

ICD Troubleshooting

Kee-Joon Choi, MD / Ji-Hae Yun, RN Asan Medical Center, Ulsan University

1

ICD Implantation in KOREA

Troubleshooting Cases

- **1. High DFT during implantation**
- 2. Oversensing
- **3. Electromagnetic Interference (EMI)**
- 4. Inappropriate shock
- **5. Long charge time**

1. High DFT during ICD implant

 Lead position change Shocking vector change • Polarity change ○ SVC coil off \bigcirc Fixed tilt \rightarrow Fixed pulse width (SJM) Separate coil in SVC or CS (Medtronic) (Surgical Patch)

Programmable Shocking Vectors

 Requires dual-coil system
SVC coil can be programmed ON or OFF

• SVC coil ON

 Defibrillation energy travels from the RV to either the coil on the lead or the can

• SVC coil OFF

O Defibrillation energy travels from the RV to can only

Waveform Programmability- Fixed PW (Biphasic)

- Fixed pulse width shock therapy will be in volts (a joules reference is provided)
- Percent of the tilt and ar due to impedance
- Capacitor discharge is tr a programmed duration

Pulse width optimization card

	Block #1				Block #2		Block #3	
	Typical patient ($\tau = 3,5$ ms)				$(\tau = 2 \text{ ms})$		(τ = 5 ms)	
R (Ω)	P1 (ms)	P1 tilt	P2 (ms)	P2 tilt	P1 (ms)	P2 (ms)	P1 (ms)	P2 (ms)
30	3,5	67%	3,5	67%	3,0	1,5	4,0	4,0
32	3,5	64%	3,5	64%	3,0	1,5	4,0	4,0
34	3,5	62%	3,5	62%	3,0	1,5	4,0	4,0
36	3,5	60%	3,0	54%	3,0	1,5	4,5	4,5
38	4,0	63%	3,5	58%	3,0	1,5	4,5	4,5
40	4,0	61%	3,5	56%	3,0	1,5	4,5	4,5
42	4,0	59%	3,0	49%	3,0	1,5	4,5	4,5
44	4,0	58%	3,0	47%	3,0	1,5	5,0	5,0
46	4,0	56%	3,0	46%	3,0	1,5	5,0	5,0
48	4,0	54%	3,0	45%	3,0	1,5	5,0	5,0
50	4,5	57%	3,0	43%	3,0	1,5	5,0	4,5
52	4,5	56%	3,0	42%	3,0	1,5	5,0	4,5
54	4,5	54%	3,0	41%	3,0	1,5	5,5	5,0
56	4,5	53%	3,0	40%	3,5	1,5	5,5	4,5
58	4,5	52%	3,0	39%	3,5	1,5	5,5	4,5
60	4,5	51%	3,0	38%	3,5	1,5	5,5	4,5

2009.08.10, D-CMP with SCD survivor 36J fail \rightarrow with CS coil : 25J success

2009.08.11 (Post 1day)

2. Oversensing

- T-wave oversensing
- QRS double counting
- Lead fracture
- Lead insulation failure
- Loose setscrew
- Twiddler's syndrome

T-wave oversensing

\rightarrow shock on T \rightarrow ventricular fibrillation induced

* Rhythm acceleration : $VT \rightarrow VF$ by ATP (anti-tachy pacing) or shock

R wave trend during 2m Decrease R wave amplitude $: 12mv \rightarrow 6mv \rightarrow 3.8mv \rightarrow 2.1mv$

T-wave ovsersensing during low R-wave amplitude

How to resolve T-wave oversensing?

Special Sensing						
V. Sensitivity	Automatic, Max 0.2 mV					
V. Sense Refractory	157 ms					
V. Post-Sensed Threshold Start						
V. Post-Sensed Decay Delay	0 ms					

How to resolve T-wave oversensing?

Decay delay

Special sensing program

• The Decay Delay holds the sensitivity threshold at the starting value for a programmable amount of time

Threshold start

Special sensing program

• A percentage of maximum peak amplitude sensed during the Sensed Refractory Period used to begin the linear decay

QRS double counting

How to resolve QRS doublecounting?

Changing sensed refractory interval Ventricular Sense Refractory 125ms →157ms

Spe	cial Sensing
V. Sensitivity	Automatic, Max 0.2 mV
V. Sense Refractory	<u>157 ms</u>
V. Post-Sensed Threshold Start	50 %
V. Post-Sensed Decay Delay	0 ms
R wave is Sensed	d tory

24

Case 5

QRS Double counting and T-wave oversensing

Decreased Impedance : $400\Omega \rightarrow 250\Omega$ Decreased R wave amplitude : $12mv \rightarrow 3.0mv$

Case 5

2005.7.24-The day of implantation 2005.8.12 Twiddler's syndrome

Twiddler's syndrome

Twiddler's syndrome

- Twiddler's syndrome is excessive <u>unintentional or intentional</u> coiling and knotting of the leads.
- It may occur because of a <u>large generator</u> <u>pocket or loose, fatty subcutaneous tissue</u>, allowing rotation or repeated flipping of the pulse generator with physical activity or <u>from patient manipulation</u>.
- Such excessive coiling and knotting of the leads can lead to <u>lead fracture, insulation</u> <u>breaks, or inappropriate shocks.</u>

