

Angina Pectoris^{*} I. A Variant Form of Angina Pectoris

Preliminary Report

Myron Prinzmetal, m.d., Rexford Kennamer, m.d., Reuben Merliss, m.d., Takashi Wada, m.d. and Naci Bor, m.d. Los Angeles, California

"increased tonus at the site of an atherosclerotic plaque"

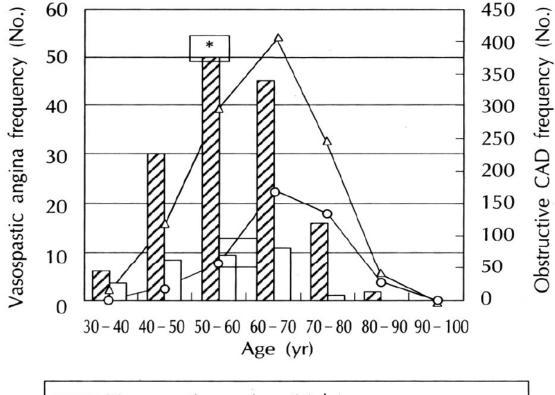
Prinzmetal. AJM 1959

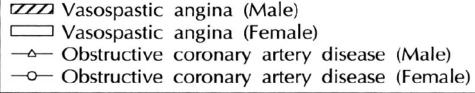
Variant angina (VA)

- Young, male
- Diurnal variation
- Resting pain
- Myocardial infarction (MI), life-threatening ventricular arrhythmias, sudden death
- 32.3% with ACh, 29% with EG test in Japan
- 12.3% in France, 4% in north America

Variant angina is decreasing

Time Period	Diagnostic CAG, No.	SSPT, No.	CSA, No.	Variant, No.	CSA/CAG, %	CSA/SSPT, %	Variant/ CSA, %
1991-1993	605	493	89	28	14.7†	18.1	31.5^{\dagger}
1994-1996	948	492	120	33	12.7	24.3	27.5^{\dagger}
1997-1999	725	200	63	9	8.7	31.5	14.3
2000-2002	870	330	77	4	8.4	23.3	5.2
Totals	3,148	1,515	349	74	11.1‡	22.9§	21.2


Because of wide use of calcium channel blocker ?Medication before hospital admission in patients with coronary spasm


Time Periods	CA	ISDN/Nicorandil	Both	S-CAs	L-CAs
1991–1993 (n = 89)	29 (32.6)	24 (27.0)	22 (24.7)	23 (79.3)	6 (20.7)
1994–1996 (n = 120)	33 (27.5)	35 (29.2)	28 (23.3)	13(39.4)	20 (60.6)
1997–1999 (n = 63)	30 (47.6)	29 (46.0)	24 (38.1)	1(3.3)	29 (96.7)
2000-2002 (n = 77)	38 (49.4)†	18 (23.4)	9(11.7)	3 (7.9) [‡]	35 (92.1) [‡]
Nonvariant $(n = 275)$	111 (40.4)	92 (33.5)	71(25.8)	28 (10.2)	83 (30.2)
Variant $(n = 74)$	19(25.7)	12 (16.2)	12 (16.2)	12(16.2)	7(9.5)
Total $(n = 349)$	130 (37.2)	106(30.4)	83 (23.8)	40(11.5)	90 (25.8)

Characteristics of VA in Korea

	Vasospastic angina (181 Cases)	Obstructive coronary artery disease (1533 Cases)	Normal control (455 Cases)
Sex			
Male (%)	149 (82.3)*	1122 (73.2)	378 (82.3)
Female (%)	32 (17.7)	411 (26.8)	77 (17.7)
Age			
Mean age (years)	52.2±10.7 ⁺	59.0±10.6	52.5±10.7

Age and sex distribution in VA and CAD

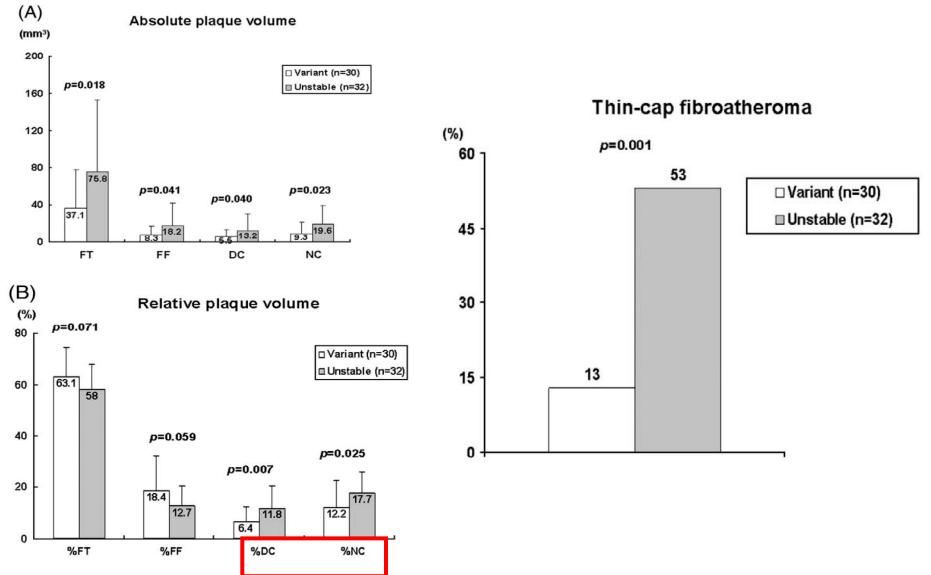
Variant angina

- 88% cases spasm causing ischemia was localized to the site of an organic lesion : by *Prinzmetal*
- Anatomy: normal coronary arteries varies from 30% to 64%
- 0.5-0.8% of patients could show evidence of coronary artery spasm stimulated either by the tip of the catheter or contrast medium

