Molecular Mechanism of Vascular Calcification

조 현 재 서울대학교병원 순환기내과, 심혈관연구실, 서울대학교병원 심혈관센터

2010. 4. 17.

Vascular calcification : clinical significance !

- Clinical consequences in atherosclerosis
- Diabetes, and end-stage renal disease
- Prognostic indicator of future adverse cardiovascular events
 - Increased CAC correlates severity of CAD Paolo R et al, Circulation 2000;101:850-855
 - Increased rate of progression of CAC
 correlates adverse cardiac event
 Schmermund A et al, Cardiol Clin 2003;21(4):521-34

Vascular calcification : current concept

Passive consequence of aging

Actively regulated process

- resembling the mineralization
- of endochondral and membranous bone

Future therapeutic strategy !

Vascular calcification: type

(A) Atherosclerotic calcification

- intimal and subintimal calcification
- (B) Medial calcification
 - diabetes, ESRD, non-atherosclerotic?
- (C) Valvular calcification
- (D) Calciphylaxis
 - calcific uremic arteriopathy

Vascular calcification : type

A. Atherosclerotic Calcification

- focal coronary calcification : plaque rupture, coronary dissection under PCI

B. <u>Medial Artery Calcification</u>

- increased arterial stiffness, PWV, Pulse pressure
- strong correlation with CAD, future CV event in CKD/DM, future amputation

C. Cardiac Valve Calcification

- main mechanism of valve failure
- correlate with stroke, atrial fibrillation ,CV event

D. Calciphylaxis

- 1 % of hemodialysis patient
- grave prognosis, high mortality due to tissue necrosis

- Introduction and clinical significance
- Type of vascular calcification
- Cellular determinants
- Molecular determinants and inducers
- Osteoporosis and vascular calcification
- **Treatment of vascular calcification**

Origin of osteoblastic or osteogenic cells in vasculature is a great topic of debate.

- vascular smooth muscle cell (VSMC): contractile → proliferative, synthetic form
- calcifying vascular cell (CVC): may be a certain clone or subpopulation of VSMC
- pericyte: a kind of mesenchymal progenitors
- mesenchymal stem cell (circulating or resident), adventitial myofibroblast (resident ?) and fibrocyte (circulating)
- calcifying vascular progenitor cells (circulating, resident)

Cellular determinants – origin of calcifying cells

Cbfa1, Osterix, Msx: transcription factor / ALP, Osteocalcin: functional phenotypic marker BMP 2/4: osteogenic cytokine

Johnson RC et al . Circ Res. 2006

Cellular determinants – origin of calcifying cells

Von Kossa stain

Calcification media : DMEM, 15% FCS, CaCl2 6mM, β-glycerophosphate 10mM

Yoon YE et al . Unpublished data

Molecular determinants and inducers (or inhibitors)

- 1) Inflammatory signal: Oxidized LDL, TNF- α and oxidative stress, etc.
- 2) BMP-2
- 3) Msx2
- 4) Runx2/Cbfa1 (core binding factor α1)
- 5) Osteoclacin
- 6) Alkaline phosphatase (ALP)
- 7) RANK/RANKL/Osteoprotegerin (OPG)
- 8) Osteopontin (OPN)
- *Angiotensin II

Inflammatory signal and chronic inflammation

Abedin M. et al ATVB. 2004

Inflammatory signal and chronic inflammation

Inflammation → plaque macrophage-derived proteinases [MMP-2/9, Cathepsin B/S etc.]

1. Release of biologically active, soluble elastin-derived peptides: promote osteogenic differentiation of VSMCs

2. Degraded medial elastin: favors calcification through an increase of elastin polarity that in turn enhances elastin affinity for calcium

Simionescu A et al BBRC 2005 / Aikawa E. et al Circulation 2009

- \clubsuit the largest subclass of the TGF-β superfamily
- ✤ a well-known inducer for bone and cartilage formation
- expressed by a variety of cells in atherosclerotic lesions, including endothelial cells, foam cells, and VSMCs.
- BMP-2 and BMP-4: both mineralization and local induction of inflammation
- ♦ BMP-7: induce osteogenic potential, but retard vascular calcification.

Msx2

✤ a BMP-2-inducible transcription factor

- ✤ a controller of craniofacial mineralization
- BMP-2/Msx/Wnt signaling cascade is upregulated in the context of type 2 diabetes, obesity and hypercholesterolemia
- plays a key role in early stages of medial calcification.

