Vascular calcification and osteoporosis after menopause

Eun-Jung Rhee Endocrinology and Metabolism Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine

Life of a women...

Osteoporosis...How the life of women is better and worse...

Osteoporosis Fracture Incidence vs. Incidence of Heart Attack, Stroke, Breast Cancer in Women

* Annual fracture incidence all ages

§Annual estimate new & recurrent MI ages 20+

[†]Annual estimate new & recurrent stroke in women ages 20+

[‡]2005 new cases in situ & invasive breast cancer all ages

Copyright © 2007, NOF

* Burge, et al. JBMR. 2007. 465-75.

Interview American Heart Association. Heart Disease and Stroke Statistics – 2007 Update. 2007.

‡ American Cancer Society. Surveillance Research. 2005.

Bone Loss, Aging & Menopause

Meunier JP et al. *Clin Ther*. 1999;6:1025–1044. **Copyright © 2007, NOF**

Standing Tall For You®

Prevalence of osteoporosis and the odds ratio by different age groups

After adjustment for other risk factors, odds ratio increased exponentially 23 times greater for women 80 years of age and older than for 50-55-year-old women

NHANES III. JBMR 10:796, 1995 Siris ES et al. JAMA 286:2815-22, 2001

Estimated Prevalence of Cardiovascular Diseases by Age and Sex

United States: 1988-94

Source: National Health and Nutrition Examination Survey III (NHANES III), 1988–94, CDC/NCHS and the American Heart Association.

Prevalence of coronary calcification detected with EBCT

Becker et al., Eur Radiol 10:629-635, 2000

Prevalence of coronary calcification measured by MDCT in Korean subjects by gender and age

Unpublished data

The association between low bone mass at the menopause and cardiovascular mortality

Recke et al., Am J Med 106:273-278, 1999

Aortic calcifications are a strong predictor for low bone density and fragility fractures

Schulz et al., J Clin Endocrinol Metab 89:4246-4253, 2004

Pathophysiology of vascular calcification

Types of vascular calcification

Atherosclerotic calcification Medial artery calcification Cardiac valve calcification Calciphylaxis

Johnson et al., Circ Res 99:1044-59, 2006

The role of bone cells in bone remodeling

Bone Resorption = Bone Formation

Bone Resorption > Bone Formation

Imai Y et al. Mol Endocrinol, 2010

Bone formation in human arteries

Doherty et al., Endocr Rev 25:629-672, 2004

Existence of a subpopulation of SMCs in the vascular wall - "calcifying vascular cells"

ALP stain

Unifying hypothesis of arterial calcification and osteoporosis

Hofbauer et al., Osteoporos Int 18:251-259, 2007

The Klotho-The Fates..

- The Three fates decided a man's destiny. They assigned a man to good or evil.
- Klotho spun the thread of life, Lachesis measured the thread of life, and Atropos cut the thread.
- They were very dreaded sisters who the even the gods obeyed. They were the most powerful of the minor gods.
- The Three Fates knew the past and future and even Zeus had no power to change their decision. They were the daughters of Themis, who was the goddess of necessity.

Klotho and bone metabolism

Yamashita et al., J Endorinol 1998;159:1-8 Kawaguchi et al., JCI 199;104:229 Kawano et al., JBMR 2003;17:1744

KLOTHO gene and coronary artery disease

Table 2

Genotype frequencies of the klotho gene G–395A polymorphism in the control, atherosclerotic coronary artery disease (CAD) and vasospastic angina (VSA) groups

	Control, n (%)	CAD, <i>n</i> (%)	VSA, n (%)
GG	268 (81.0)	138 (70.1)	59 (76.6)
AG	62 (18.7)	59 (29.9)	18 (23.4)
AA	1 (0.3)	0 (0.0)	0 (0.0)
AG+AA	63 (19.0)	59 (29.9)	18 (23.4)

Imamura et al., Clin Chim Acta 371:66-70, 2006 Arking et al., Am J hum Genet 72:1154-1161, 2003

The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease in Koreans

Association of KLOTH	IO genotypes	with CAD				
	Promote (n =	Ех	xon 4 ((n =	C1818T 273)	,	
	GG (n = 203)	GA + AA $(n = 71)$	CC (n =	188)	CT + (n =	TT 85)
Without coronary artery stenosis (%)	87 (42.9)	32 (45.1)	74 (39.4)	45 (52	2.9)
With coronary artery stenosis (%)	116 (57.1)	39 (54.9)	114 (60.6)	40 (4'	7.1)
Р	.7	46		.03	36	

All percentages are calculated within the same genotype groups, χ^2 Test was used to compare the frequencies of CAD according to different genotypes.