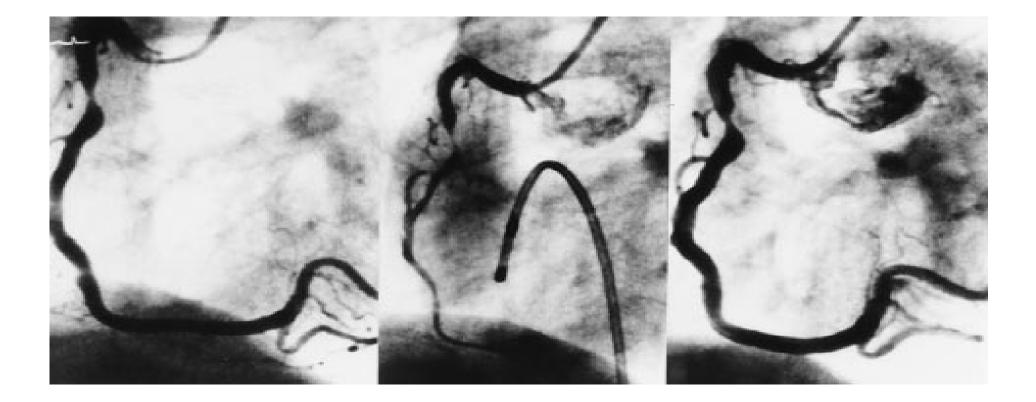
Korean VA, 256 patients, (1996-2006 retrospective study)

:	Results	N (%)
:	Single vs. multivessels spasm	
	Single vessel spasm	223 (97.1)
Results	Multivessels spasm	33 (12.9) N (%)
NI :. :(:	Pure vs. mixed angina	26(90.5)
No significa	Pure vasospastic angina	_{206 (80.5)} 06 (80.5)
Significant f	Mixed angina	^{50 (19.5)} 50 (19.5)
	Spasm site	
One vesse	LAD only	_{92 (35.9)} 38 (14.8)
Two vesse	LCX, only	$^{24}(9.4)$ 12 (4.7)
T + 1	RCA, only	107 (41.8)
Triple ves	LAD, LCX	9 (3.5) O (O)
Left main	LCX, RCA	^{4 (1.6)} 0 (0)
D	RCA, LAD	15 (5.9)
Percutaneou	LAD, LCX, RCA	5 (2.0) 18 (7.0)
	Spasm artery	
	LAD	121 (41.2)
	LCX	42 (14.3)
	RCA	131 (44.6)
		유상용등 Korean Circ J 2008;38:651-658

VA characteristics


Variables	Subsets	No. of patients	%
Coronary artery	No stenosis >75%	97	40
disease	One-vessel disease	108	44
	Multivessel disease	40	16
Calcium antagonist	Yes	176	72
	No	69	28
Site of ST	Anterior	124	51
elevation	Inferior	94	38
	Both	27	11
Disease activity	Spontaneous attacks	211	86
	Provoked attacks only	34	14
Left ventricular	Normal	230	94
function	Abnormal	15	6
Smoking	Yes	79	34
	No	154	66
Alcohol	Yes	128	55
	No	105	45
Coronary artery	Yes	34	14
bypass surgery	No	211	86

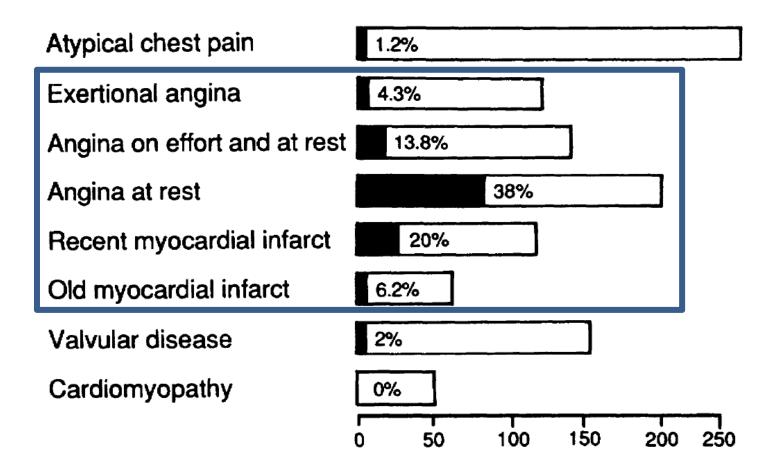
Circulation 1988;78:1-9


Histology of VA from directional coronary atherectomy

	VAP	SAP	Restenosis
	(n = 22)	(n = 100)	(n = 80)
Fibro-atheromatous plaque (n)	32% (7)*	92% (92)	10% (8)*
Neointimal hyperplasia (n)	68% (15)*	8% (8)	90% (78)*
Thrombus (n)	10% (2)	6% (6)	9% (11)
Intimal hemorrhage (n)	14% (3)	4% (4)	8% (6)
Calcification (n)	10% (2)	11% (11)	11% (9)