Expression of Msx2 in adventitial cells

Shao JS *et al .* JCI. 2005 Shao JS et al ATVB. 2006

Runx2/Cbfa1 (core binding factor α1), Osx (osterix)

- master regulator of osteoblastic differentiation
- a key transcription factor of various osteogenic and osteoblastic differentiation related genes (osteoclacin, type I collagen, bone sialoprotein, alkaline phosphatase)
- the full effect of Runx2/Cbfa1 is required activation of a downstream transcription factor, Osterix.
- Runx2/Cbfa1 expression in VSMCs serves as an early, definitive marker of osteoblastic differentiation and the initial step in vascular calcification.

BSP (bone sialoprotein), OPG (osteoprotegerin), OPN (osteopontin), OCN (osteocalcin)

Osteoclacin:

- 1) most osteoblast specific gene. noncollagenous protein
- 2) secreted by osteoblast
- 3) clinically used as biomarker for the bone formation process

Alkaline phosphatase (ALP):

- 1) a functional phenotypic marker of osteoblasts
- 2) enzyme that induces tissue biomineralization.
- 3) ALP degrades inorganic pyrophosphate as a necessary step of calcification and ALP activity is crucial to hydroxyapatite formation.
- 4) ALP activity is often used as a molecular marker for vascular calcification, as it is an early indicator of ECM deposition.

The NEW ENGLAND JOURNAL of MEDICINE

Circulating Osteoblast-Lineage Cells in Humans

Guiti Z. Eghbali-Fatourechi, M.D., Jesse Lamsam, M.S., Daniel Fraser, Ph.D., David Nagel, A.B., B. Lawrence Riggs, M.D., and Sundeep Khosla, M.D.

N Engl J Med 2005;352:1959-66.

histologic sections

Calcifying progenitor cell in the vasculature

Cho HJ et al . Unpublished data

Charcoal stripped FBS 10%

Calcifying progenitor cell in the vasculature

Cho HJ et al . Unpublished data

Osteopontin (OPN)

- highly expressed at sites with atherosclerotic plaques, especially those associated with macrophages and foam cells.
- pro-inflammatory and pro-atherogenic molecule ??, Feedback mechanism?
- A negative regulator in vascular calcification: an inhibitor of calcification and an active inducer of decalcification.

OPN-TG mice: atherogenic OPN-KO mice: less atherogenic, high vascular calcification

→ OPN expression, function, and regulation are not clearly understood in the context of atherosclerosis and vascular pathophysiology.

Key regulator of bone metabolism

- Receptor Activator of Nuclear factor-κB (RANK): expressed on osteoclast
- RANK ligand (RANKL): from osteoblast, osteoclastogenesis stimulatory factor
- Osteoprotegerin (OPG): 1) a member of TNF receptor superfamily
 2) produced by various cells (EC, VSMC, osteoblast, dendritic cell)
 3) soluble receptor: competing with RANK, neutralizing RANKL, preventing

RANKL-RANK interaction \rightarrow osteoclastogenesis inhibitory activity

4) autocrine EC survival factor

- OPG-TG / RANKL-KO / RANKL-KO mice: osteopetrosis
- OPG –KO mice: osteoporosis, arterial calcification
- \rightarrow OPG: protective factor for bone and vascular system: mechanism ??
- Elevated serum OPG: high cardiovascular mortality, high osteoporosis

RANK/RANKL/Osteoprotegerin

Molecular determinants and inducers - summary

- 1) Inflammatory signal: pro-calcific environment
- 2) BMP-2: strong inducer for bone formation
- 3) Msx2: BMP-2-inducible transcription factor in medial calcification
- 4) Runx2/Cbfa: osteoblast-specific transcription factor
- 5) Osteocalcin: osteoblast-specific marker
- 6) Alkaline phosphatase (ALP): functional osteoblast phenotypic marker
- 7) RANK/RANKL/Osteoprotegerin (OPG): balancing factors in osteoblast and osteoclast & osteoporosis and arterial calcification
 8) Osteopontin (OPN): pro-inflammatory and pro-atherogenic, but anti-calcific and decalcific factor ?

Osteoporosis and vascular calcification

- Osteoporosis is frequently associated with vascular calcification, and there is a positive association between the severity of aortic calcification and bone loss
- Denosumab (RANKL monoclonal Ab) reduction of osteoporosis and vascular calcification
- Mechanism is a conundrum !

