Another issue, old but unsolved

Gene and CAD

한림대학교 강동성심병원 심장 내과 이 준 희

CAD has a strong genetic component

- Coronary artery disease a major cause of death
- CAD multiple risk factor
 - Obesity, DM, smoking, HT, poor diet, aging population
- but lots of patients have no conventional risk factor
- Large portion of risk for CAD is remained Even after managing known risk factors
- 50% of susceptibility of CAD may be genetic.

Predisposition of CAD is inherited

- The extent of coronary occlusion ∝ parental Hx of MI
 Anderson et al. Prev med 1979
- Early onset of CAD \propto greater risk of CAD of relatives
 - In families with CAD onset before 46 yo \rightarrow hereditability 92 100%
 - In families with CAD onset after 46 yo → hereditability 15-30%
 - Rissanen et al. Am J Cardiol. 1979
- Danish twin registry
 - CAD incidence in Monozygotic 44% vs Dizygotic 14%
 - Allen et al. Acta genet stat med. 1967

Genetic basis for CAD

- Premature CAD is genetic
 - MI in 1st degree relatives $<55yo \rightarrow MI$ risk 7.1x
 - Heritability of early-onset CAD 0.56
 - Lloyd-Jones et al. Lancet. 1999
- Family Hx of CAD independent risk factor for CAD
 - Framingham study
 - Family Hx of CAD or stroke or peripheral artery disease
 - X2.4 risk in men, x2.2 risk in women
 - Genet et al. Circulation 1992
 - Interheart study
 - x1.45 risk increase
 - Yusuf et al. Lancet 2004

Risk factors for CAD

- Old age
- Hypertension
- Diabetes mellitus
- Dyslipidemia
 - High cholesterol
 - High LDL-C
 - Low HDL-C
- Smoking
- Obesity
- Familial history of premature CAD

From 2007 ESC/ESH guideline for hypertension

CAD is preventable

- CAD is a preventable disease and its elimination is expected before the end of the 21st century
- Elucidation of genetic modifiers is a prerequisite to genetic screening and comprehensive prevention

Success in Single gene disorders

- A single gene is necessary and sufficient for disease
- Simple Mendelian traits
 - Autosomal dominant, recessive, X-linked, and mitochondrial
- Rare allelic variants with markedly increase disease risk
- Not great impact on public health
- Familial hypertrophic cardiomyopathy
- Marfan's syndrome
- Long QT syndrome

Approach methods

- Single gene disorder
 - DNA from families
 - Pedigrees of 2-3 generation
 - Linkage analysis
 - Linkage disequilibrium
 - 300 DNA markers (10M bps interval)
 - Not suitable for detecting genes contributing minimal risk

CAD → polygenic disorder

Schematic of genetic linkage

Topol et al. JACC 2007

Difficulties in indentifying genes for CAD

- Polygenic disorder
 - Prevalent genes
 - Only a minor effect to the phenotype (5-10% contribution)
 - Low penetrance

Approach methods

- Single gene disorder
 - Linkage analysis
 - Families
 - Pedigree of 2-3 generation
- Polygenic disorder
 - Case-control association study
 - Unrelated individuals
 - To compare SNP frequency
 - Candidate gene approach (direct method)
 - Genome-wide association study (indirect method)

Candidate gene approach

- Hypothesis
 - Proteins known to be involved in the pathogenesis of atherosclerosis carry mutations or variants that affect their function and ultimately the risk of developing CAD
- Success in only limited number of genes

Gene	Risk-allele frequency (%)	Increase in LDL per risk allele (%)	Effect of risk allele on MI risk	P-value for association with MI	Reference
PCSK9	96	+15	OR 1.5	0.0003	24
Αρο Ε	2.8	+14	OR 1.29	0.0001	24
LDLR	11	+6	OR 1.18	0.0001	36
Apo B	33	+5	OR 1.1	0.004	37

Schunkert et al. EHJ 2010

- Reason to failure
 - Restrict a single or few genetic variants with modest impact
 - Small sample size

