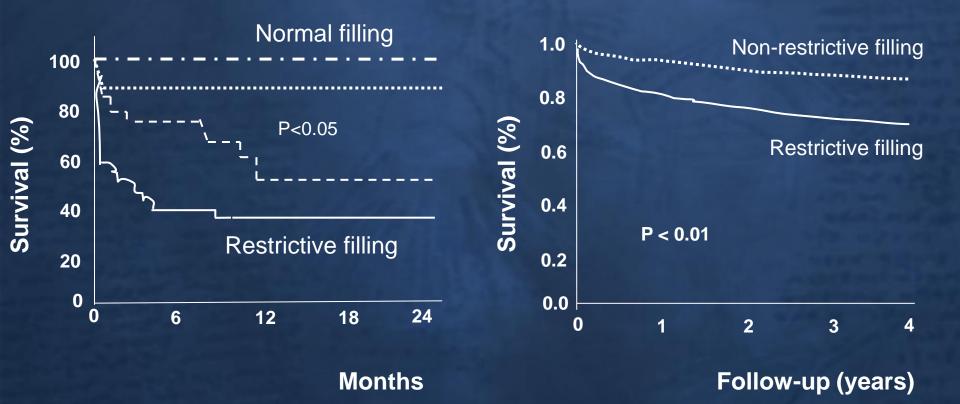
The recovery of LV diastolic function after AMI can be predicted with diastolic reserve during exercise echocardiography


Hye-Sun Seo, Nae-hee Lee, Jon Suh, Yoon Haeng Cho Cardiology division Soonchunhyang University Bucheon Hospital

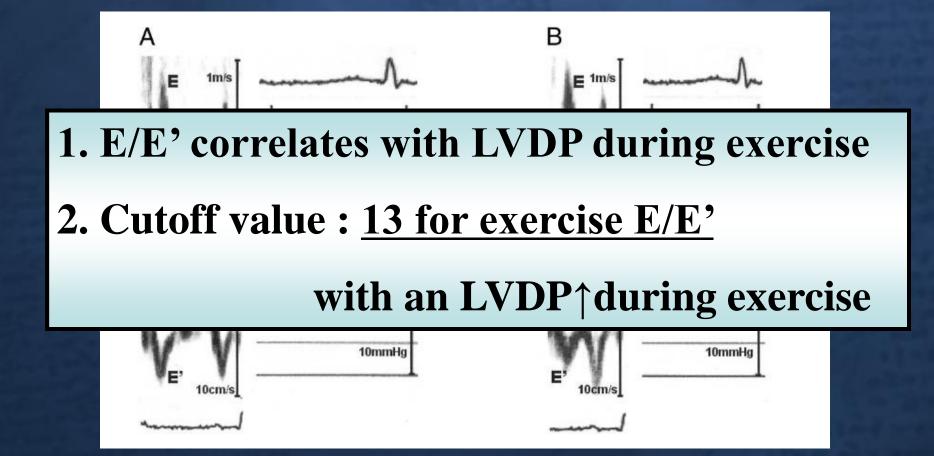
Stress echocardiography after AMI

- Stress (exercise or pharmacological) echocardiography can be used to assess ischemia and viability using <u>WMSI, LVEF</u>
- Residual ischemia : poor outcome
- Viability (contractile reserve) : spontaneous recovery of function and good outcome

Picano E et al. JACC 1995;26:908–13 Sicari R et al. JACC 1997;29:254–60. Pierard LA et al. JACC 1990;15:1021–31 Picano E et al. Circulation 1998;98:1078–84

Prognostic importance of a LV filling pattern after AMI

Moller JE et al. JACC 2000;36(6):1841-6


MeRGE AMI collaborators. Circulation 2008;117(20):2591-8

Diastolic vs. systolic function as a predictor of outcome after primary PCI

f/u LVEF (%)	Univariate		Multiple regression	
	r	p value	R ²	p value
Baseline DT	0.61	0.002	0.39	0.002
WMSI	-0.52	0.01		
LVEF	0.50	0.01	0.54	<0.02
S'	0.36	0.1		
E	0.36	0.1		1
E / E'			0.66	0.02

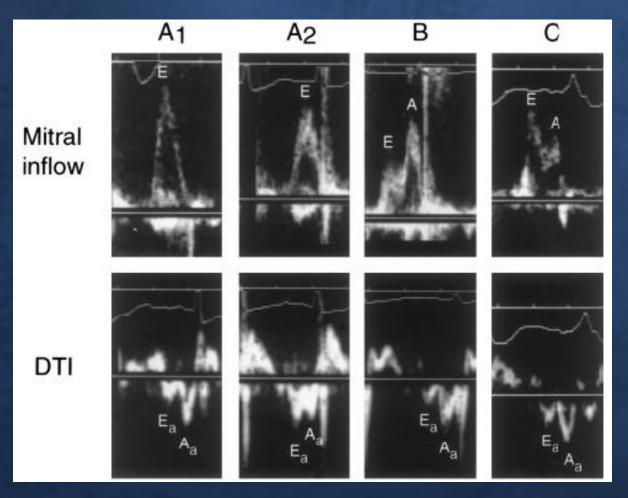
Naqvi TZ et al. AJC 2006;97:160-6

Diastolic function during exercise

Burgess MI et al. JACC 2006;47:1891-900

Background

- Exercise is more physiological and therefore a preferred method for stress testing
- Reduced ventricular compliance and inappropriately elevated filling pressure after AMI are important causes of DOE and early termination of exercise
- Few studies about the changes of LV diastolic function during exercise in pts with AMI


