

Controversy in Angiotensin Receptor Blockers - Myocardial Infarction Paradox Anniversur,

GLOBAL PRIDE KOREA UNIVERSIT

OREA

고려대 구로병원 순환기내과 박 창 규

"To know that we know what we know, and to know that we do not know what we do not know, that is true knowledge."

-Copernicus (1473-1543)

Summary:Meta-analysis of ACE inhibitor trials in CAD patients *without* HF or LV dysfunction

* End point not reported in QUIET

** End point not reported in PEACE and CAMELOT

Danchin N et al. Arch Int Med. 2006;166:787-796.

Long-term benefits of ACE inhibitors after AMI Overview of SAVE - AIRE - TRACE (n=5 966)

Controversies in Cardiovascular Medicine

Do angiotensin receptor blockers increase the risk of myocardial infarction?

Angiotensin Receptor Blockers May Increase Risk of Myocardial Infarction Unraveling the ARB-MI Paradox

Martin H. Strauss, MD, FRCPC; Alistair S. Hall, MB ChB, PhD, FRCP(UK)

Circulation 2006;114;838-854

Defining the ARB-MI Paradox

VALUE: Fatal and Non-Fatal Myocardial Infarction

Julius S et al. Lancet. June 2004;363.

ARB v. Comparator IDNT, CHARM-Alternative, SCOPE, RENAAL, LIFE, VALUE, ELITE I, ELITE II, DETAIL, OPTIMAAL, and VALIANT

Trial	ARB n/N (MI)	Control n/N (MI)	Odds Ratio 95% Cl	Weight %	Odds Ratio 95% Cl
ELITE DETAIL ELITE II IDNT CHARM-AIt SCOPE RENAAL LIFE VALUE OPTIMAAL VALIANT Total (95% CI) Total Events: 1,826 Test for heterogeneit df=10 (p=0.32), 1 ² Test for overall effect	3/352 9/120 31/1,578 39/579 75/1013 70/2,477 50/751 198/4,605 369/7,649 384/2,744 587/4,909 26,777 (ARB), 1,722 (Control) y. Chi ² = 11.7 = 14.6% t: Z = 2.18 (p=0.03)	4 / 370 6 / 130 28 / 1,574 66 / 1,136 48/ 1,015 63 / 2,460 68 / 762 188 / 4,588 313 / 7,596 379 / 2,733 559 / 4,909 27,273		0.25 0.34 1.78 2.69 2.87 3.97 4.08 11.66 19.34 21.13 31.84 <u>1.08</u>	0.79 (0.17 to 3.54) 1.68 (0.58 to 4.86) 1.11 (0.66 to 1.85) 1.17 (0.78 to 1.76) 1.61 (1.11 to 2.34) 1.11 (0.78 to 1.56) 0.73 (0.50 to 1.06) 1.05 (0.86 to 1.29) <u>1.18 (1.01 to 1.38)</u> 1.01 (0.87 to 1.18) 1.06 (0.93 to 1.20) (1.01 to 1.16)
		Favors	0.5 0.7 1.0 1.5 2.0 ARB Favors	Contro	

Relative risk, AT₁-receptor blocker

Do ARBs Increase the Risk of MI?

Differential effects of ACEis and ARBs on AT₂ receptors

ARBs May Increase MI: Biological Plausibility

- ARBs increase Ang II levels several-fold above baseline
- AT2 receptor stimulation may even be harmful
 - \rightarrow growth promotion, fibrosis, and hypertrophy
 - \rightarrow proatherogenic and proinflammatory effects
- Overexpression of AT2 in human cardiac myocytes is associated with increased cardiac hypertrophy
- AT2 receptors inhibit vascular endothelial growth factorinduced angiogenesis in endothelial cells.
- AT2 stimulation inhibit hypoxia-induced neovascularization

AT₂ Impact on MMP-1 Dependent Plaque Rupture

Circulation JOURNAL OF THE AMERICAN HEART ASSOCIATION JOURNAL OF THE AMERICAN HEART ASSOCIATION 2006;114;838-854

ACEi Better than ARB ?

