Thrombosuction in AMI

Lee, Byoung Kwon MD, PhD
Gangnam Severance Hospital, Heart Center,
Yonsei University, Internal Medicine, Cardiology

Advances in Primary PCI for AMI

Reducing door to balloon times is essential for saving lives and reducing infarct size

Mortality increases 7.5% for every 30 min increase in time from symptom onset to PCI

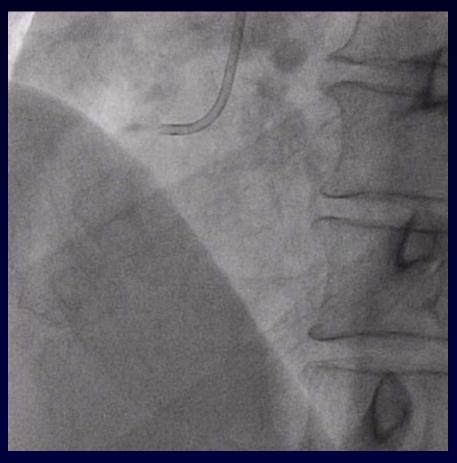
Target D2B Time < 90 mins Target D2N Time < 30 mins

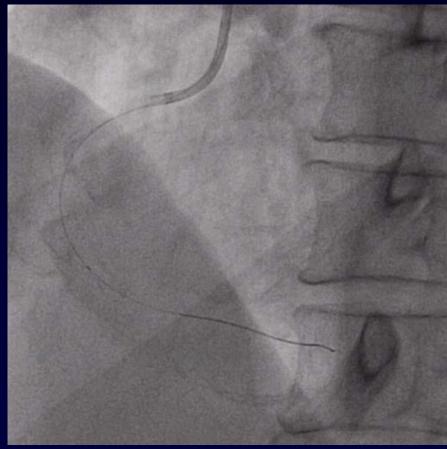
- D2B time ≠ TIMI3 distal flow!!

D2B Time is an Established
Performance Measure Which is
Publicly Reported as a Quality Indicator
for Hospital Performance

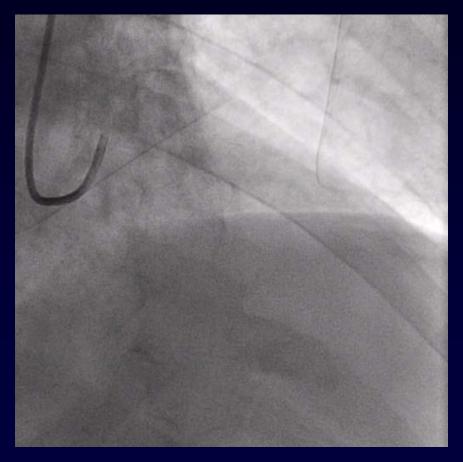
Importance of Aspiration Thrombectomy in STEMI

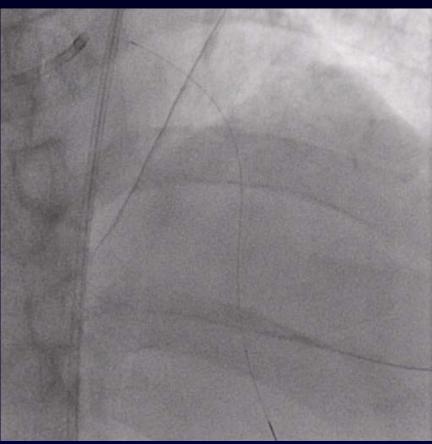
"No-Reflow"

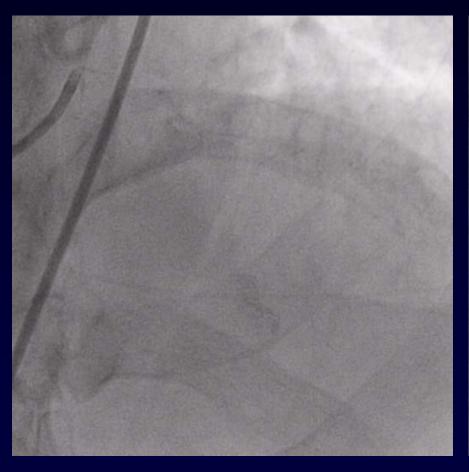

- Microvascular obstruction and reduced myocardial flow after opening an occluded epicardial artery.
- Prevalence: variable, 5% ~ 50%


"Optimal Reperfusion"