Table 5									
Association	of KLOTHO	genotypes	with	CAD	according	to	different	age	groups

Table 4

0 71	e	001			
	Promote	er G395A (n = 131)	Exon 4 C1818T (n = 130)		
Subjects aged <60 years	GG (n = 99)	GA + AA (n = 32)	CC (n = 92)	CT + TT (n = 39)	
Without coronary artery stenosis (%)	57 (57.6)	14 (43.8)	44 (47.8)	27 (69.2)	
With coronary artery stenosis (%)	42 (42.4)	18 (56.3)	48 (52.2)	12 30.8)	
Р		.172		.025	
	Prome	oter G395A (143)	Exon 4 C	1818T (n = 142)	
Subjects aged ≥ 60 years	GG (n = 104)	GA + AA (n = 39)	CC (n = 96)	CT + TT (n = 46)	
Without coronary artery stenosis (%)	30 (28.8)	18 (46.2)	30 (31.3)	18 (39.1)	
With coronary artery stenosis (%)	74 (71.2)	2 (53.8)	66 (68.8)	28 (60.9)	
P		.041		.353	

All percentages are calculated within the same genotype groups. χ^2 Test was used to compare the frequencies of CAD according to different genotypes.

Rhee EJ et al., Metabolism 55:1344-1351,

Osteoprotegerin/RANKL

- Decoy receptor of RANKL
- Independently isolated by two laboratories
- Secretory basic glycoprotein that exist in a 60-kd monomeric form and a disulfide-linked homodimeric form of 120 kd.
- Lack of transmembrance domain <u>soluble</u>
 <u>receptor</u>
- Composed of 401 amino acid residues

Boyle et Simonet, Nature, 2003

Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification

Bucay et al., Genes dev 12:1260-1268, 1998

Relationship of four OPG polymorphisms in the promoter region with aortic calcification or CAD in Korean subjects

OPG site	Genotype	Calcification (-)	%	Calcification (+)	%	P-value	Age-adjusted P-value
A163G	AA	170	79-4	26	72.2	0.108	0.413
	AG + GG	44	20.6	10	27.8		
G209A	GG	174	81.3	25	71.4	0.028	0.201
	GA + AA	40	18.7	10	28.6		
T245G	GG	168	79.6	26	74.3	0.225	0.623
	GA + AA	43	20.4	9	25.7		
T950C	TT	73	34.6	9	24.3	0.016	0.178
	TC + CC	138	65.4	28	75.7		
G209A-T950C	No minor allele	73	65.8	8	44-4	< 0.001	0.127
	All minor alleles	38	34.2	10	55.6		

Table 5. Association of the genotypic frequencies of the four osteoprotegerin (OPG) polymorphisms with aortic calcification

The frequencies were compared with the χ^2 -test.

Age corrections were performed using binary logistic regression analysis.

No minor allele denotes women without the allele and all minor allele denotes those with all minor alleles.

Rhee EJ et al., Clin Endocrinol 64:689-697, 2006

The association of the genotypic frequencies of the two RANKL polymorphisms according to the presence of aortic calcification

	rs22	277438	rs9	594782	
Genotype	AA (<i>n</i> =109)	AG+GG (<i>n</i> =128)	TT (<i>n</i> =210)	CT+CC (<i>n</i> =27)	
Calcification (-)	92	112	186	18	
Calcification (+)	17	16	24	9	
Odds ratio	0.773 (95%	CI, 0.37-1.61)	3.875 (95% CI, 1.57-9.59)*		
<i>p</i> -value	0.573		0.005		
Adjusted <i>p</i> -value			(0.001	

The frequencies were compared with chi-square test.

Corrections were performed using binary logistic regression analysis.

*This significance was persisted after adjustment for age, BMI, blood pressure, fasting plasma glucose, HDL cholesterol, LDL cholesterol

Does vascular calcification increase after menopause?

The impact of menopause on CAC

Table 4	The percentage of fourth quartile CAC* s	scores (>75%) and mean CAC scores in different age categori	es
according	g to gender		

Age group (years)	roup N		CAC score mean (SD)	CAC score mean (SD)		Fourth quartile CAC score (%)	
	Males	Females	Males	Females	Males	Females	
40-49	140	80	57.9 (143.9)	12.8 (17.6)	25.0	5.0	
50-59	138	52	53.1 (98.0)	51.5 (115.7)	31.2	21.2	
60-70	50	19	76.3 (105.1)	110.1 (226.2)	42.0	42.2	
P value			0.51	0.001	0.08	<0.001	

Table 5 Multiple logistic regression analyses for gender, age groups, hypertension, obesity, diabetes, hypercholesterolemia, and hypertriglyceridemia of fourth quartile CAC scores (>75%)