 We sought to assess <u>dynamic changes of</u> diastolic function, including LV filling pressure using Doppler imaging during exercise and its impact on <u>recovery of diastolic function in patients</u> with coronary revascularization after AMI

Methods (1)

- 51 male patients with first ST-elevation AMI
- After within 7 days after revascularization
- Vivid 7, GE Medical Systems, EchoPac PC
- Exclusion criteria : significant VHD, CHF, RCA MI (involve basal septal wall)
- Conventional & tissue Doppler parameters were measured at baseline and peak exercise during semisupine stress echocardiography (25W, 3-minute increments)
- Echo follow up after 6-8months with optimal medical treatment

Methods (2)

 E/E' can be used to estimate PCWP with reasonable accuracy in tachycardia, even with complete merging of E & A velocities

Nagueh SF et al. Circulation 1998;98:1644-50

Baseline clinical characteristics

51 male patients presenting with AMI

	Mean
Age (years)	52.3 ± 9.0
Duration of chest pain (min)	206 ± 213
BMI (kg/m²)	25.2 ± 2.43
DM / HTN / Smoking (%)	22 / 41 / 76
SBP / DBP (mmHg)	123 \pm 17.1 / 76 \pm 11.5
AMI lesion	
LAD / LCx	39 / 12
Beta blockers (%)	49 (96%)
TIMI 2/3 flow after PCI	3 / 48 (94%)

Laboratory findings

T.Chol (mg/dl) TG (mg/dl) HDL (mg/dl) LDL (mg/dl) Hs-CRP (mg/dl) BNP (pg/ml) Glucose (mg/dl) CK-MB Peak TnT level (ug/L) Creatine (mg/dl)

Mean (n=51) 189.3 ± 51.8 141.8 ± 105.0 37.0 ± 8.0 118.6 ± 38.4 0.66 ± 1.25 172.5 ± 183.6 168.8 ± 74.9 38.3 ± 70.4 2.63 ± 3.89 1.22 ± 0.75

Baseline echocardiographic characteristics

	Mean
	48.4 ± 3.4
nm)	10.6 \pm 1.35 / 10.0 \pm 1.25
	45.4 ± 19.9
	118.3 ± 24.4
	24.7 ± 6.4
	65.3 ± 14.8 / $66.0 \pm 15.2 = 1.12 \pm 0.33$
	212.7 ± 37.7
;)	5.93 ± 1.35 / 7.83 ± 1.61
	11.2 ± 2.41
	7.14 ± 1.53
	25.7 ± 4.40

LVIDd (mm) IVSd / PWd (m **EF (%)** $LVMI (g/m^2)$ LAVI (ml/m²) E / A (cm/sec) DT (sec) E' / A' (cm/sec) E / E' S' (cm/sec) RVSP (mmHg)

Exercise capacity

 Peak exercise (watts) • Duration of exercise (sec) by ages (sec) 800r 30-Mean (n=51) 25 20 **Exercise duration (sec)** 658 ± 123 15 Peak HR (bpm) 117.6 ± 17.8 10 Peak SBP (mmHg) 154.8 ± 21.7 84.5 ± 9.1 Peak DBP (mmHg) **P=0.003**

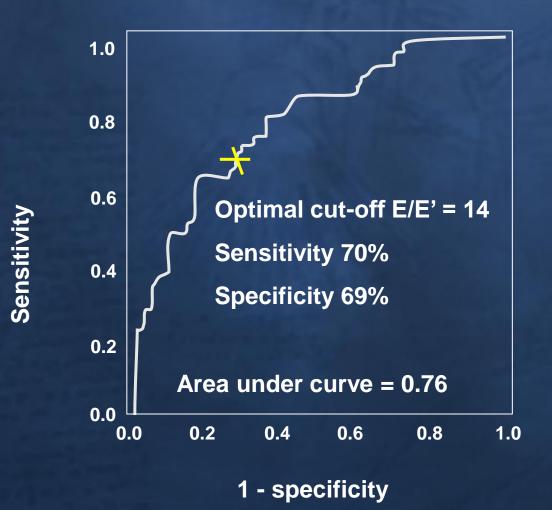
The changes in Doppler parameters during peak exercise