Gene/polymorphism	Protein encoded	Risk genotype	Patients (number)	Associated with	OR (CI) for ACS	Study
ApoE/ε2, ε3, ε4 alleles	ApoE	ε4 allele	MI (1817)	Lipid metabolism	1.75 (1.19–2.57)	[20]
<i>OLR1/</i> 501G>C	OLR1	GC, CC	MI/controls (102/102)	Lipid metabolism	2.89 (1.51–5.53)	[22]
<i>CETP</i> /TaqIB	CETP	No difference	MI/controls (384/384)	Lipid metabolism	RR = 0.95 (0.54–1.66)	[24]
<i>LPL</i> /Gly188Glu, Asp9Asn, Asn291Ser, Ser447Ter	LPL	Gly 188Glu Ser447Ter (protective)	lschemic heart disease (meta-analysis of 29 studies; 20 903 patients)	Lipid metabolism	4.9 (1.2–20), 0.8 (0.7–1.0)	[23]
<i>eNOS</i> /894G>T, 786T>C, 4a/4b	eNOS	4a4a	ACS/controls (477/537)	Endothelial and vascular function	2.5 (1.1–5.4) for ACS risk, 3.6 (1.2–11.5) for MI risk	[29]
<i>eNOS</i> /894G>T	eNOS	GT,TT	MI/controls (228/519)	Endothelial and vascular function	1.192 (1.131–3.485)	[32]
ACE/I/D	ACE	No difference	MI (4629)	Endothelial and vascular function	1.10 (1.00–1.21)	[33]
<i>AT1R</i> /1166A>C	AT1R	AA/AC in individuals with ACE DD	MI (4629)	Endothelial and vascular function	3.95 with ACE DD genotype	[33]
<i>ATG</i> /rs8007267G>A, rs3783641A>T, rs10483639C>G	GTP- cyclohydrolase I	X haplotype	CAD (347)	Endothelial and vascular function	Not studied	[35]
<i>GPIa</i> /807C>T	GPla	CT,TT	MI <62 yrs old/MI <49 yrs old (1057/223)	Thrombosis and fibrinolysis	0.57 for patients <62 yrs old, 2.61 for patients <49 yrs old	[36]
<i>GPIa</i> /807C>T	GPla	CT,TT	MI/controls (219/389)	Thrombosis and fibrinolysis	2.296	[37]
GPIIb/Ser 843	GPIIb	Ser 843	MI/controls (68/346)	Thrombosis and fibrinolysis	1.85 for women under 42 yrs old	[38]
<i>GPIIIa</i> /PI(A2)/PI(A2), PI(A1)/PI(A2), PI(A1)/PI(A1)	GPIIIa	PI(A2)/PI(A2)	Patients, prospective (9149)	Thrombosis and fibrinolysis	RR = 3.6 for patients with MI <40 yrs old	[39]

Tousoulis et al. Trend in molecul med 2008

<i>Thrombospondin</i> 4/Ala387Pro	Thrombospondin	AlaPro, ProPro	Families (men <45 yrs and/or women <50 yrs old MI) (398)	Thrombosis and fibrinolysis	1.89	[40]
PAI-1/4G/4G Haplotype	PAI-1	4G/5G, 4G/4G	70–79 yrs old, MI (177)	Thrombosis and fibrinolysis	No linkage with MI	[43]
MTHFR/677C>T	MTHFR	Π	CHD/controls (11 162/12 758)	Thrombosis and fibrinolysis	1.16 (1.05–1.28)	[44]
<i>IL-6</i> /572G>C, -598C>T	IL-6	CG	ACS/controls (3027/447)	Inflammation	-572 CG genotype was predictive for increased IL-6 levels in patients with a subsequent cardiovascular event, 2.3 (1.1–4.3)	[46]
LTA	LTA	Thr26Asn in coding region, SNP in intron-1	MI/controls (1133/1006)	Inflammation	1.78	[47]
IL-18/SNP rs2043055	IL-18	IL-18 haplotype	856 MI/2688 controls (856/2688)	Inflammation	0.74 (0.64–0.87)	[48]
PAPP-A	PAPP-A	IVS6+95 C allele	MI/controls (170/170)	Inflammation	2.13 (1.12-4.07)	[49]
RANTES/403G>A	RANTES	AG,AA	CAD/controls (2694/530)	Inflammation	1.36 (1.08–1.75)	[50]
CD40LG/3459A>G	CD40L	AA,GG,AG	ACS (2359)	Inflammation	2.50	[51]
TLR4/Asp299Gly	TLR4	GlyGly, AspGly	ACS/controls (183/216)	Inflammation	0.41 (0.18-0.98)	[52]
MMP-9	MMP-9	CT/RQ	MI/controls (1967/3455)	Inflammation	1.25	[53]