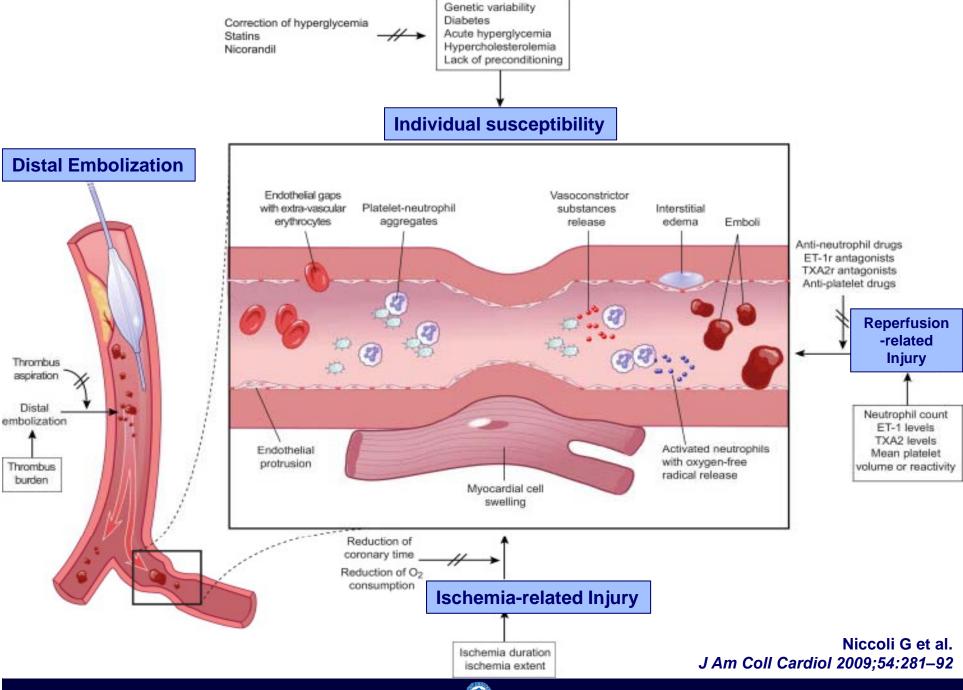
- a rapid, complete, & sustained coronary recanalization with adequate myocardial tissue perfusion
- 25% or less at thrombolytic era, vs. approximately 35% at PPCI era



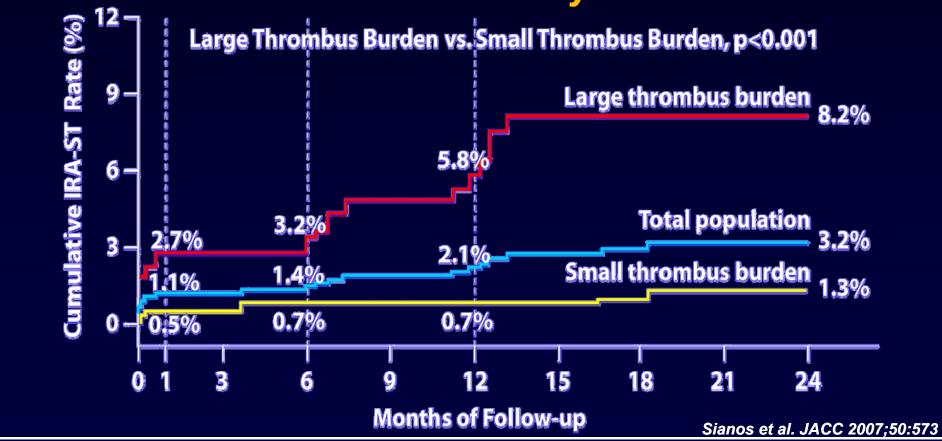

Case



Case

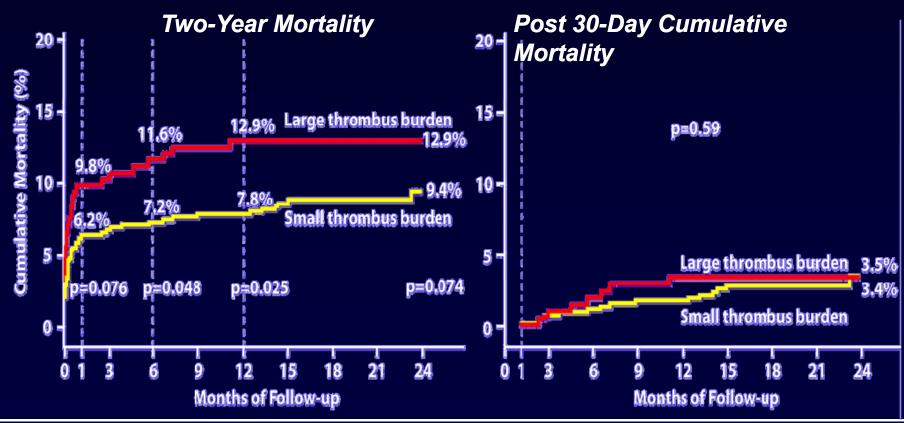


Case



Angiographic Stent Thrombosis After Routine Use of DES in STEMI: The Importance of Thrombus Burden

