxCETP-Tg mice.

JBC 1999;274:36912
Effect of Inhibiting CETP on the Kinetics of HDL CE Transport in Plasma

Administration of the CETP inhibitor almost completely blocked the transfer of CE from HDL to the VLDL/LDL fraction. However, these effects were not accompanied by a reduction in the total flux of HDL CE, indicating that neither the rate of production nor the overall removal of HDL CE from plasma was compromised.
Effect on blood pressure

ILLUMINATE trial
- Patients in the torcetrapib–atorvastatin group had more hypertensive adverse events (23.7% vs. 10.6%) and more blood-pressure values greater than 140/90 mm Hg (21.3% vs. 8.2%). *NEJM 2007;356:1304*

RADIANCE 2 study
- The frequency at which systolic blood pressure was raised by 15 mm Hg or more was 20/377 (5%) in the combined-treatment group and 8/375 (2%) in controls (p=0.02). *Lancet 2007;370:153*
Do we have enough evidences that increasing HDL-C levels reduces the incidence of CAD?

Therapy targeted to HDL
Clinical Trials

Table 3. Randomized Controlled Clinical Trials of Pharmacological Therapies that Modify HDL and Affect Clinical or Surrogate Outcomes of Atherosclerotic Burden (cont)

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Specific Agent(s)</th>
<th>Patients Receiving Treatment, No./Total (%)</th>
<th>Increase in HDL-C Levels, %</th>
<th>Follow-up Duration, y</th>
<th>Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILLUSTRATE, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>591/1188 (49.7)</td>
<td>61</td>
<td>2</td>
<td>No decrease in coronary atherosclerosis progression by IVUS</td>
</tr>
<tr>
<td>RADIANCE 1, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>450/904 (49.6)</td>
<td>54</td>
<td>2</td>
<td>No decrease in carotid atherosclerosis progression by IMT</td>
</tr>
<tr>
<td>RADIANCE 2, 2007</td>
<td>Torcetrapib + atorvastatin</td>
<td>377/752 (50)</td>
<td>63</td>
<td>1.8</td>
<td>No change in maximum intima-media thickness</td>
</tr>
</tbody>
</table>

Apo A-I Directed Therapies

| Apo A-I Milano, 2003 | ETC-216 | 45/57 (78.9) | NR | 5 wk | Decreased coronary atheroma volume on IVUS |
| ERASE, 2007 | Reconstituted HDL (CSL-111) | 111/183 (60.7) | NR | 6 wk | No decrease in coronary atheroma volume on IVUS |

Abbreviations: AFFCOG, Armed Forces Regression Study; apo A-I, apolipoprotein A-I; ARTER, Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol; BEACIT, Bezafibrate Coronary Atherosclerosis Intervention Trial; BIP, Bezafibrate Infarction Prevention Study; CAD, coronary artery disease; CDP, Coronary Drug Project; CLAS, Cholesterol Lowering Atherosclerosis Study; CLAS Fem, femoral atherosclerosis group of CLAS; CLAS IMT, carotid ultrasound group of CLAS; DAIS, Diabetes Atherosclerosis Intervention Study; ERASE, Effect of rHDL on Atherosclerosis-Safety and Efficacy Trial; FATS, Familial Atherosclerosis Treatment Study; FIELD, Fenofibrate Intervention and Event Lowering in Diabetes Study; HATS, HDL-Atherosclerosis Treatment Study; HDL-C, high-density lipoprotein cholesterol; HHS, Helsinki Heart Study; ILLUSTRATE, Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation Trial; IMT, intima-media thickness; IVUS, intravascular ultrasound; LEADER, Lower Extremity Arterial Disease Event Reduction Trial; LOCAT, Lopid Coronary Angiography Trial; MI, myocardial infarction; NR, not reported; RADIANCE, Raising Atherosclerotic Disease Changes by Imaging with a New CETP Inhibitor Trial; SCPRD, Stanford Coronary Risk Prevention Project; TIA, transient ischemic attack; VA-HIT, Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial; WHO, World Health Organization.

*Death indicates all-cause mortality.
Summary

The reason for the failure of torcetrapib: no clear answer yet.

Possible mechanisms
- No beneficial effect on RCT even with high HDL cholesterol: cholesterol efflux, hepatic uptake, etc.
- Effect on blood pressure and vasculature
- Chemical effect other than class effect?

We should reconsider the efficacy of HDL-based therapy.
Overview of RCT and HDL Metabolism

Excess cholesterol stored in macrophages in arterial walls contributes to atherogenesis.
In reverse cholesterol transport, cholesterol ester hydrolase (CEH) releases free cholesterol from cholesterol ester (CE) stores.

The ABCA1 transporter facilitates the efflux of cellular cholesterol to lipid-poor apo A-I to form nascent pre-β-HDL. Apo A-I is produced in the liver and intestine, and is also generated upon catabolism of mature HDL.

Lecithin-cholesterol acyltransferase (LCAT) esterifies free cholesterol in nascent pre-β-HDL to cholesteryl ester, converting nascent pre-β-HDL to mature α-HDL (HDL₃ and HDL₄).

Nascent pre-β-HDL
Free cholesterol
Cholesterol ester

Indirect Pathway of Hepatic Cholesterol Uptake
Cholesterol ester transfer protein (CETP) facilitates the exchange of CE in HDL for triglycerides (TG) in TG-rich apo B particles (LDL₃, VLDL₃).

Mature α-HDL particles (HDL₃ and HDL₄) can continue to accept free cholesterol via ABCG1-mediated efflux.

CETP exchanges CE for TG in HDL₃, VLDL₃.

Mature α-HDL
Free cholesterol
Cholesterol ester

Direct Pathway of Hepatic Cholesterol Uptake
CE is taken up via SR-B1 receptors on hepatocytes that recognize apo A-I as a ligand.

Singh IM et al. JAMA 2007;298:786-798.