Case 6

ICD lead measure by PSA

Lead Fracture

Oversensing caused by lead insulation failure

Min. Chang-Geun, V-199, Seriat 79268 Episode 58 of 61: Aug 21, 2007 9:30 PM Page 2 of 2 Tachy Episode Report Page 1 of 2 ST JUDE MEDICAL Tachy Episode Report (Archive) Atlas® VR Model V-199, Serial 79268 Date/Time Archived: Aug 22, 2007 8:04 AM Patient Mn, Chang-Geun Date/Time: Aug 21, 2007 9:30 PM Type: VF (Therapy Delivered) Episode Duration: 0:34 Episode 58 of 61: Alerts: 2 Initial Diagnosis: VF (SVT Discrimination is Off in this zone) |355 |258 | | | | |469 |238| | 453 320 | 234 520 410 | | | 238|551 496 At least one shock unsuccessful ≥3 VT/VF episodes in 24 hours Time to Diagnosis: 10.75 sec CL 245 ms/244 bpm lp: RRRRR le. RRR RRR le lele RRR Results Therapy: Defib 25.0J (676V) Defib 36.0J (801V) Below Rate Detection (CL 465 ms) High Voltage Therapy Details First Charge Time: 25 s Last Charge Time: 116 s R R R R R R R R R R R R R R R R R R Last Lead Impedance: 49Ω RRRR Delivered PW +60 ms. -60 ms | | 289 |379 |559 | |277 | | |336 | |332 | | | | | | |258 | | | | |379 |473 441 297 691 | | |234|559 RR RRRRRRRR 27 28 Trigger 0 363 lane XXX X XXX х х х 582 ΧХ X х IR х R FFFF FFF S F Т S F S Т S 0000 0 0 490 0 0 0 0 0 0 0 0 0 0 0 555 449 695 230 387 348 590 391 523 340 414 0 RRR RR RRRR R R R R R R R R R 22 391 V^{*}Unipolar EGM 48 Page 2 of 2 Min, Chang սվում ավարհավարհական անությունը կանանությունը կանությունը հանդեպես հայիսի անությունը հանգանությունը։ 12 13 14 15 16 11 10

33

Decreased impedance : $560\Omega \rightarrow 305\Omega$ Decreased R wave amplitude : $>12mv \rightarrow 8.0mv$

Episodes data of Loose setscrew (CRT-D case)

EGM of noise sensing cause of Loose setscrew Episode usually provoke by changing position

>1760 VF Rx 1 >1760 >1760 1090 1080 VF Rx 1 Defib

* Confirmed by manual manipulation

36

Oversensing : Causes and Solutions

- **Oversensing of physiologic but non-QRS signals**

 - -- Myopotential oversensing
- QRS double counting
- -- Wide QRS complex

Changing ventricular sensitivity and sensing parameter

- Changing sensed refractory interval
- -- Low ventricular sensing signal during sinus rhythm
- **Mechanical system malfunction**
- -- Lead dislodgement
- -- Lead fracture
- -- Lead insulation failure
- -- Loose setscrew connection

Lead revision

3. ElectroMagnetic Interference

High Intensity Electromagnetic Fields TV/Radio transmitting towers (>100,000 volts) **Power plants/ power lines** Large generators **Heavy Electrical Equipment** Chain saw, Arc welding equipment **Electric steel furnaces Industrial Magnets Surgical/Therapeutic equipment Electrocautery, RF ablation, TENS Extracorporeal shock-wave lithotripsy Therapeutic radiation, Heat Diathermy MRI**

TENS on back

Unknown origin on the ship

Noise Reversion

Shown Noise Reversion episodes

Case 3

Noise Reversions: Ventricular:

86

Jang chang Gun, V-199, Serial: 59561 Sep 17, 2007 3:23 PM

3510P Serial: 18682 (3307 v6.4.2.2)

Page 1 of 2

Case 4

Using a industrial grinder

4. Inappropriate shocks

Oversensing

A. Fibrillation with fast ventricular resp.

Sinus Tachycardia

Atrial Tachycardia

EGM of A.Fib with fast ventricular response

Case 2

EGM of Sinus Tachycardia

How to resolve inappropriate shock

Discrimination : dual chamber ICD
regularity, onset mode, morphology - PR logic[®] (Medtronic), rate branch (SJM)
Anti-arrhythmic agent for A.fib or AT prevention

• Beta-blocker for sinus tachy.

5. Long charge time

EGM of Long charge time : 20sec

Long charge time

Possible Causes:

- Capacitor(s) not reformed : <u>reform 후 re-check</u>
 - * "automatic reforming"
- 2. Battery depletion / Elective replacement point
- **3.** Component failure (uncommon)
 - Battery
 - Capacitor

Stronger ICD lead than pacemaker...

Case 1:09.9.30, raising threshold, and pericardial

effusion

Case 2: 09.10.13 ICD implant d/t DCMP with SCD 09.10.14 decreased R wave, Capture failure => lead revision

=> two hours later, shock & massive PE 51

Thank You !