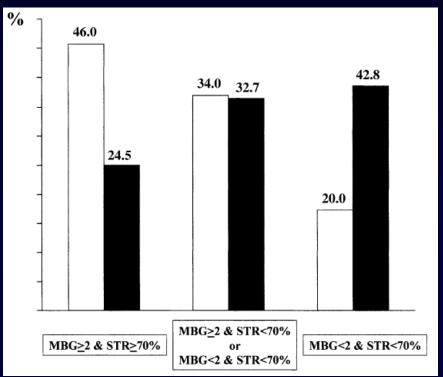
812 pts, Apr 2002-Dec 2004, STEMI ≤12 hrs; F/U 18.2±7.8 months Large Thrombus Burden (LTB) ≥2 vessel diameters


Cumulative Infarct-Related Artery Stent Thrombosis

Angiographic Stent Thrombosis After Routine Use of DES in STEMI: *The Importance of Thrombus Burden*

812 pts, Apr 2002-Dec 2004, STEMI ≤12 hrs; F/U 18.2 ±7.8 months Large Thrombus Burden (LTB) ≥ 2 vessel diameters

Impact of Thrombus Burden on Mortality


Large Thrombus Burden

- 1. Thrombus greatest linear dimension more than 3 times the RD
- 2. Cut-off pattern (lesion morphology with an abrupt cutoff without taper before the occlusion)
- 3. Presence of accumulated thrombus (5 mm of linear dimension) proximal to the occlusion
- 4. Presence of Floating Thrombus proximal to the occlusion
- 5. Persistent contrast medium distal to the obstruction
- 6. Reference lumen diameter of the IRA > 4.0 mm.

REMEDIA

- Randomizesd, 100 consecutive STEMI, Italy
- Primary end points : post-procedural MBG ≥ 2 , STR ≥ 70%.

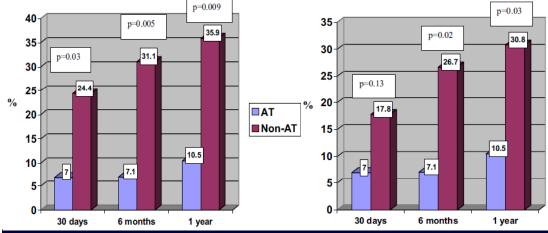
	Thrombus-Aspiration (n = 48)	Standard PCI (n = 48)
Death		
In the cath lab	1 (2.0%)	2 (4.1%)
After PCI	2 (4.0%)	1 (2.1%)
Reinfarction	2 (4.0%)	2 (4.1%)
Stroke	1 (2.0%)	1 (2.1%)
Target lesion revascularization	1 (2.0%)	1 (2.1%)
Any major adverse event	5 (10.0%)	5 (10.2%)

Burzotta et al. JACC Vol. 46, No. 2, 2005

DEAR-AMI

- Pronto extraction catheter
- Italy, 160 consecutive STEMI
- 1ry end point: 70% ST-segment resolution, post-PPCI MBG-3.

	Thrombus Removal	No Thrombus Removal	p Value
Patients, n	74	74	
ST-segment score pre-PPCI (mm)	13.75 ± 10.37	12.60 ± 8.9	0.470
ST-segment score post-PPCI (mm)	3.98 ± 5.17	4.88 ± 5.3	0.297
ST-segment resolution score			
Complete (>70%)	50 (68%)	37 (50%)	0.043
Partial (30–70%)	21 (28%)	26 (35%)	0.639
None (<30%)	3 (4%)	11 (15%)	0.046
Maximum ST-segment elevation pre-PPCI (mm)	4.6 ± 2.71	4.52 ± 2.52	0.852
Maximum ST-segment elevation post-PPCI (mm)	1.45 ± 1.69	1.68 ± 1.72	0.413
Maximum ST-segment resolution			
Complete (>70%)	50 (68%)	37 (50%)	0.041
Partial (30-70%)	21 (28%)	27 (36%)	0.388
None (<30%)	3 (4%)	10 (13%)	0.096
MBG-3	88%	44%	0.0001