Variables	Odds ratios (95% confidence interval)						
	Males Females		All				
Gender Female Male			Ref 1.7 (0.9–2.9)				
Age group (years) 40–49 50–59 60–70 P value for trend	Ref 1.4 (0.8–2.4) 2.5 (1.2–5.1) 0.026	Ref 4.3 (1.1–15.9) 13.4 (2.8–64.5) <0.001	Ref 1.6 (1.0–2.6) 3.1 (1.7–6.0) <0.001				
Obesity; body mass index (kg/m ²) $<\!\!27 \\ \geq \!\!27$	Ref 1.4 (0.8–2.4)	Ref 0.9 (0.2-4.1)	Ref 1.3 (0.8–2.1)				
Hypertension (mmHg) $<140/90$ $\ge140/90$	Ref 2.3 (1.4–3.9)	Ref 1.5 (0.5–4.8)	Ref 2.2 (1.4–3.5)				
Hyperglycemia (mg/dL) <126 ≥126	Ref 0.8 (0.3–1.6)	Ref 1.1 (1.7–48.1)	Ref 1.1 (0.6–2.2)				
$\begin{array}{l} \text{Hypercholesterolemia (mg/dL)} \\ < 200 \\ \geq 200 \end{array}$	Ref 1.7 (1.0–2.9)	Ref 0.6 (0.2–1.8)	Ref 1.5 (0.9–2.3)				
Hypertriglyceridemia (mg/dL) <150 ≥150	Ref 1.9 (1.1–3.3)	Ref 0.6 (0.1–3.7)	Ref 1.8 (1.1–2.9)				

Hsu CH et al. NMCD 18:306-313, 2008

The proportion of calcification according to menopausal status in perimenopausal Korean women

In 237 perimenopausal Korean women

Rhee EJ. Unpublished data

Coronary calcification and osteoporosis after menopause

vBMD and vascular calcification in middle-aged women: The Study of Women's Health Across the Nation

490 caucasian women aged 45-58 years, with 64% white

	AC level				CAC level	
	No AC (0)	Moderate AC (1–74)	$\begin{array}{c} High \ AC\\ (\geq 75) \end{array}$	No CAC (0)	Moderate CAC (1–7.54)	<i>High CAC</i> (≥7.55)
vBMD (unadjusted)	1.00	1.05 (0.86, 1.30)	1.73 [‡] (1.33, 2.25)	1.00	0.94 (0.75, 1.17)	1.35 [§] (1.08, 1.70)
	146	221	123	256	111	123
vBMD (adjusted for age)	1.00	0.98 (0.78, 1.22)	1.54 [§] (1.17, 2.03)	1.00	0.88 (0.70, 1.10)	1.19 (0.94, 1.51)
	146	221	123	256	111	123
vBMD (adjusted for age	1.00	1.33 (0.93, 1.90)	1.68 [¶] (1.06, 2.68)	1.00	1.09 (0.77, 1.53)	1.19 (0.81, 1.74)
+ shared risk factors) [†]	109	171	84	211	91	98

 TABLE 3. RESULTS OF THE MULTINOMIAL LOGISTIC REGRESSION MODELS FOR AC AND CAC. UNADJUSTED, AGE-ADJUSTED, AND RISK FACTOR-ADJUSTED ORS (95% CI) PER 1 SD* DECREASE IN VBMD

Farhat GN et al. JBMR 21:1839-1846, 2006

Low BMD is associated with higher CAC and coronary plaque burden in pre- and postmenopausal women

467 women with 160 premenopausal women, 179 postmenopausal Korean women

(a) Pre-menopause

Table 2. Correlations between coronary calcium score (CCS) and various parameters

Variable	Correla	ation coeff	ficient		4 ₁
	Male	Female	Premenopause	Postmenopause	3- 1+
BMD					SOO) 8
Total hip	-0.03	-0.27**	-0.13*	-0.36**	°
Femur neck	-0.09	-0.26**	-0.18*	-0.35**	
Trochanter	0.03	-0.23**	-0.16*	-0.33**	0.0
L-spine 1–4	0.02	-0.19**	-0.10*	-0.20**	
Age	0.29*	0.30**	0.02	0.37**	(b) Po
BMI	0.04	0.04	0.03	0.03	(
SBP	0.02	0.12	0.10	0.09	
DBP	0.13	0.02	0.08	0.05	41
FBS	0.21	0.02	0.02	0.01	3-
HbA1c	0.15	0.08	0.06	0.09	5 2-
TC	0.06	0.02	0.01	0.03	0 1-
LDL-C	0.09	0.09	0.01	0.02	e -
HDL-C	0.02	-0.01	-0.06	-0.04	°]
TG	0.02	0.02	0.06	0.04	-1 +
Smoking	0.02	0.03	0.02	0.04	
Years since menopause				0.22*	

Choi SH et al. Clin Endocrinol 71:644-651, 2009

Coronary calcification and osteoporosis in postmenopausal women are independent process associated with aging

In 313 postmenopausal women and 167 men

Table 4. Correlations among age, CC scores, and BMD determined for men and women separately: values of correlation coefficients and partial coefficients of correlation are shown