X-linked AT2 receptor gene polymorphism (1332 G/A)

Change in PAI-1 and FMD with ACEi or ARB

Brown NJ et al. Hypertension. 2002;40:961-966
Anderson TJ et al. J Am Coll Cardiol. 2000;35:60-66

Blood Pressure– Independent Effects of ACEIs v. ARBs

Relationship between ORs for CHD and differences in achieved SBP between randomised groups

Verdecchia et al 2005

Relationship between ORs for **Stroke** and differences in achieved SBP between randomised groups

Verdecchia et al 2005

Associations of BP reduction with RR for stroke in trials of ACEI and ARB

Within trials SBP difference between randomized group

Journal of Hypertension 2007, 25:951–958

Associations of BP reduction with RR for heart failure in trials of ACEI and ARB

Journal of Hypertension 2007, 25:951–958

Associations of BP reduction with RR for CHD in trials of ACEI and ARB

Within trials SBP difference between randomized group

Journal of Hypertension 2007, 25:951–958

BPLTTC Regression Meta-analysis

ACEIS OR COMPARIS - AASK, ABCD(H), ABCD(N), ALLHAT, ANBP2, CAPPP, DIAB-HYCAR, EUROPA,, HOPE, JMIC-B, PART-2, PEACE, PROGRESS, SCAT, STOP-2, and UKPDSHDS

ARBs or comparators - IDNT, LIFE, RENAAL, SCOPE, and VALUE.

Do ARBs Surely Increase the Risk of MI?

However, ARB v. ACEi

A L

ELITE I, ELITE II, DETAIL, OPTIMAAL, and VALIANT

	Number at Risk	Number of Events	Control Event Rate	Odds Ratio (95% CL)	P Value Overall Effect
ARB versus ACEi					
Global Death	19,419	3,474	17.42%	1.06 (0.99-1.14)	0.10 *
CV Death	19,419	2,910	14.59%	1.06 (0.98-1.15)	0.14
Non CV Death	19,419	564	2.8%	1.05 (0.89-1.25)	0.55
Stroke	18,697	704	3.9%	0.91 (0.79-1.06)	0.25
MI	19,419	1,990	10.05%	1.04 (0.95-1.15)	0.37

(* p<0.10; * * p<0.05; * * * p<0.01; * * * * p<0.001)

٨... ٨... A A

ARB v. Comparator IDNT, CHARM-Alternative, SCOPE, RENAAL, LIFE, VALUE, ELITE I, ELITE II, DETAIL, OPTIMAAL, and VALIANT

Trial	ARB n/N (MI)	Control n/N (MI)	Odds Ratio 95% Cl	Weight %	Odds Ratio 95% Cl
ELITE DETAIL ELITE II IDNT CHARM-Alt SCOPE RENAAL LIFE VALUE OPTIMAAL VALIANT TOTAL Total (95% Cl) Total Events: 1,826 Test for heterogenei df=10 (p=0.32), 1 ² Test for overall effect	3/352 9/120 31/1,578 39/579 75/1013 70/2,477 50/751 198/4,605 369/7,649 384/2,744 587/4,909 26,777 (ARB), 1,722 (Control)) $ty. Chi^2 = 11.7$ = 14.6% tt: Z = 2.18 (p=0.03)	4 / 370 6 / 130 28 / 1,574 66 / 1,136 48/ 1,015 63 / 2,460 68 / 762 188 / 4,588 313 / 7,596 379 / 2,733 559 / 4,909 27,273		0.25 0.34 1.78 2.69 2.87 3.97 4.08 11.66 19.34 21.13 31.84	0.79 (0.17 to 3.54) 1.68 (0.58 to 4.86) 1.11 (0.66 to 1.85) 1.17 (0.78 to 1.76) 1.61 (1.11 to 2.34) 1.11 (0.78 to 1.56) 0.73 (0.50 to 1.06) 1.05 (0.86 to 1.29) 1.18 (1.01 to 1.38) 1.01 (0.87 to 1.18) 1.06 (0.93 to 1.20) (1.01 to 1.16)
		Eavors	0.5 0.7 1.0 1.5 2.	o rs Contro	1
		1 41015			