Plaque components at coronary sites with focal spasm in patients with VA: more stable plaque than in UAP

Combination of fixed lesion and spasm

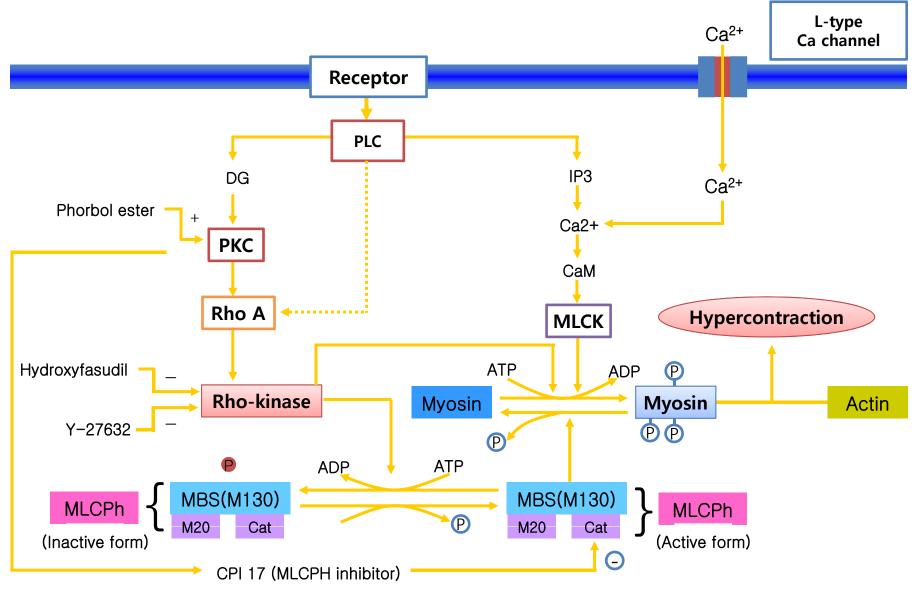

Inducible coronary spasm in post MI patients

	Provocative	1	Myocardial Infarct Pati	ents	Contro	ol Patients
Study	Agent	n	Days Post-MI	Spasm	n	Spasm
Recent myocardial infarct						
Caucasian patients						
Bertrand et al. (79)	Methylergonovine	131	< 42	21%	353	9%
Mongiardo et al. (80)	Serotonin	24	6-12	11%		
Pristipino et al. (5)	Acetylcholine	19	7-10	37%		
Japanese patients						
Okumura et al. (81)	Acetylcholine	16	25-725	69%	16	21%
Pristipino et al. (5)	Acetylcholine	15	7-10	80%		
Remote myocardial infarct						
Caucasian patients						
Bertrand et al. (82)	Methylergonovine	64	> 6 weeks	6%	248	1%
Japanese patients	, 0					
Nosaka et al. (83)	Ergonovine	398		23%	648	1%

More inducible spasm in oriental than western in post MI patients

Study	Patient race	Drougastive agent	MI n Spasm		Stable CAD	
Study	Patient face	Provocative agent			n	Spasm
Recent MI						
Bertrand ⁵⁰	Caucasian	Methylergonovine	131	21%	353	9%
Pristipino ²⁵	Caucasian	Acetylcholine	19	37%		
Pristipino ²⁵	Japanese	Acetylcholine	15	80%		
Okumura ⁵¹	Japanese	Acetylcholine	16	69%	16	21%
Remote MI (>6 weeks)						
Bertrand ²⁴	Caucasian	Methylergonovine	64	6%	248	1%
Nosaka ⁵²	Japanese	Ergonovine	398	23%	648	1%

Provoked coronary spasm in various situation


VA and ACS

- Causality?
- Spasm → ACS
 vs. ACS → Endothelial dysfunction → Spasm
- *Histology and IVUS+VH study
- * Spasm test in ACS?
- * CCB or nitrate in spasm + ACS ?

Coronary arteries of patients with spasm

- Vasomotor tone
- Endothelial dysfunction
- Vagal withdrwal
- Sympathetic activity
- Smooth muscle contraction
- Nitric oxide release
- Genetic background
- Smoking
- K_{ATP} channel in smooth muscle cell (SMC)

Molecular Mechanisms for Coronary Spasm

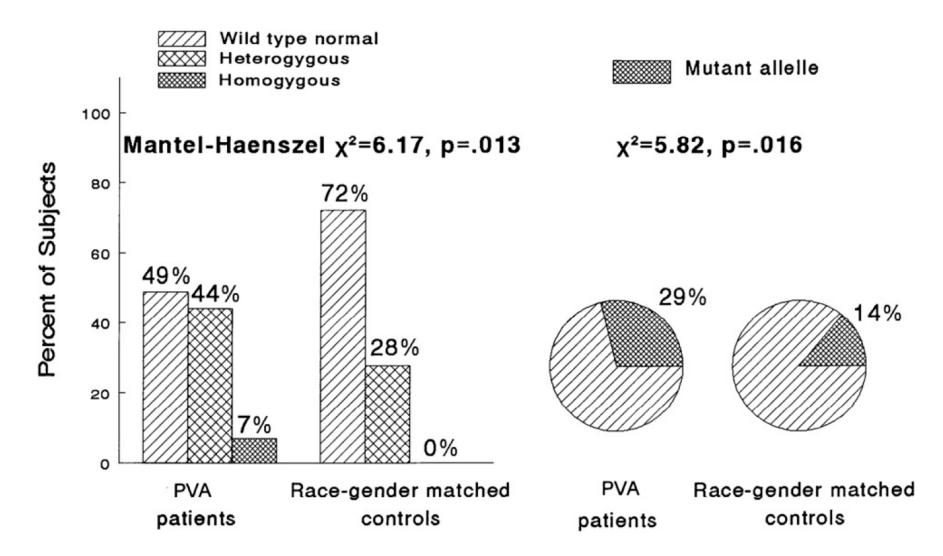
Shimokawa H. J Cardiovasc Pharmacol. 2002, 39:319-327