Silva-Orrego et al. JACC Vol. 48, No. 8, 2006

Adjunct Thrombus Aspiration for STEMI With High-Risk Angiographic Characteristics Washington Hospital Center

Angiographic and procedural outcomes

Variable	Thrombus Aspiration p Value		
	Yes (n 80)	No (n 78)	
TIMI 3 flow after PCI (entire group)	73 (91%)	53 (68%)	0.001
TIMI 3 flow after PCI (baseline TIMI 0 flow)	43 (90%)	26 (57%)	0.001
TIMI 3 flow after PCI (baseline visible thrombus only)	30 (94%)	27 (84%)	0.43
Visible thrombus after procedure	6 (8%)	15 (19%)	0.03
Abrupt closure	0 (0%)	1 (1%)	0.50
No reflow or slow flow (TIMI 0–1)	0 (0%)	6 (8%)	0.01

Decreased Death/MI

Javaid A. et al. Am J Cardiol 2008;101:452-456

PIHRATE Trial

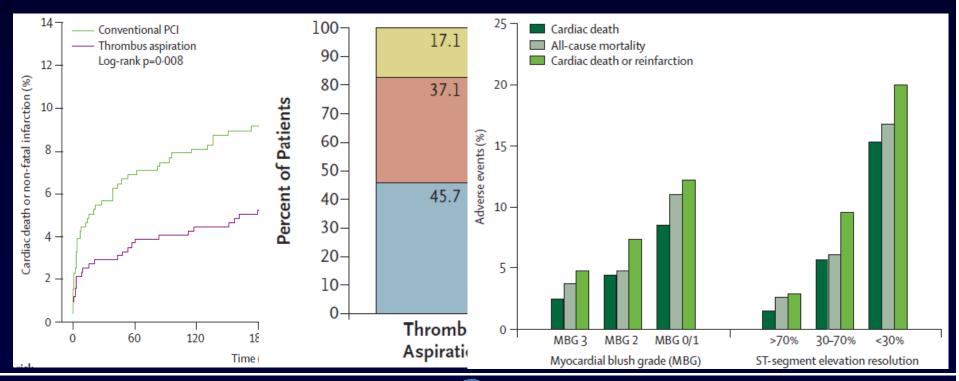
Poland, Italy, Hungary

	TD	ТВ	BS	p-value
	N = 75	N = 25	N=96	
TIMI-3 Flow	91%	78%	82%	80.0
MBG 3	81%	53%	59%	0.03
TIMI-3 + MBG 3	78%	53%	56%	0.01
STR > 70% + MBG 3	41%	29%	24%	0.01
Need for NP/Adenosine	8.9%	37%	22.6%	0.003

TD = Thrombectomy + Direct Stenting

TB = Thrombectomy + Balloon Angioplasty

BS = Balloon Angioplasty + Stenting


W. Miclecki et al. AJC 2008;102:63i

Thrombus Aspiration During Primary Percutaneous Intervention in AMI Study (TAPAS)

Lancet 2008; 371: 1915-20, N Engl J Med 2008;358:557-67.

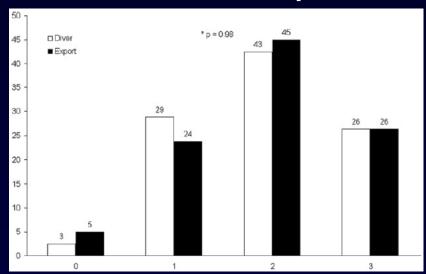
- 1071 STEMI pts, randomized study
- AT with Export Catheter (533 pts) vs. Standard PPCI (536 pts)
- Primary Endpoint: Myocardial Blush Grade (MBG)
- MBG 0/1 for TA = 17%, for Control = 26.3%, p<0.001

EXPIRA trial

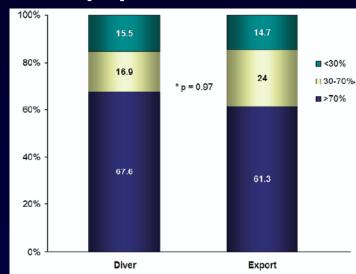
- 175 STEMI, Italy and UK, Export catheter
- To evaluate Clinical Outcome & the impact on myocardial perfusion and infarct size by contrast-enhanced MRI
- Better early micro-vascular obstruction sign