Overall effect of ARBs on risk of MI

Study	ARB Group n/N	Control Group n/N	OR (random) 95% Cl	Weight %	OR (random) 95% CI
SCOPE (2003)	70/2477	63/2460		5.60	1.11 [0.78, 1.56]
Haneda et al. (2004)	1/95	0/32 🔶		0.09	1.03 [0.04, 25.96]
RENAAL (2001)	50/751	68/762		4.83	0.73 [0.50, 1.06]
ARCH-J (2003)	0/148	0/144			Not estimable
CHARM-Added (2003)	44/1276	69/1272		4.71	0.62 [0.42, 0.92]
CHARM-Alternative (2003)	75/1013	48/1015		4.97	1.61 [1.11, 2.34]
CHARM-Preserved (2003)	57/1514	73/1509		5.39	0.77 [0.54, 1.10]
SPICE (2000)	5/179	5/91		0.54	0.49 [0.14, 1.75]
Val-HeFT (2001)	89/2506	78/2494	-+	6.57	1.14 [0.84, 1.55]
DETAIL (2004)	10/120	8/130	_ 	0.92	1.39 [0.53, 3.64]
ELITE (1997)	4/352	8/370	<u> </u>	0.59	D.52 [0.16, 1.74]
ELITE II (2000)	31/1578	28/1574		2.91	1.11 [0.66, 1.85]
HEAVEN (2002)	0/70	2/71 🔶		0.10	0.20 [0.01, 4.18]
REPLACE (2001)	0/301	1/77 🔶		0.09	0.08 [0.00, 2.10]
Di Pasquale et al. (1999)	0/23	3/50 🔶		- 0.10	0.29 [0.01, 5.82]
OPTIMAAL (2002)	384/2744	379/2733	+	14.04	1.01 [0.87, 1.18]
Spinar et al. (2000)	5/100	4/101		0.48	1.28 [0.33, 4.90]
Bakris et al. (2002)	1/118	0/287			7.34 [0.30, 181.49]
IDNT (2003)	44/579	73/1136	- -	4.67	1.20 [0.81, 1.77]
ALPINE (2003)	1/196	1/196 🔶		0.11	1.00 [0.06, 16.10]
Kondo et al. (2003)	3/203	3/203		0.34	1.00 [0.20, 5.01]
LIFE (2002)	198/4605	188/4588	_ +	10.91	1.05 [0.86, 1.29]
MOSES (2005)	17/710	20/695		1.90	0.83 [0.43, 1.59]
VALIANT (2003)	587/4909	559/4909	+	16.12	1.06 [0.93, 1.20]
VALUE (2004)	369/7649	313/7596	-	13.96	1.18 [1.01, 1.38]
Total (95% CI)	34216	34495		100.00	1.03 [0.93, 1.13]
Total events: 2045 (ARB Group Test for heterogeneity: Chi ² = 3 Test for overall effect: Z = 0.55), 1994 (Control Group, 1.08, df = 23 (P = 0.12) (P = 0.59)) , l² = 26.0%		· .	
		Fabor		er Control	

Meta-analysis of trials directly comparing ACEI with ARB-based regimens for the outcomes of stroke, CHD and heart failure

_	Event ARB A	s/ <i>n</i> CE-I Favo	urs ARB	Favours ACEI	Relative risk (95% CI)
Stroke ELITE II	18/1578	11/1574			→ 1.63 (0.77, 3.44)
OPTIMAAL	140/2744	132/2733		-	1.06 (0.84, 1.33)
VALIANT	157/4909	166/4909		<u> </u>	0.95 (0.76, 1.17)
Overall			<	\geq	1.02 (0.87, 1.19)
Major CHD ELITE II	161/1578	129/1574			1.24 (1.00, 1.55)
OPTIMAAL	576/2744	533/2733			1.08 (0.97, 1.20)
VALIANT	868/4909	896/4909	·	-	0.97 (0.89, 1.05)
Overall			4	\triangleright	1.06 (0.94, 1.19)
Heart failure ELITE II	46/1578	53/1574	-		0.87 (0.59, 1.28)
OPTIMAAL	363/2744	318/2733			1.14 (0.99, 1.31)
VALIANT	813/4909	801/4909	-	-	1.01 (0.93, 1.11)
Overall			<	\triangleright	1.05 (0.95, 1.15)
		0.5		1.0	2.0
			Relati	ve risk	