VA and inflammation from biomarker study

Variables χ^2	test <i>P</i> value	Odds ratio	95% confidence interval
5	0.052	1.461	1.092-1.844
	5620.0413090.006	1.629 1.821	1.138–2.040 1.192–2.108
	1820.0013800.004	2.034 1.921	1.263–3.378 1.196–2.273

CRP, C-reactive protein; IL-6, interleukin-6; PMC, peripheral monocyte count; WBC, white blood count.

Quartile	χ^2 test	P value	Odds ratio	95% confidence interval
1st (\leq 1 mg/l)			1.000	
2nd (1–3 mg/l)	1.842	0.249	2.183	0.948-4.135
3rd (\geq 3 mg/l)	6.351	0.002	4.982	1.503-8.927


Low HDL, risk factor of VA by Multivariate analysis

		Univariate			Multivariate		
	п	OR	95% CI	Р	OR	95% CI	Р
Age \geq 65 years	48	1.55	0.77-3.11	0.218	2.11	0.96-4.62	0.062
Male sex	100	1.31	0.71-2.42	0.382			
Smoking	53	2.48	1.22-5.03	0.023	2.68	1.23-5.83	0.013
Alcohol	77	1.33	0.72-2.46	0.367			
Hypertension	57	1.15	0.60-2.19	0.679			
BMI \geq 25 kg/m ²	58	1.20	0.63-2.28	0.586			
Impaired fasting	38	2.70	1.19-6.13	0.018	2.47	1.06-5.83	0.037
glucose/DM							
Lowest HDL-C	40	4.31	1.78-10.43	0.001	3.39	1.34-8.54	0.010
quartile							
Highest LDL-C	45	0.92	0.46-1.84	0.822			
quartile							

Racial differences

- Japanese patients diffusely, multivessel spasm
- endothelial nitric oxide synthetase(eNOS) gene (resulting in deficient nitric oxide production)-69% and 75%, respectively, incidence of coronary spasm

eNOS T-786C genotypes and mutant allele frequency in 43 patients with VA

Oxidative stress and spasm: RR homozygote of paraoxonase Q192R polymorphism are associated with variant angina

	OR	95% CI	р
Variant angina			
Smoking (current- or ex-)	3.392	1.777-6.476	<0.001
RR homozygote	2.240	1.012-4.956	0.047

Circardian Variation of Autonomic Nervous Activity in Patients With Multivessel Coronary Spasm

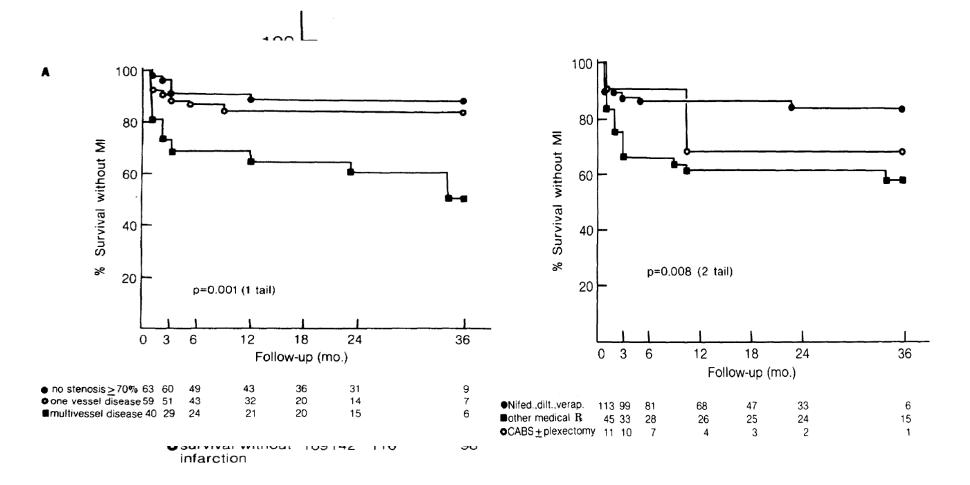
Sympathetic nervous activity was enhanced in the nighttime in pts with multivessel spasm.