Variable 1	Variable 2	Control variable	Women	Men
Age Age BMD	BMD spine CC score CC score	None None None	-0.62^{*} 0.33^{*} -0.23^{*}	-0.42^{*} 0.35^{*} -0.13
BMD	CC score	Age	-0.04	0.02

^a $P \le 0.001$ by Pearson's correlation

Sinnott B et al. Calcif Tissue Int 78:195-202, 2006

Premature menopause and vascular calcification

The effects of early menopause vs. usual menopause on CVD risk

Atsma F et al. Menopause 13:265-279, 2006

Oophorectomy, HRT and coronary calcification

	ondi y carctain		
	CAC score > 0	CAC score = 0	
Variable	(n = 499)	(n = 565)	P^{a}
Age at WHI enrollment, v^b	55.6 (2.8)	54.8 (2.9)	< 0.01
Age at CAC scan, v^b	65.3 (2.8)	64.4 (2.9)	< 0.01
Ethnicity ^c	(110)		0.24
White	377 (75.6)	422 (74.7)	
Black	73 (14.6)	104 (18.4)	
Hispanic	33 (6.6)	32 (5.7)	
American Indian	8 (1.6)	1 (0.2)	
Asian/Pacific Islander	2(0.4)	1(0.2)	
Unknown	6 (1.2)	5 (1.0)	
Body mass index $(kg/m^2)^b$	31.5 (6.0)	29.8 (6.1)	< 0.01
Waist circumference $(cm)^b$	94.9 (14.0)	88.8 (13.9)	< 0.01
Waist-to-hip ratio ^b	0.84(0.1)	0.80 (0.01)	< 0.01
Cigarette smoking, pack-years ^b	13.6 (19.9)	7.1 (14.4)	< 0.01
Physical activity, $METs^{b}$	9.0 (12.2)	11.0 (13.8)	0.06
Education ^c			< 0.01
0-8 v	6 (1.2)	10(1.8)	
Some high school	22 (4.5)	12(2.1)	
High school diploma/GED	124 (25.1)	99 (17.7)	
School after high school	219 (44.3)	247 (44.1)	
College degree or higher	123 (24.9)	192 (34.3)	
Smoking status ^c			< 0.01
Never smoked	212 (42.6)	303 (54.0)	
Past smoker	200 (40.2)	216 (38.5)	
Current smoker	85 (17.1)	42 (7.5)	
Hypertension ^c	218 (48.3)	176 (33.9)	< 0.01
High cholesterol ^c	62 (14.8)	36 (7.3)	< 0.01
Diabetes mellitus ^c	35 (7.0)	18 (3.2)	0.01
Oophorectomy ^c			0.15
None	195 (39.3)	264 (47.1)	
Part of an ovary removed	10(2.0)	8 (1.4)	
One ovary removed	85 (17.1)	73 (13.0)	
Both ovaries removed	184 (37.1)	194 (34.6)	
Do not know	13 (2.6)	11 (2.0)	
Years since bilateral	14.1 (7.3)	12.8 (7.0)	0.26
oophorectomy ^b			
Years since hysterectomy b	16.2 (6.9)	15.5 (6.8)	0.57
Reported previous HT use ^c			0.88
Never used	236 (47.3)	267 (47.3)	
Past user	161 (32.3)	173 (30.6)	
Current user	102 (20.4)	125 (22.1)	
Duration of previous HT use, v^b	3.0 (5.0)	3.2 (5.2)	0.40
Years of no HT after	13.3 (7.9)	12.5 (7.9)	0.39
hysterectomy ^b	()		

TABLE 1. Cohort characteristics by the presence and absence of coronary calcium

Women's Health Initiative Coronary Artery Calcium Study

Menopause 15:639-647, 2008

The relationship of estrogen with vascular calcification and osteoporosis

Common mechanisms in the pathogenesis of osteoporosis and vascular disease

- Age-related mechanisms
- Chronic inflammation (e.g. in rheumatoid arthritis)
- Cigarette smoking
- Diabetes Mellitus
- Estrogen deficiency
- Hypovitaminosis C,D, and K
- Oxidized lipids and free radicals
- Renal failure

Schematic outline of estrogen regulated pathways in the bone mass control

Imai Y et al. Mol Cell Endocrinol 310 (2009) 3–10

ERa, β are expressed on coronary artery of preand postmenopausal women

ERα

ERβ

Rose CC et al. JCEM 91:2713-2720, 2006

ERB expression was correlated with calcification and ERa expression was correlated with age in pre- and postmenopausal women

Rose CC et al. JCEM 91:2713-2720, 2006

Serum OPG level is higher in postmenopausal women compared with premenopausal women