	Standard PCI	PCI with AT	P value
Post-stent MBG ≥ 2	59.8%	88.6%	<0.0001
90-min STR	39.1%	63.6%	0.001
9-month Cardiac death	4.6%	0%	0.02
2-year cardiac death	6.8%	0%	0.0001
2-year Reinfarction	1.1%	0%	0.999
2-year TVR	5.7%	4.5%	0.651
2-year MACE	13.6%	4.5%	0.050

Sardella et al., JACC Vol. 53, No. 4, 2009 AHA 2009 presentation


Aspiration Thrombectomy Catheters

Diver **Pronto** Quick **Xtract Export Expor Export Xtract** (side **Fetch** XT 6F t 7F **7F** Cat **V3** 6F holes) Rounded **Bevel cut** "bull-nose" Soft, **Bevel** with long **Bevel Bevel** Convex beveled tip with slot cut with Flat cut Flat cut tip and 3 cut cut cut cut to prox short tip long tip side holes tip 0.041 0.041 0.044 0.050 0.047 0.033 0.041 0.045 0.064 **Distal Lumen (inches)**

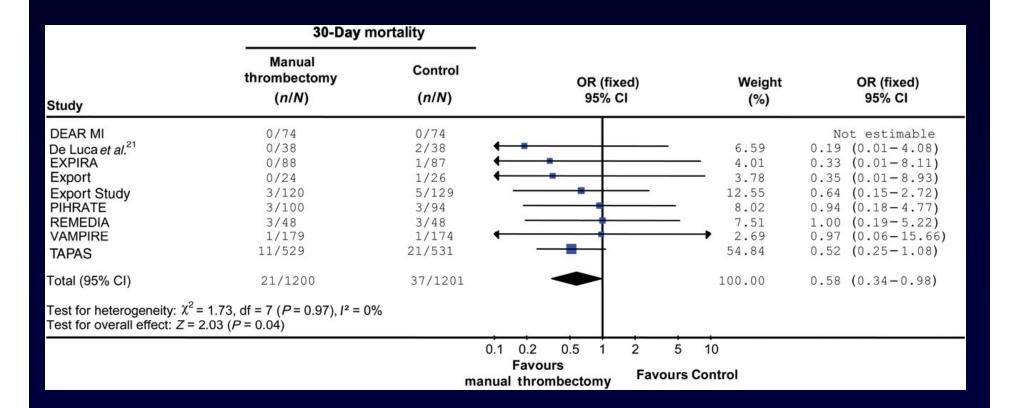


Aspiration Device Lumen Size

- Prospective cohort study, 160 patients undergoing PPCI
- Comparison a large-internal-lumen catheter (Diver, Invatec, Roncadelle, Italy). vs. a medium-sized catheter (Export, Medtronic, Minneapolis, Minnesota, USA)
- Outcomes were compared with a matched population in TAPAS

Myocardial blush

ST-seg resolution


A larger internal lumen diameter did not result in retrieval of larger thrombotic particles, nor in improved angiographic or ECG outcomes.

Meta-analysis (1)