CONCLUSION

"ARBs might be inferior to ACEis with respect to prevention of MI and CV death"

Biological plausibility Clinical evidence Meta-analyses

STILL REMAIN

"ACEis is the preferred choice as initial therapy (or an ARB if an ACEi is not tolerated) at present hypertension treatment recommendation"

WE NEED MORE EVIDENCE FOR THE CONTROVERSY OF ARB-MI PARADOX

 Results from the prospective ONTARGET and TRANSCEND trials are eagerly awaited to better define the role of ARBs in protecting patients at risk for MI and other atherosclerotic heart diseaserelated events.

경청하여 주셔서 감사합니다.

Meta-analysis of RCTs of ACE-I in patients with CAD and no heart failure or LV dysfunction

Danchin et al. Arch Intern Med 2006; 166: 787-96

Meta-analysis of RCTs of ACE-I in patients with CAD and no heart failure or LV dysfunction

Danchin et al. Arch Intern Med 2006; 166: 787-96

Summary of meta-analyses for treatment with an ARB vs placebo; placebo or non-ACEI comparator

	Number	Number Number Control Odd at of Event Rati		Odds Ratio	P Value
	Risk	Events	Rate	(95% CL)	Effect
ARB versus placebo					
Global Death	9,626	1,579	16.9%	0.94 (0.66-1.24)	0.24
CV Death	9,626	1,035	11.0%	0.95 (0.83-1.08)	0.43
Non CV Death	9,626	529	5.6%	0.98 (0.82-1.17)	0.81
Stroke	9,626	421	4.7%	0.84 (0.69-1.02)	0.09 *
мі	9,626	454	4.90%	1.05(0.76-1.47)	0.76
ARB versus placebo / nor	ACEi comparator				
Global Death	34,631	4,127	12.2%	0.96 (0.90-1.03)	0.26
CV Death	34,631	2,118	6.3%	0.95 (0.87-1.04)	0.27
Non CV Death	34,631	1,998	5.8%	0.99 (0.91-1.09)	0.87
Stroke	34,631	1,581	4.7%	0.94 (0.75-1.19)	0.61
MI	34,631	1,547	4.4%	1.13 (1.02-1.25)	0.02 **
ARB versus placebo / nor	ACEi comparator	/ ACEi			
Global Death	55,050	7,601	14.0%	1.01 (0.96-1.06)	0.80
CV Death	54,050	5,028	9.2%	1.01 (0.95-1.07)	0.71
Non CV Death	54,050	2,562	4.7%	1.00 (0.93-1.09)	0.89
Stroke	53,318	2,285	4.4%	0.92 (0.79-1.08)	0.32
MI	54,050	3,537	6.3%	1.08 (1.01 -1.16)	0.03 **

Trials included IDNT, CHARM Alternative, SCOPE, RENAAL, LIFE, VALUE, ELITE, ELITE-2, DETAIL, OPTIMAAL, and VALIANT.