Table III Comparisons of mean BMD, bone turnover markers, and serum OPG levels between groups differentiated by the presence of the T allele in premenopausal and postmenopausal women

	Premenopausal (n = 138)			Postmenopausal (n = 125)		
	All (n = 138)	CC (n = 83)	CT + TT (n = 55)	All (n = 125)	CC (n = 88)	CT + TT (n = 37)
Age (y)* BMI (kg/m ²)	$49.07 \pm 6.75 \\ 24.13 \pm 2.91 \\ 34.13 \pm 2.91 \\ 34.1$	49.23 ± 6.22 24 20 \pm 2 80	48.84 ± 7.54	54.18 ± 5.85	54.63 ± 5.71 26.15 ± 3.17	53.14 ± 6.12 24.06 \pm 2.62
OPG $(pg/mL)^{\dagger}$	1258.56 ± 398.57	1307.56 ± 393.12	1184.61 ± 398.85	1365.61 ± 375.54	$1411.46 \pm 399.38^{\ddagger}$	$1256.56 \pm 287.98^{\ddagger}$
Ca (mmol/L)* P (mmol/L)* DPD (nmol/L per mol/L)*	$\begin{array}{c} 2.23 \pm 0.08 \\ 1.16 \pm 0.14 \\ 6.44 \pm 1.77 \end{array}$	$\begin{array}{r} 2.22 \pm 0.08 \\ 1.15 \pm 0.14 \\ 6.37 \pm 1.79 \end{array}$	$\begin{array}{r} 2.23 \pm 0.09 \\ 1.17 \pm 0.14 \\ 6.55 \pm 1.74 \end{array}$	$\begin{array}{r} 2.28 \pm 0.08 \\ 1.29 \pm 0.14 \\ 7.86 \pm 2.14 \end{array}$	$\begin{array}{c} 2.27 \pm 0.08 \\ 1.28 \pm 0.14 \\ 7.65 \pm 2.16 \end{array}$	$\begin{array}{c} 2.29 \pm 0.08 \\ 1.30 \pm 0.14 \\ 8.37 \pm 2.01 \end{array}$
Uca (mmol/L/d)* Up (mg/d)* Lumbar spine BMD (q/cm ²)*	$\begin{array}{r} 4.53 \pm 2.43 \\ 513.56 \pm 173.55 \\ 1.02 \pm 0.16 \end{array}$	$\begin{array}{r} 4.43 \pm 2.24 \\ 504.16 \pm 162.42 \\ 1.03 \pm 0.17 \end{array}$	$\begin{array}{r} 4.69 \pm 2.73 \\ 528.38 \pm 190.96 \\ 1.00 \pm 0.15 \end{array}$	$\begin{array}{r} 4.64 \ \pm \ 2.92 \\ 444.81 \ \pm \ 189.05 \\ 0.90 \ \pm \ 0.15 \end{array}$	$\begin{array}{r} 4.70 \pm 3.15 \\ 442.73 \pm 206.03 \\ 0.90 \pm 0.15 \end{array}$	$\begin{array}{r} 4.48 \pm 2.32 \\ 449.91 \pm 141.59 \\ 0.91 \pm 0.14 \end{array}$
Lumbar spine T-score*	-0.89 ± 1.45	-0.80 ± 1.52	-1.03 ± 1.34	-1.95 ± 1.36	-1.99 ± 1.39	-1.84 ± 1.30
Femoral neck BMD (g/cm ²)*	0.83 ± 0.12	0.83 ± 0.11	$0.82~\pm~0.13$	0.77 \pm 0.12	0.77 ± 0.12	0.78 ± 0.11
Femoral neck T-score*	-1.04 ± 0.86	-1.02 ± 0.80	-1.08 ± 0.94	-1.39 ± 0.83	-1.42 ± 0.85	-1.33 ± 0.79

Values are presented as means \pm SD.

* P < .01 for comparison between premenopausal and postmenopausal groups as a whole.

[†] P = .026 for comparison between premenopausal and postmenopausal groups.

 $^{\ddagger} P < .05$ for comparison between CC and CT + TT genotype groups before and after adjustment for age and FSH with ANCOVA test.

Rhee EJ et al. Am J OBGY 192:1087-93, 2005

Ovariectomy increases vascular calcification via OPG/RANKL cytokine signalling pathway

Table 3 Quantitative analysis of vessel calcification by μ CT and osteoprotegerin (OPG) and receptor activator of nuclear factor κ B ligand (RANKL) expression by Western blot analysis

	Mineral density (mg cm ⁻³)	Particle density (particles cm ⁻³)	Calcific arc angle	OPG/RANKL (Arbitrary unit ratio)
ονχ	8·4 ± 2·8*	94 ± 26*	33 ± 7°	1·81 ± 1·06*
SHAM	1·9 ± 0·6	33 ± 7	$33 \pm 5^{\circ}$	1.09 ± 0.81