European Heart Journal (2008) 29, 3002-3010

9 randomized trials included

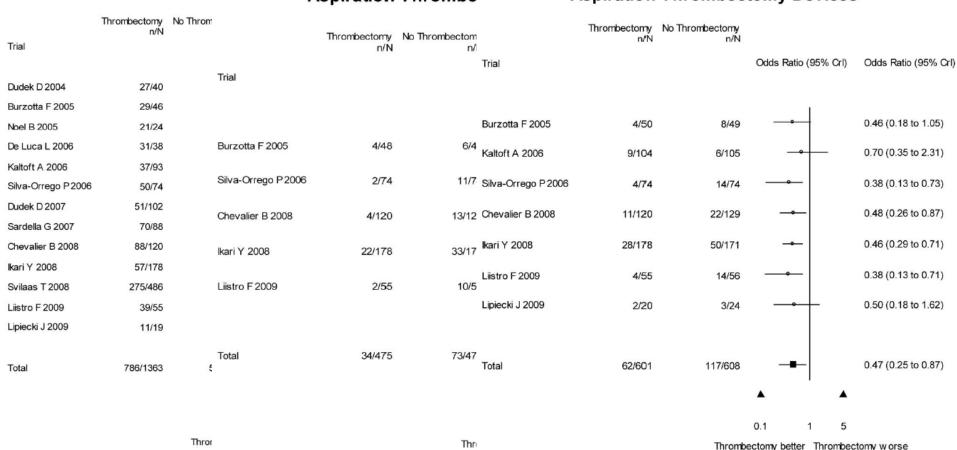
TIMI 3 post

Study	Manual thrombectomy (<i>n/N</i>)	Control (n/N)	OR (fixed) 95% CI	Weight (%)	OR (fixed) 95% CI
DEAR MI	66/74	58/74	-	5.49	2.28 (0.91-5.71)
De Luca et al.21	30/38	26/38	-	4.79	1.73 (0.61-4.88)
EXPIRA	72/88	60/87	-	9.60	2.03 (1.00-4.11)
Export	23/24	21/26		0.73	5.48 (0.59-50.78)
Export Study	113/119	117/129		4.95	1.93 (0.70-5.32)
PIHRATE	88/100	77/94	-	8.33	1.62 (0.73-3.60)
VAMPIRE	155/177	137/170	-	15.20	1.70 (0.94-3.05)
TAPAS	431/501	409/496	 -	50.91	1.29 (0.92-1.82)
Total (95% CI)	978/1121	905/1114	•	100.00	1.59 (1.26, 2.00)
Fest for heterogeneity: χ^2 = Fest for overall effect: $Z = 3$	3.86, df = 7 (P = 0.80), I^2 = 093.90 (P < 0.0001)	6			

MBG 3

Study	Manual thrombectomy (n/N)	Control (n/N)	OR (fixed) 95% Cl	Weight (%)	OR (fixed) 95% CI
DEAR MI	65/74	32/74		2.54	9.48 (4.11-21.85)
De Luca <i>et al.</i> ²¹	14/38	5/38		2.06	3.85 (1.22-12.14)
XPIRA	62/88	25/87	_	4.84	5.91 (3.08-11.35)
xport	15/24	11/26	-	2.58	2.27 (0.73-7.07)
xport Study	39/109	29/114	-	11.86	1.63 (0.92-2.90)
IHRATE	67/88	48/83		7.68	2.33 (1.21-4.48)
AMPIRE	82/178	35/171		12.55	3.32 (2.07-5.33)
APAS	224/490	158/490	-	55.89	1.77 (1.36-2.29)
otal (95% CI)	568/1089	343/1083	•	100.00	2.44 (2.04-2.92)
otal (95% CI) Test for heterogeneity: χ^2 = Test for overall effect: $Z = 9$	= 27.23, df = 7 (P = 0.0003), l ² =		•	100.00	2.44 (2.04- 2.92
		0.1 0.2		5 10	
		Favours	Control	avours thrombectomy	

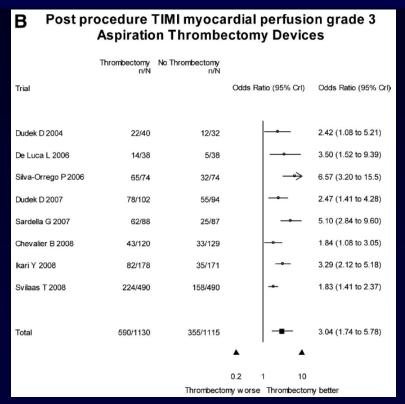
Meta-analysis

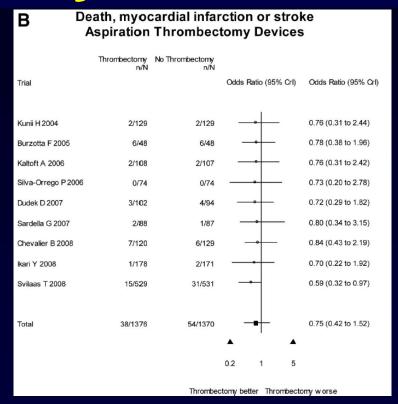

Circ Cardiovasc Interv. 2010;3:6-16

21 randomized trials included

Post procedure ST s Aspiration Thre B

No reflc B **Aspiration Thrombe**


Distal embolization **Aspiration Thrombectomy Devices**



Meta-analysis

 Adjunctive thrombectomy improves early markers of reperfusion but does not substantially effect 30-day clinical event, such as, post-MI mortality, reinfarction, and stroke.

(Circ Cardiovasc Interv. 2010;3:6-16.)

Conclusion

- Adjunctive Manual thrombus aspiration, if not anatomically contraindicated, should be considered in the setting of PPCI, particularly in patients with a large thrombus burden.
- We need a very large randomized trial with adequate power.