ARB v. Comparator

IDNT, CHARM-Alternative, SCOPE, RENAAL, LIFE, VALUE, ELITE I, ELITE II, DETAIL, OPTIMAAL, and VALIANT

	Number at Risk	Number of Events	Control Event Rate	Odds Ratio (95% CL)	P Value Overall Effect
ARB versus placebo					
Global Death	9,626	1,579	16.9%	0.94 (0.66-1.24)	0.24
CV Death	9,626	1,035	11.0%	0.95 (0.83-1.08)	0.43
Non CV Death	9,626	529	5.6%	0.98 (0.82-1.17)	0.81
Stroke	9,626	421	4.7%	0.84 (0.69-1.02)	0.09*
MI	9,626	454	4.90%	1.05 (0.76-1.47)	0.76
ARB versus placebo / no	n ACEi comparator				
Global Death	34,631	4,127	12.2%	0.96 (0.90-1.03)	0.26
CV Death	34,631	2,118	6.3%	0.95 (0.87-1.04)	0.27
Non CV Death	34,631	1,998	5.8%	0.99 (0.91-1.09)	0.87
Stroke	34,631	1,581	4.7%	0.94 (0.75-1.19)	0.61
MI	34,631	1,547	4.4%	1.13 (1.02-1.25)	0.02 **
ARB versus placebo / no	n ACEi comparator	/ ACEi			
Global Death	55.050	7 601	14.0%	1 01 (0 96-1 06)	0.80
CV Death	54,050	5.028	9.2%	1 01 (0 95-1 07)	0.71
Non CV Death	54,050	2 562	4 7%	1 00 (0 93-1 09)	0.89
Stroke	53 319	2,002	1 196	0.02 (0.70.1.09)	0.32
Carono	55,518	2,205	4.470	0.92 (0.79-1.00)	0.52

(* p<0.10; ** p<0.05; *** p<0.01; **** p<0.001)

Hypothesis

Attenuation of both AT_1 and AT_2 receptor–mediated effects (with ACEis) is preferable to isolated AT_1 receptor antagonism but with additional AT_2 receptor stimulation (ARB therapy)

Included

Randomized, controlled trials At least 100 patients in each group Treatment for at least 6 months Published in the English language From 1980 to March 2005 Jadad score of at least 3

2006:114:838-854

Excluded CHARM-Added

CHARM-Preserved Val-HEFT

Major clinical end points

Global death Cardiovascular death Non-cardiovascular death Stroke Myocardial infarction

ACEi v. Comparator

CAMELOT, DIABHYCAR, Collaborative Study, BENEDICT, PROGRESS, CONSENSUS, SAVE, AIRE, TRACE, SOLVD Prevention, SOLVD Treatment, FOSINOPRIL, MARCATOR, MERCATOR, SCAT, PART-2, QUIET, HOPE, EUROPA, PEACE, CONSENSUS II, PREVEND IT, ALLHAT, ANBP-2, HYVET Pilot, ABCD, FACET, CAPP, STOP-2, UKPDS 39, J-MIND, CARMEN, ESTIC FLOSEQUINAN VeHFT-2, ELITE, ELITE-2, DETAIL, OPTIMAAL, and VALIANT

	Number at Risk	Number of Events	Control Event Rate	Odds Ratio (95% CL)	P Value Overall Effect
ACEi versus placebo					
Global Death	68,631	7,840	12.2%	0.88 (0.84-0.92)	<0.00001 ****
CV Death	65,497	5,661	9.3%	0.84 (0.76-0.92)	0.0001 ****
Non CV Death	64,487	2,138	3.3%	0.98 (0.90-1.07)	0.70
Stroke	56,373	1,948	3.8%	0.83 (0.71-0.98)	0.03 **
МІ	66,986	4,655	7.6%	0.82 (0.77-0.87)	<0.00001 ****
ACEi versus placebo / no	n ARB comparator				
Global Death	131,524	15,169	12.2%	0.90 (0.85-0.95)	0.0002 ****
CV Death	124,244	8,937	7.4%	0.87 (0.80-0.94)	0.0008 ****
Non CV Death	123,234	5,620	5.0%	0.99 (0.93-1.05)	0.69
Stroke	117,106	4,781	4.3%	0.93 (0.81-1.07)	0.29
МІ	128,523	6,440	5.1%	0.84 (0.79-0.88)	<0.00001 ****
ACEi versus placebo / no	n ARB comparator	/ ARB			
Global Death	150 943	18 643	13.0%	0.91 (0.86-0.95)	<0.00001 ****
CV Death	143,663	11.847	8.4%	0.88 (0.82-0.95)	0.0005
Non CV Death	142.653	6.184	4.7%	0.98 (0.93-1.04)	0.56
Stroke	135.803	5,485	4.2%	0.94 (0.83-1.06)	0.31
	144 700	0,100	E 09/	0.86 (0.82,0.00)	0.00001

(* p<0.10; ** p<0.05; *** p<0.01; **** p<0.001)

EUROPA: results