Choi BG et al. Eur J Clin Invest 38:211-217, 2008

The role of OPG/RANKL on association of bone and CAC

TABLE 1. Mean RANKL and OPG among postmenopausal estrogen-using women with and without coronary artery calcification

	CACS				
	Mear	1 ± SE			
	≤10	< 10	P value		
RANKL	n = 52	n = 40			
Crude	1.15 ± 1.21	1.32 ± 1.25	0.643		
Multiply adjusted ^a	0.79 ± 1.42	1.21 ± 1.37	0.225		
OPG	n = 50	n = 37			
Crude	102.9 ± 1.07	126.8 ± 1.08	0.033		
Multiply adjusted ^a	99.8 ± 1.12	107.2 ± 1.10	0.508		

TABLE 2. Association of BMD at each skeletal site with CACS (\leq 10 vs. <10) before and after adjustment for RANKL and OPG

	Women, current estrogen users (n = 92)		
	OR (95% CI)	P value	
Total hip			
Age-adjusted	0.62 (0.36-1.05)	0.075	
Multiply adjusted ^a	0.52 (0.29-0.93)	0.029	
Multiply adjusted ^a + RANKL	0.49 (0.27-0.90)	0.022	
Multiply adjusted ^a + OPG	0.51 (0.78-0.95)	0.035	
Multiply adjusted ^a + RANKL + OPG	0.49 (0.26-0.91)	0.025	
Femoral neck			
Age-adjusted	0.68 (0.42-1.12)	0.128	
Multiply adjusted ^a	0.61 (0.36-1.03)	0.064	
Multiply adjusted ^a + RANKL	0.59 (0.34-1.01)	0.055	
Multiply adjusted ^a + OPG	0.58 (0.34-1.01)	0.056	
Multiply adjusted ^a + RANKL + OPG	0.56 (0.32-0.98)	0.042	
Lumbar spine			
Age-adjusted	0.60 (0.35-1.05)	0.072	
Multiply adjusted ^a	0.55 (0.31-1.00)	0.050	
Multiply adjusted ^a + RANKL	0 51 (0 28-0 93)	0.029	
Multiply adjusted ^a + OPG	0.59 (0.32-1.09)	0.090	
Multiply adjusted ^a + RANKL + OPG	0.54 (0.29–1.00)	0.050	

Hormone replacement therapy and vascular calcification

Estrogen therapy and coronary artery calcification-WHI-CACS

Table 3. Coronary-Artery Calcium Scores after Trial Completion, According to Score Category.*						
Coronary-Artery Calcium Score	Conjugated Equine Estrogens	Placebo	Odds Ratio	95% CI)	Multivariate P Value	
			Unadjusted	Multivariate		
	no.	(%)				
Intention-to-treat analyses†	N = 537	N = 527			1	
0 (referent)	299 (55.7)	266 (50.5)	1.00	1.00		
>0	238 (44.3)	261 (49.5)	0.81 (0.64–1.03)	0.78 (0.58–1.04)	0.09	
<10 (referent)	348 (64.8)	302 (57.3)	1.00	1.00		
≥10	189 (35.2)	225 (42.7)	0.73 (0.57–0.93)	0.74 (0.55–0.99)	0.04	
<100 (referent)	448 (83.4)	408 (77.4)	1.00	1.00		
≥100	89 (16.6)	119 (22.6)	0.68 (0.50–0.93)	0.69 (0.48–0.98)	0.04	
Analyses restricted to parti- cipants with ≥80% ad- herence to study medi-						
cation;	N = 387	N = 352				
0 (referent)	227 (58.7)	172 (48.9)	1.00	1.00		
>0	160 (41.3)	180 (51.1)	0.67 (0.50–0.90)	0.64 (0.46–0.91)	0.01	
<10 (referent)	262 (67.7)	191 (54.3)	1.00	1.00		
≥10	125 (32.3)	161 (45.7)	0.57 (0.42–0.76)	0.55 (0.39–0.79)	<0.001	
<100 (referent)	333 (86.0)	269 (76.4)	1.00	1.00		
≥100	54 (14.0)	83 (23.6)	0.53 (0.36–0.77)	0.46 (0.29–0.73)	0.001	

Manson JE et al. NEJM 356:2591-602, 2007

HRT and CAC in asymp. Postmenopausal women: the Rancho Bernardo Study

FIG. 2. Age-adjusted proportions of women with CACS (coronary artery calcification score) >100 by duration of HT use among 127 asymptomatic postmenopausal women. *P < 0.01 vs 10-15 y and >15 y.

Barrett-Connor E et al. Menopause 12:40-48, 2005

Lasofoxifene in postmenopausal women with osteoporosis - PEARL Study

Cummings SR et al. NEJM 362:686-696, 2010

Lasofoxifene in postmenopausal women with osteoporosis -PEARL Study

The cumulative incidence of estrogen-receptor (ER)-positive breast cancer (Panel A), major coronary heart disease (Panel B), stroke (not including transient ischemic attacks) (Panel C), and venous thromboembolic events (Panel D) is shown.