Adrenergic Receptor

• α_2 adrenergic receptor : vasoconstriction

• β_2 -adrenergic receptor : vasodilation

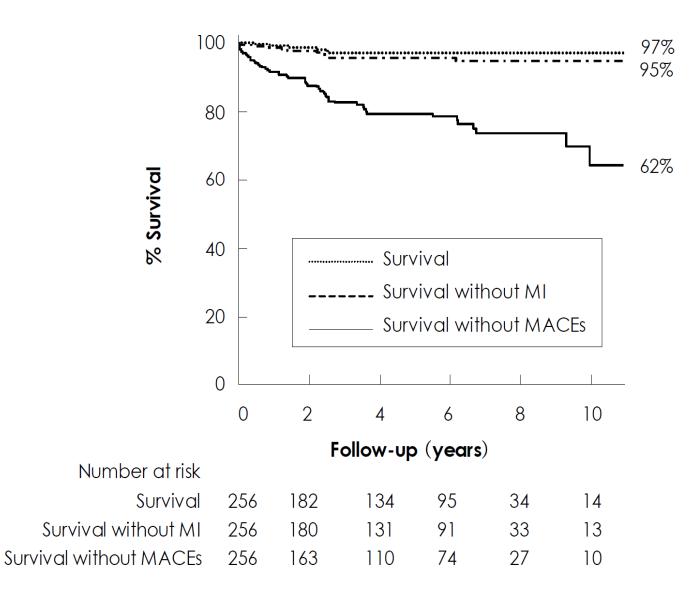
• β_1 -adrenergic receptor : chronotrophic, inotrophic changes


VA clinical parameters and AR genotypes in multiple logistic regression analysis

	OR	95% CI	Р
α_{2C} Del322-325 allele carrier	5.132	2.094-12.578	.0003
β ₂ Gln27 homozygote	3.152	1.364-7.285	.0072
Smoking	4.902	2.105-11.416	.0002
Male sex	1.348	0.570-3.186	NS
Age (1 y)	1.089	1.046-1.135	<.0001
Diabetes	4.103	0.836-20.131	NS
Hypertension	0.434	0.184-1.024	NS
Dyslipidemia	1.869	0.541-6.457	NS

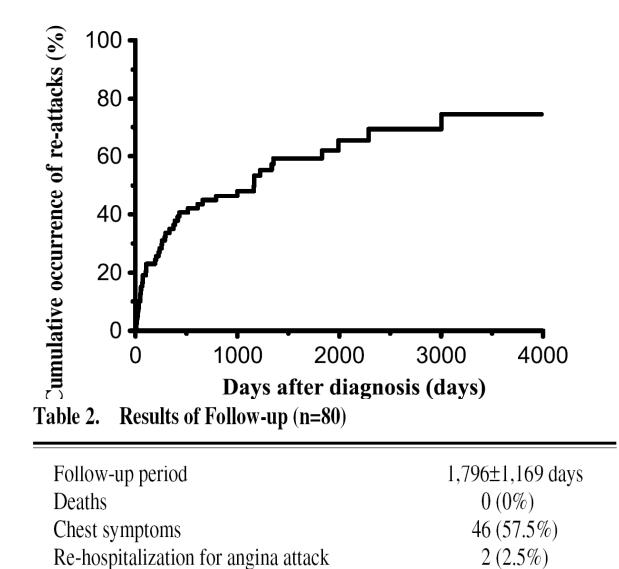
Survival in VA patients is good and better in Oriental than in the West

Prognosis of VA



Circulation 1983:68,258-265

Predictor of survival of VA


	Sur	Survival		Survival without infarction	
Variable	χ^2	p value	χ^2	p value	
Coronary artery disease	14.7	.0003	13.4	.001	
Disease activity	5.7	.03	9.6	.004	
Left ventricular function	3.0	.04	5.6	.02	
Initial treatment	0.89	NS	9.7	.008	
Age	2.9	NS	1.0	NS	
Duration of rest angina	0.81	NS	2.2	NS	
Site of ST elevation	0.17	NS	1.5	NS	

Survival in Korean VA -97%

유상용등 Korean Circ J 2008;38:651-658

202 patients with VA, Repeated angina attack - From Japan data

Non-Q myocardial infarction

Circ J 2009; 73: 512 – 515

1 (1.3%)

Diagnostic Options in CAS

- Electrocardiogram
- Holter monitoring
- Coronary angiography with ergonovine, Ach
- Ergonovine stress echocardiography

Variant angina diagnosis by coronary angiography (CAG)

- Intravenous(IV) or intracoronary(IC) ergot alkaloid (ergonovine maleate, EG) or acetylcholine (ACh)
- angiographically defined total vessel occlusion or subtotal occlusion with or without organic stenosis (100%, 99%, 75%)
- spasm in angiography
- chest pain
- ECG changes
- Physiological Coronary Constriction Reduction in epicardial coronary artery diameter in response to ergonovine is usually diffuse and quite mild, not exceeding 30%

Ach is comparable to EG and comfortable in detecting multivessel spasm

PATHOPHYSIOLOGY AND NATURAL HISTORY VARIANT ANGINA

Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm

Hirofumi Yasue, M.D., Yutaka Horio, M.D., Natusuki Nakamura, M.D., Hiromi Fujii, M.D., Nobuya Imoto, M.D., Ryuji Sonoda, M.D., Kiyotaka Kugiyama, M.D., Kenji Obata, M.D., Yasuhiro Morikami, M.D., and Tadashi Kimura, M.D.