Abbreviations: ACE, angiotensin-converting enzyme; ACS, acute coronary syndromes; ApoE, apolipoprotein E; AT1R, angiotensin II type I receptor; CAD, coronary artery disease; CD40LG, CD40 ligand gene; CETP, cholesterol ester transfer protein; eNOS, endothelial NO synthase; GP, glucoprotein; IL, interleukin; LPL, lipoprotein lipase; LTA, lymphotoxin-A; MI, myocardial infarction; MMP-9, matrix metalloproteinase-9; MTHFR, methylenetetrahydrofolate reductase; OLR1, oxidized LDL receptor 1; PAI-1, plasminogen activator inhibitor 1; PAPP-A, pregnancy-associated plasma protein-A; RANTES, regulated upon activation, normal T-cell expressed and secreted; TLR-4, Toll-like receptor 4.

Tousoulis et al. Trend in molecul med 2008

New strategy is needed

- Genome-wide association study (GWAS)
 Preferred method
 - No prejudice, no presumption, all inclusive
 - SNP as markers
 - 1 SNP per 1000bps (3,000,000 SNPs in a genome)

Principle of GWAS

Schunkert et al. EHJ 2010

Difficulties in indentifying genes for CAD

- Polygenic disorder
 - Prevalent genes but of low penetrance
 - Only a minor effect to the phenotype (5-10% contribution)
- Genome-wide association study

 Hundreds of thousands of markers
 Thousands of unrelated individuals
 => lots of cost, money, effort

What makes GWAS possible?

- Human genome project (2003)
 - sequencing of 3,000,000,000 bps of human genome
 - Cataloging of common SNPs by SNPs consortium
 - Establishment of the relationship btw adjacent SNPs by HapMap Consortium
- DNA chip (before 2000)
 - Can analyze millions of SNPs at a time

SNPs (single nucleotide polymorphisms)

- Human genome = 3,000,000,000 bps
- Variation in human genome is 0.1% \rightarrow most of them are SNPs
- SNP 1 per 1000bps => 3,000,000 SNPs in a genome
- Majority of human variation and susceptibility to disease is due to SNPs
- Each SNP can explain only 5-10% of susceptibility to disease

Genomic markers

Microsatellite 400 SNP 3,000,000 Tag SNP 250,000 ~ 500,000

DNA chip

- Affymetrix Genechip
- microarray
- 250,000 SNP on a chip

Requires one connector pin for each sensor.

그림 2-4. Nanogen의 DNA chip

그림 2-5. Microelectrodes

Electronic addressing/ hybridization

Design of GWAS

- Calculation of sample size
 - To find gene for >30% increase risk
 - To detect alleles with frequency > 5%
 - Size difference >0.2
 - 90% power
 - Initial population 2000 (1000 affected, 1000 control) for 500K marker set with p < 0.001
 - Replication is absolutely essential with an independent large population to rule out false positive
 - Second population 12,000 (8000 affected, 4000 control) for strong association with p< 0.000001

Ottawa heart genomics study Nuck

- Planned in 2004
- Total sample size 14000
- Criteria for premature CAD
 - Male <55yo or female <65yo
 - Absence of DM (untreated HbA1C <6%)
 - LDL <5.0mmol/L</p>
 - BP < 140/90 mmHg
 - CAD confirmed by CAG or CTA
- Criteria for control subject
 - Asymptomatic men >65yo and women >70yo
 - Matched for sex, plasma lipid, HbA1C, BP
 - CTA to exclude coronary atherosclerosis