Cummings SR et al. NEJM 362:686-696, 2010

What should we do?

- Atherosclerosis and osteoporosis:
- → applying one treatment and treating two diseases?

Relationship between premenopausal dietary intake and postmenopausal subclinical atherosclerosis

	Coronary calcification	n(N=357)	Aortic calcification ((N=346)	Carotid plaque index $(N=382)$	
	Unadjusted RR (95% CI)	Adjusted RR (95% CI) ^a	Unadjusted RR (95% CI)	Adjusted RR (95% CI) ^a	Unadjusted RR (95% CI)	Adjusted RR (95% CI) ^a
Calories (F Q 1 Q 2	ccal) 1 1.45 (0.80, 2.64)	1 1.89 (0.95, 3.74)	1 0.90 (0.45, 1.78)	1 0.98 (0.44, 2.18)	1 0.90 (0.51, 1.59)	1 1.11 (0.58, 2.12)
Q 3 Q 4	1.86 (1.02, 3.37) 1.99 (1.09, 3.62)	1.90 (0.96, 3.75) 2.47 (1.25, 4.88)	0.80 (0.41, 1.58) 1.41 (0.68, 2.94)	0.64 (0.29, 1.41) 1.58 (0.68, 3.66)	0.94 (0.53, 1.66) 1.29 (0.73, 2.29)	0.87 (0.45, 1.66) 1.92 (0.99, 3.73)
Protein %	energy					
Q^{T}	1	1 1 15 (0 59 2 23)	1	1	1 = 0.56 (0.32, 1.00)	1 0.52(0.28, 1.01)
Q^2	1.02 (0.57, 1.84)	1.13(0.59, 2.23) 1.33(0.68, 2.62)	1.36 (0.70, 2.67)	1.78 (0.82, 3.80)	0.50(0.32, 1.00) 0.61(0.34, 1.09)	0.52(0.28, 1.01) 0.58(0.30, 1.11)
Q 4	1.20 (0.67, 2.16)	2.20 (1.07, 4.53)	1.53 (0.77, 3.04)	2.25 (0.98, 5.18)	0.68 (0.38, 1.21)	0.74 (0.37, 1.50)
Carbohydr	rate % energy					
QI	1	1	1	I 1 10 (0 40, 2.51)	I 0.50 (0.22, 1.05)	I 0.50 (0.20, 1.15)
Q^2	0.48(0.20, 0.88) 0.47(0.26, 0.86)	0.47 (0.24, 0.92) 0.44 (0.22, 0.88)	1.02(0.49, 2.09) 0.63(0.32, 1.25)	1.10(0.49, 2.31) 0.60(0.27, 1.34)	0.39(0.35, 1.03) 0.79(0.45, 1.40)	0.39(0.30, 1.13) 0.98(0.50, 1.02)
Q 3 Q 4	0.35 (0.19, 0.64)	0.37 (0.18, 0.74)	0.94 (0.46, 1.91)	1.20 (0.52, 2.79)	0.84 (0.48, 1.50)	1.08 (0.55, 2.15)
Fat % ener	rgy		-			
Q 1	1	1	1	1	1	1
Q 2	0.96 (0.53, 1.73)	0.90 (0.46, 1.74)	0.79 (0.39, 1.59)	0.72 (0.33, 1.57)	0.62 (0.35, 1.09)	0.63 (0.33, 1.20)
Q 3	1.17 (0.65, 2.11)	0.99 (0.51, 1.92)	0.67 (0.34, 1.32)	0.44 (0.20, 0.97)	1.06 (0.60, 1.89)	0.95 (0.50, 1.82)
Q 4	1.57 (0.87, 2.84)	1.24 (0.63, 2.45)	1.15 (0.55, 2.40)	0.78 (0.33, 1.87)	0.71 (0.40, 1.26)	0.47 (0.24, 0.93)
Saturated 1	tat % energy	1	1	1	1	1
\tilde{O}_2	1.82 (1.00, 3.30)	1.74 (0.89, 3.40)	1.15 (0.57, 2.31)	1.05 (0.48, 2.29)	0.94 (0.53, 1.66)	0.97 (0.51, 1.85)
03	1.49 (0.82, 2.70)	1.32 (0.68, 2.59)	0.76 (0.39, 1.48)	0.61 (0.29, 1.29)	0.79 (0.45, 1.40)	0.75 (0.39, 1.43)
Q 4	1.99 (1.09, 3.62)	1.70 (0.87, 3.32)	1.50 (0.73, 3.11)	1.27 (0.57, 2.86)	1.04 (0.59, 1.85)	0.86 (0.45, 1.65)
Cholestero	ol (mg/1000 kcal)					
Q 1	1	1	1	1	1	1
Q 2	1.67 (0.91, 3.04)	1.69(0.86, 3.31)	1.08 (0.55, 2.13)	0.92 (0.43, 1.97)	1.06 (0.60, 1.88)	1.25 (0.66, 2.38)
04	2.23 (1.22, 4.06)	2.53(1.27, 5.04) 1 73 (0.87, 3.42)	1.15(0.58, 2.28) 1.29(0.64, 2.59)	1.20(0.55, 2.65)	1.02 (0.58, 1.80) 1.00 (0.57, 1.77)	0.94 (0.49, 1.82) 0.99 (0.52, 1.88)
Keys score	,b	1.75 (0.07, 5.42)	1.29 (0.04, 2.39)	1.20 (0.00, 2.00)	1.00 (0.07, 1.77)	0.09 (0.02, 1.00)
01	- 1	1	1	1	1	1
02	1.21 (0.66, 2.20)	1.16 (0.59, 2.28)	1.08 (0.55, 2.11)	1.03 (0.48, 2.19)	0.70 (0.40, 1.24)	0.78 (0.41, 1.47)
Q 3	2.12 (1.16, 3.84)	2.21 (1.12, 4.34)	1.02 (0.52, 1.98)	0.75 (0.35, 1.61)	0.90 (0.51, 1.59)	0.80 (0.42, 1.53)
Q 4	1.73 (0.95, 3.14)	1.65 (0.84, 3.24)	1.99 (0.95, 4.18)	2.05 (0.89, 4.72)	1.04 (0.59, 1.85)	0.94 (0.49, 1.81)
Fiber (g/10	000 kcal)					
Q 1	1	1	1	1	1	1
Q 2	0.58 (0.32, 1.05)	0.53 (0.27, 1.05)	0.80 (0.40, 1.58)	0.73 (0.33, 1.59)	0.90 (0.51, 1.59)	1.04 (0.54, 2.00)
Q 3	0.54 (0.30, 0.98)	0.58 (0.30, 1.13)	0.80 (0.40, 1.58)	0.89 (0.41, 1.94)	1.21 (0.68, 2.13)	1.92 (0.99, 3.68)
Q 4	0.44 (0.24, 0.80)	0.49 (0.24, 0.98)	1.23 (0.59, 2.55)	2.00 (0.84, 4.75)	1.18 (0.67, 2.10)	1.71 (0.86, 3.40)