	Baseline	Peak exercise
E (cm/sec)	65.3 ± 14.8	113.8 ± 11.8
A (cm/sec)	66.0 ± 15.2	83.9 ± 18.7
DT (sec)	212.7 ± 37.7	160.1 ± 28.1
E' (cm/sec)	5.83 ± 1.46	8.14 ± 1.57
A' (cm/sec)	7.83 ± 1.61	9.62 ± 2.13
E / E'	11.2 ± 2.14	14.5 ± 3.47
S' (cm/sec)	7.14 ± 1.53	8.96 ± 2.29
RVSP (mmHg)	25.7 ± 4.40	52.3 ± 16.7

The changes in Doppler parameters after 6 months

	baseline	6M later	P value
E (cm/sec)	65.3 ± 14.8	62.7 ± 13.2	0.014
A (cm/sec)	66.0 ± 15.2	64.7 ± 16.4	< 0.001
DT (sec)	213 ± 37.7	221 ± 41.2	0.758
E' (cm/sec)	5.93 ± 1.35	6.20 ± 1.03	<0.001
A' (cm/sec)	7.83 ± 1.61	8.11 ± 1.46	0.002
E / E'	11.2 ± 2.41	10.3 ± 2.32	0.001
S' (cm/sec)	7.14 ± 1.53	7.27 ± 1.65	0.016
RVSP (mmHg)	25.7 ± 4.40	25.5 ± 2.85	0.381

Correlation between exercise capacity and echo variables


	Correlation analysis		Regression analysis (Multi)	
	r	р	ß	р
Age	-0.482	<0.001	-0.468	0.033
SBP	-0.257	0.071		
LVMI	0.050	0.730		
LAVI	-0.050	0.738	-0.206	0.291
S' rest	0.035	0.807		
E' rest	0.330	0.021		
E / E' rest	-0.344	0.014		
E' stress	0.712	0.002	0.649	0.007
E/E' stress	-0.572	0.026		

Univariate & multivariate predictors of recovery of diastolic function

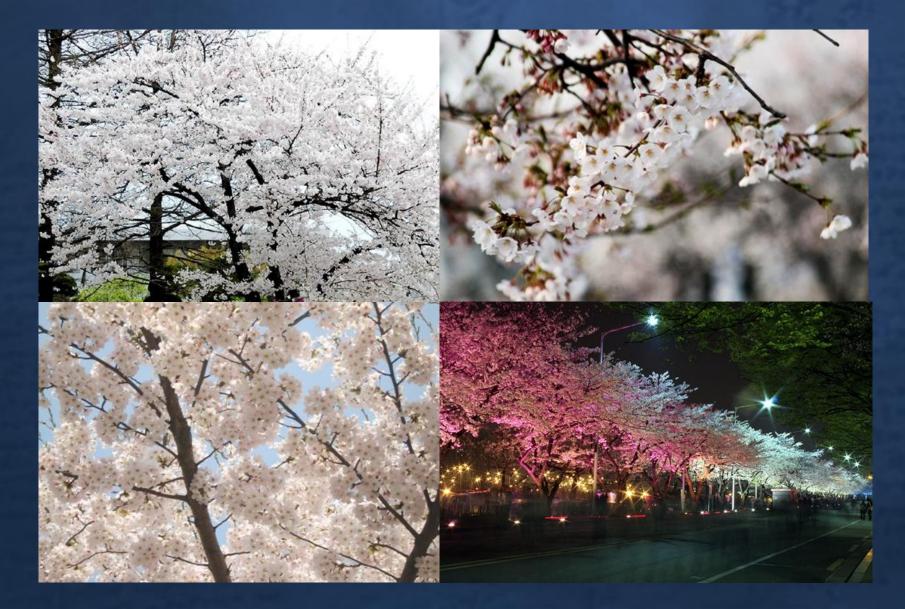
	Univariate		Multivariate	
	ß	р	ß	р
Age	0.287	0.299	0.210	0.349
SBP	0.319	0.247		
LVMI	-0.002	0.996		
LAVI	0.029	0.926	-0.208	0.371
S' rest	-0.372	0.172	-0.372	0.130
E' rest	-0.178	0.526		
E / E' rest	0.592	0.020	0.598	0.045
E' stress	-0.755	0.001		
E/E' stress	0.895	<0.001	0.735	0.030

ROC curve to predict diastolic function

Exercise E / E'

limitations

 Impaired exercise tolerance is associated with peripheral factors
(skeletal muscle, metabolism, endothelial function, ergoreflex activation etc..)


- In merging of E & A waves, the accuracy in E/E' during exercise is not confirmed
- Most patients have merging after 50 watts d/t relatively slow HR with ß-blockers

Conclusion

 The best correlation with <u>exercise capacity</u> was <u>E' at peak exercise</u>

 The evaluation of hemodynamic response of <u>diastolic function during exercise is feasible</u> <u>during stress echocardiography</u> and provides valuable information in <u>predicting</u> <u>recovery of diastolic function</u> in patients after AMI

Thank you for your attention !