ABSTRACT We injected acetylcholine (ACh), the neurotransmitter of the parasympathetic nervous system, into the coronary arteries of 28 patients with variant angina. Injection of 10 to 80 μ g ACh into the coronary artery responsible for the attack induced spasm together with chest pain and ST segment elevation or depression on the electrocardiogram in 30 of the 32 arteries of 25 of the 27 patients. The injection of 20 to 100 μ g ACh into the coronary artery not responsible for the attack in 18 patients resulted in various degrees of constriction in most of them, but no spasm in any of them. After intravenous injection of 1.0 to 1.5 mg atropine sulfate, the injection of ACh into the coronary artery responsible for the attack did not induce spasm or attack in any of the nine coronary arteries injected in patients. We conclude that the intracoronary injection of ACh induces system may play a role in the pathogenesis of coronary spasm. We also conclude that the intracoronary injection of ACh is a useful test for provocation of coronary spasm.

Circulation 74, No. 5, 955-963, 1986.

Other provocative tests

- Serotonin, histamine, dopamine
- Exercise, cold pressor tests, hyperventilation
- ergon Ergonovine stress echo
- Hyper Hyperventilation echo
- Histamine 47%,
- exercise in 46%,
- cold pressor 11%
- handgrip tests 7%

Comparison of Potential Advantages and Disadvantages of Ergonovine Echocardiography Versus Invasive Spasm Provocation Test

	Invasive (+)	Provocation (–)	
Ergonovine (+)	142	6	
Echocardiography (-)	10	60	
Sensitivity: 93%; specificity: 91%; (+) predictive value: 96%; (-) predictive value: 86%.			

	Advantage	Disadvantage
Invasive provocation during angiography	Angiogram Intracoronary nitroglycerin Temporary pacemaker backup	Relatively late and insensitive ischemic markers (chest pain, electrocardiogram changes)
		Invasive, perturbing vasomotor tone
		Injection contrast agent into coronary circulation
		Continuous monitoring of ischemic process impossible
Ergonovine echocardiography	Regional wall motion abnormalities-sensitive & specific; early detection and	Intracoronary injection of nitroglycerin impossible
	termination	Temporary pacemaker backup
	Noninvasive, not perturbing vasomotor tone	impossible
	Repeat and follow-up studies	Dependent on acoustic window

Song JK et al J Am Coll Cardiol 2000;35: 1850-6

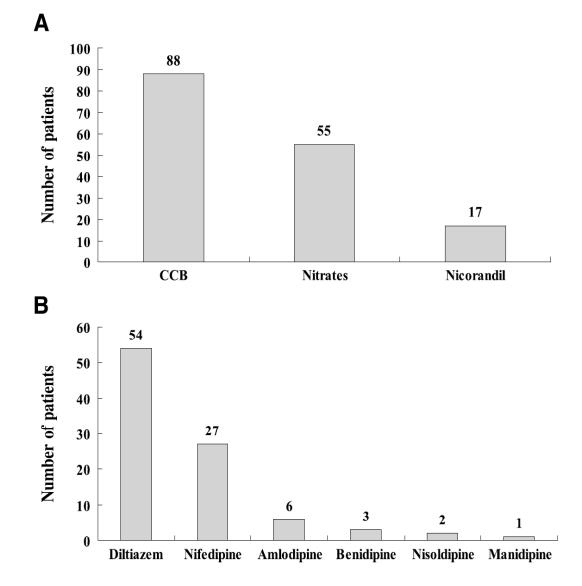
Case Reports

Korean Circulation J 2002;32(4):359-362

Ergonovine 부하 심초음파 검사중 발생한 심정지 1예

동아대학교 의과대학 순환기내과학교실 박태호·김무현·장세준·김성근·양두경 오일환·차광수·김영대·김종성

Heart Arrest Caused by Ergonovine Stress Echocardiography


Tae Ho Park, MD, Moo Hyun Kim, MD, Se Jun Jang, MD, Seong Geun Kim, MD, Doo Kyung Yang, MD, Ill Hwan Oh, MD, Kwang Soo Cha, MD, Young Dae Kim, MD and Jong Seong Kim, MD Division of Cardiology, Dong-A Medical College, Pusan, Korea

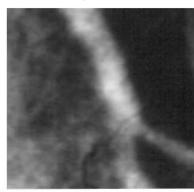
(Korean Circulation J 2002;32(4):359-362

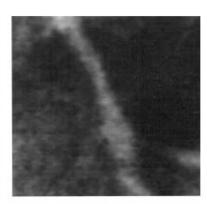
Management

- Stop smoking
- Calcium channel blocker
- Nitrate
- Nicorandil (K_{ATP} channel, SUR-/- mouse), prazosin, steroids, ketanserin, denopamine (adrenergic beta-1 agonist), angiotensin converting enzyme inhibitors, amiodarone

Medications at diagnosis (n=90) and types calcium channel blockers (CCBs) at diagnosis.