McPerson et al. Science 2007

Validation

Copenhagen City Heart Study (CCHS) 1,525 cases 9,053 controls

Dallas Heart Study (DHS) 154 cases 527controls Ottawa Heart Study-3 (OHS-3) 647 cases 847 controls

CCHS								
Hazard ratio								
1								
1.26 (1.12–1.42)								
1.38 (1.19–1.60)								
1								
1.16 (1.02–1.31)								
1.29 (1.12–1.50)								
_								

McPerson et al. Science 2007

McPerson et al. Science 2007

9p21 is the 1st genetic risk variant

- 9p21 genetic risk variant is extremely common
- 75% of caucasians have 1-2 risk alleles
 - 50% heterozygotes (15-20% increased risk)
 - 25% homozygotes (30-40% increased risk)
- Confirmed in several independent groups
 - Iceland, British, German, central Europe
 - Korean, Japanese, Chinese
 - African-American : not confirmed
- Risk factor for CAD, AAA, intracranial aneurysm, stroke
- Independent of conventional risk factors (DM, HT, lipid, obesity..)

Genetic loci for CAD/MI

Schunkert et al. EHJ 2010

Genetic loci for CAD/MI

Band	SNP	Risk-allele frequency in Europeans (%)	OR (95% CI)	P-value	Genes	Underlying mechanism	References
1p13.3	rs599839	77	1.13 (1.08–1.19)	1.1×10^{-14}	PSCR1, CELSR2, SORT1, MYBPHL	LDL	11,38
1q41	rs3008621	72	1.10 (1.04–1.17)	1.4×10^{-9}	MIA3	Unknown	11,16,38
2q33	rs6725887	14	1.17 (1.11–1.23)	$1 imes 10^{-8}$	WDR12, ALSC2R13	Unknown	15
3q22.3	rs9818870	15	1.15 (1.11–1.19)	$7.4 imes 10^{-13}$	MRAS	Unknown	15
6p24	rs12526453	65	1.13 (1.08–1.17)	1×10^{-9}	PHACTR1	Unknown	16
6q26-27	rs2048327 rs3127599 rs7767084 rs10755578	18	1.20 (1.13–1.28)	1.2×10^{-9}	SLC22A3, LPAL2, LPA	(Lp(a)	18
9p21.3	rs1333049	52	1.20 (1.16–1.25)	2.8×10^{-21}	MTAP, CDKN2A, CDKN2B, ANRIL	Unknown	11-13,39
10q11	rs501120	84	1.11 (1.05–1.18)	$9.5 imes 10^{-8}$	SDF1	Unknown	11,38
12q24	rs11065987	34	1.14 (1.10–1.19)	$5.2 imes 10^{-11}$	SH2B3	Unknown	17,40
12q24.3	rs2259816	36	1.08 (1.05–1.11)	$4.8 imes 10^{-7}$	HNF1A, C12orf43	Unknown	15
21q22	rs9982601	13	1.19 (1.14–1.27)	6×10^{-11}	SLC5A3, MRPS6, KCNE2	Unknown	16

Presumed new mechanisms of CAD

- 9p21
 - No known protein coding region
 - Increase expression of ANRIL (large antisense noncoding RNA gene), p15, p16, ARF in patients in CAD, stroke, AAA
 - Risk allele (+) → enhancer activity alteration → ANRIL expression → modulating expression of genes controlling cellular proliferation pathway
- 3q22
 - MRAS (muscle RAS oncogene homolog)
 - Suggest a plausible role for MRAS in adhesion signaling

Gene-environment interaction

Summary and conclusion

- Modern genetics open up an entirely new era
- Pathogenesis by genetic RF is largely independent of that by traditional RF
 - New pathogenesis of CAD can be reveals though GWAS
- Genetic RF may require a specific environment to come into effect
 - A better knowledge of these interaction will be vital to gain the greatest benefit from this genetic information
- More comprehensive risk assessment and prevention will be possible in the future