The relative risks of subclinical atherosclerosis by quartiles of baseline macronutrients intake, keys score, and fiber intake for 401 HWS participants

Park HA et al. Atherosclerosis 186:420-427, 2006

Stimulation of bone formation in vitro and in rodents by statins

Table. Frequency of Reported Fractures in the Scandinavian Simvastatin Survival Study

	Placebo	o Group	Simvastatin Group		
Type of Fracture	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Patients Aged ≤60 y, No (%) (n = 1177)	Patients Aged >60 y, No. (%) (n = 1044)	
Hip or femur	2 (0.16)	8 (0.80)	1 (0.08)	9 (0.86)	
Vertebral	4 (0.33)	4 (0.40)	1 (0.08)	2 (0.19)	
Other	30 (2.45)	23 (2.30)	34 (2.89)	37 (3.54)	
All	36 (2.94)	35 (3.50)	36 (3.06)	48 (4.60)	
All, any age	71 (71 (3.19)		3.78)	

Effects of simvastatin (1 mM) added to cultures of explanted murine calvaria for 4 or 7 days.

Mundy et al., Science 286:1946-1949, 1999

"Window of opportunity"

Archer DF. Climacteric 12:26-31, 2009

Artery calcification in uremic rats is increased by low protein diet and prevented by treatment with ibandronate

Price et al., Kidney Int 70:1577-1583, 2006

Biphasic dose-response curve for vitamin D in vascular calcification

Zitterman A et al. Curr Opin Lipidol 18:41-46, 2007

Potential mechanisms contributing to low bone mass and increased fracture susceptibility in diabetes mellitus

Hofbauer LC et al., JBMR 22:1317-1328, 2007

The way to go..

- Postmenopausal women are at risk for osteoporosis and vascular calcification simultaneously.
- Although there are a few specific strategies for the risk reduction of the two diseases, conventional interventions for the management of chronic diseases of aging could benefit.
- Life style interventions, such as appropriate diet and exercise and the preventive habits for the CVDs might help.
- The awareness of the physicians for the possibility of the two diseases in postmenopausal women is important.

Acknowledgement

Prof. Sun-Woo Kim Prof. Sung-Woo Park Prof. Moo-Il Kang

TITIT

Prof. Ki-Won Oh Prof. Won-Young Lee

000000

1111111