Circ J 2009; 73: 512 – 515

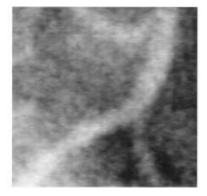

Korean VA, discharge medication

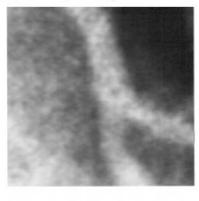

ССВ	256 (100.0)
Diltiazem	251 (98.0)
Dihydropyridine-CCB	168 (65.6)
Verapamil	0 (0)
Nitrate	194 (75.8)
Molsidomine	13 (5.1)
Nicorandil	1 (0.4)
Statin	104 (40.6)
Aspirin	67 (26.7)
ARB/ACEI	75 (29.3)
Beta-blocker	1 (0.4)
Dosing interval	
QD	7 (2.8)
BID	248 (96.9)
TID	1 (0.4)
Stop all medications during follow-up	17 (6.6)

Statin as a vasodilator

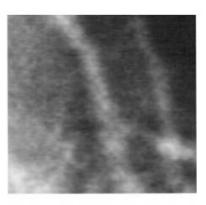
Patient Receiving Placebo

Initial Study

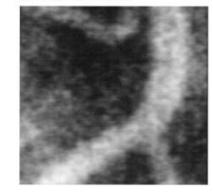



Patient Receiving Lovastatin

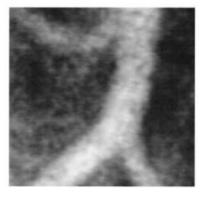
Initial Study



Follow-up Study

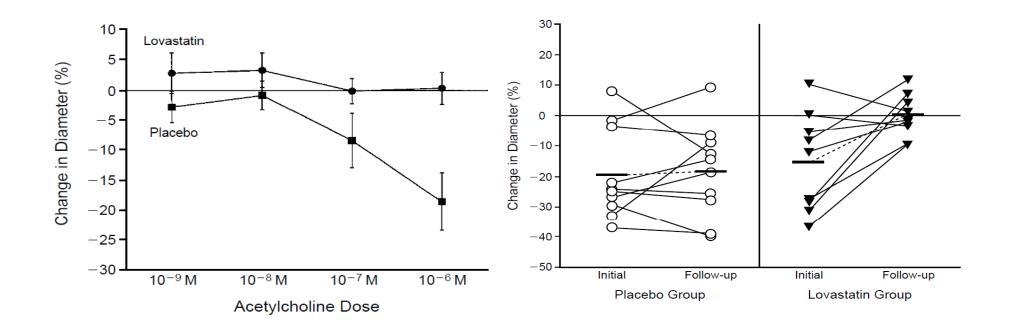


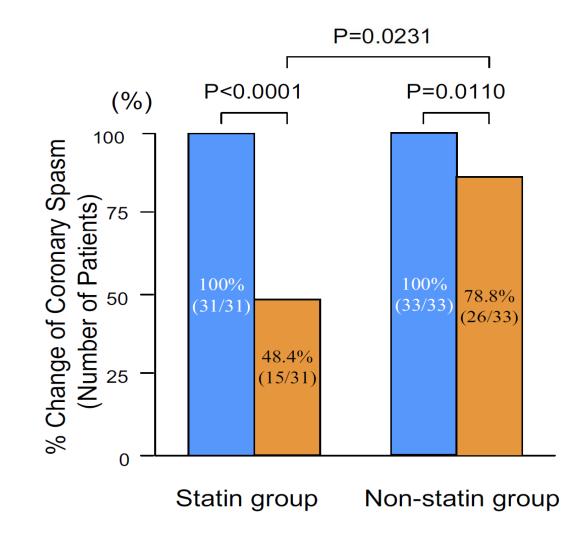
Control



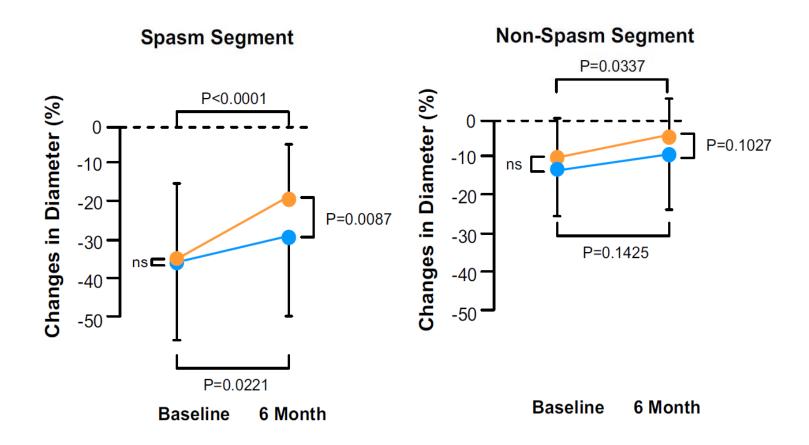
Peak Acetylcholine

Follow-up Study


Control


Peak Acetylcholine

N Engl J Med 1995;332:481-7


Statin in Spasm

Statin Reduce Ach-induced spasm

Coronary Artery Diameter Change to ACh Injection in Statin treatment

Successful Treatment of Refractory Vasospastic Angina With Corticosteroids — Coronary Arterial Hyperreactivity Caused by Local Inflammation? —

Shuichi Takagi, MD; Yoichi Goto, MD; Eiki Hirose, MD; Masahiro Terashima, MD; Satoru Sakuragi, MD; Shoji Suzuki, MD; Yoshiaki Tsutsumi, MD; Shunichi Miyazaki, MD; Hiroshi Nonogi, MD

Background Although vasospastic angina usually responds well to treatment with calcium antagonists and/or nitrates, there have been anecdotal case reports of refractory vasospastic angina resistant to intensive treatment with high doses of calcium antagonists and nitrates.

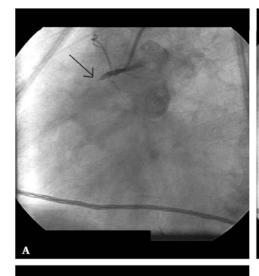
Methods and Results Four patients with vasospastic angina, which was refractory to intensive treatment with high doses of calcium antagonists and nitrates, were completely controlled after administration of corticosteroids. Although none of the 4 patients showed eosinophilia, all had bronchial asthma or chronic thyroiditis, and in 2 cases, the activity of vasospastic angina corresponded with that of bronchial asthma.

Conclusions These findings suggest that in these patients, coronary spasm may have been induced by arterial hyperreactivity because of local inflammation in the coronary arterial wall and that the corticosteroids suppressed the arterial hyperreactivity by alleviating the inflammation. Corticosteroids may be considered as a treatment choice for patients with refractory vasospastic angina, particularly when the patient has an allergic tendency, such as bronchial asthma. (*Circ J* 2004; **68:** 17–22)

Prazosin therapy for refractory variant angina

The selective alpha, blocker prazosin was used to abolish Prinzmetal's variant angina in six patients. All had had an acute transmural myocardial infarction, after which the anginal attacks with transient ST segment elevation developed, and three of them had already suffered from variant angina prior to the infarction. Therapeutic trials with high doses of nifedipine, verapamil, nitrates, beta blockers, and (in one case) phenoxybenzamine were ineffective in all six patients. Prazosin, 8 to 30 mg/day, combined with low-dose nitrates or nifedipine completely abolished the attacks in four patients, markedly reduced their frequency and intensity in one patient, and had to be stopped in the sixth one because of hypotension and dizziness. Except for this last patient, the drug was well tolerated by all the others, and no changes in blood pressure were observed. In four patients discontinuation or reduction of prazosin resulted in exacerbation of symptoms, but its renewal was followed by disappearance of the attacks. Since the mean follow-up period in this study was 4 to 6 months, further evaluation appears necessary concerning the long-term effects of this drug in Prinzmetal's variant angina. (Am HEART J 105:262, 1983.)

Stenting and ICD in VA with aborted SCD



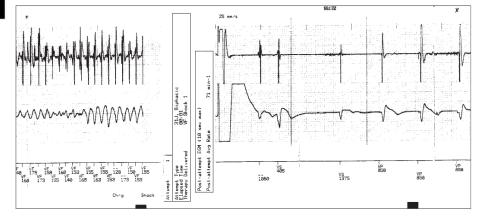


Figure 1. A. Coronary angiogram, showing coronary spasm at the very proximal right coronary artery. B. The coronary angiogram, showing the spasm relieved after intracoronary nitroglycerin infusion.
C. Coronary angiogram, showing the stented segment of proximal right coronary artery.

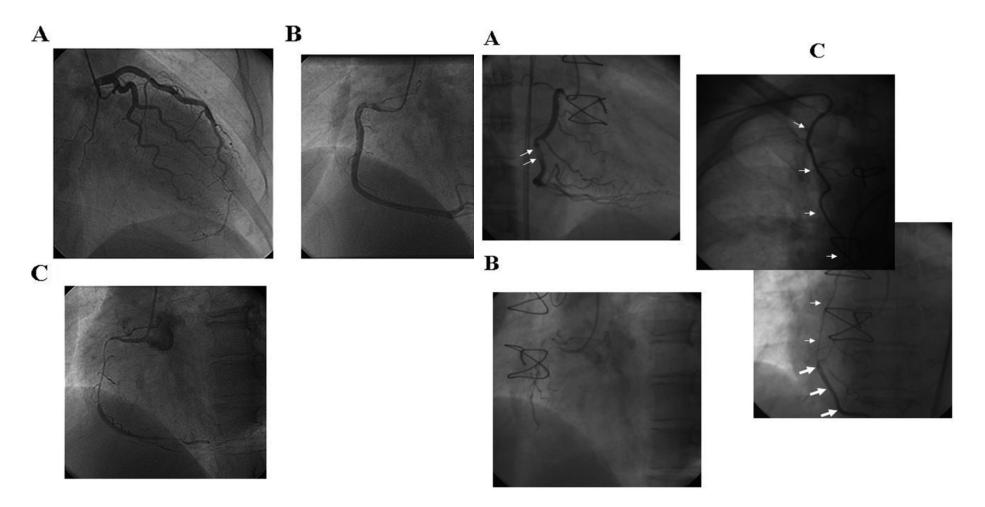


Figure 2. Chest radiograph showing cardioverter defibrillator implanted at the left pectoral region.

Figure 3. Stored electrocardiograph from the automatic implantable cardioverter defibrillator memory showing ventricular fibrillation detection and termination.

Bypass grafting in VA with normal coronary

Cigarette smoking

- coronary endothelium becomes more sensitive to the deleterious effects of cigarette smoking
- Adversely affected nitric oxide mediated regulation of coronary artery tone
- Male > Female ?
- Decrease of incidence due to declining in smoking population ?

Conclusion

- Decreasing disease entity
- Suspicion
- Relation with ACS
- Stop smoking
- Calcium antagonist
- Nitrate
- Stenting, CABG, ICD

Provocation methods, diagnostic criteria in CAG,

→ further study like Korean registry

Thank you