Hypothesis

- vascular calcification promotes bone loss
- bone loss promotes vascular calcification
- a common etiology

(estrogen deficiency?, LDL? OPG/RANKL)

Angiotensin II and vascular calcification

Jaffe, Demer et al. Arterioscler Thromb Vasc Biol. 2007;27:799

Angiotensin II stimulates VSMCs calcification

ALP: Alkaline phosphatase

Angiotensin II stimulates VSMCs calcification

Angiotensin II stimulates VSMCs calcification through AT1 receptor signaling

Angiotensin II stimulates VSMCs calcification through AT1 receptor signaling

6wks mVSMCs #4, D3

ALP: Alkaline phosphatase

Treatment of vascular calcification

	Potential target		Therapeutic effects	Current or prospective	Complication	
	Process	Compounds/factors		treatment ^a		
1.	Mineral balance	Hyperphosphatemia hypercalcemia Ca × P FGF-23/Klotho Vitamin D Parathyroid hormone	 Maintains Ca and P serum levels Inhibition of initialization and growth of the calcium apatite crystal Prevention of VSMC osteo/ chondrogenic transition Prevention of VSMC apoptosis 	Bisphosphonates Sevelamer Calcimimetics Thyroidectomy Pit-1↓ FGF-23/Klotho ? 1alpha-hydroxylase↓	Crosstalk with bone metabolism; dialysis protocols	
2.	Inflammation	TNF-alpha IL-6 LDL Glucocorticoid receptor	 To prevent inflammation Prevention of oste/ chondrogenic transition Increase VSMC survival and viability 	Statins Inflammatory cytokines ↓ PPAR-gamma agonists ↑ HDL ↑	Crosstalk with immune system and tissue remodeling	
3.	Regulatory proteins/ enzymes	ALK NPP1 ANK MGP Fetuin-A OPG OPN BMP-7 Transglutaminase2	 Maintenance of PPi level Maintains CaP salts in circulation and local level a soluble state Increase VSMC survival and viability 	ALK↓ NPP1, ANK↑ MGP↑ Fetuin-A↑ OPG↑ OPN? BMP-7? Transglutaminase2?	Multiple effects and crosstalk with bone metabolism	

^a Possible drugs/approaches in bold type have been proven in clinical trials and are currently used; suggestions in small type are hypothetical. NPP/ ANK, key regulators of pyrophosphate metabolism; NPP1, nucleotide pyrophosphatase phosphodiesterase 1 (generates PPi from nucleoside triphosphates); ANK, ankylosis protein (multiple-pass transmembrane protein that mediates intracellular to extracellular channeling of PPi); OPN, osteopontin; †, increasing levels maybe effective; ↓, decreasing levels maybe effective; ?, effect unknown.

Treatment of vascular calcification

	Potential target		Therapeutic effects	Current or prospective	Complication	
	Process	Compounds/factors		treatment"		
4.	Apoptosis and vesicle release	Gas6-Axl signaling Akt Apoptotic bodies Matrix vesicles	 Increase VSMC survival and viability Modifying vesicle release and VSMC adaptation to prevent mineralization? 	Statins FGF-23/Klotho ↑ Matrix vesicles ? Ca Channel blockers	Crosstalk with immune system, tissue remodeling carcinogenesis; unknown biological role of matrix vesicles	
5.	Osteo/chondrogenic differentiation	Cbfa1/Runx2 Osterix Msx2 Wnt signaling	1. To prevent osteo/chondrogenic conversion of VSMC	c Cbfa1/Runx2 ↓ Osterix ↓ Msx ↓ Wnt signaling ↓	Crosstalk with bone metabolism	
6.	Mineral resorption	'Osteoclastic' Macrophages/monocytes Carbonic anhydrase II	Induction of calcium deposit resorption	Pi↓ Carbonic anhydrase II ↑	Crosstalk with bone metabolism	

^a Possible drugs/approaches in bold type have been proven in clinical trials and are currently used; suggestions in small type are hypothetical. NPP/ ANK, key regulators of pyrophosphate metabolism; NPP1, nucleotide pyrophosphatase phosphodiesterase 1 (generates PPi from nucleoside triphosphates); ANK, ankylosis protein (multiple-pass transmembrane protein that mediates intracellular to extracellular channeling of PPi); OPN, osteopontin; ↑, increasing levels maybe effective; ↓, decreasing levels maybe effective; ?, effect unknown.

Treatment of vascular calcification – clinical trials

Coronary artery calcium (CAC) and/or abdominal aortic calcium (AAC)

Effect of *Simvastatin* (80 mg) on Coronary and Abdominal Aortic Arterial Calcium (from the Coronary Artery Calcification Treatment with Zocor [CATZ] Study)

James G. Terry, MS^{a,*}, J. Jeffrey Carr, MD, MS^{b,d}, Ethel O. Kouba, PhD^a, Donna H. Davis, BS^a, Lata Menon, MS, RN^a, Kathryn Bender, PharmD^c, E. Ted Chandler, MD^a, Timothy Morgan, PhD^d, and John R. Crouse III, MD^{a,d}

(Am J Cardiol 2007;99:1714-1717)

Effect of Intensive Versus Standard Lipid-Lowering Treatment With Atorvastatin on the Progression of Calcified Coronary Atherosclerosis Over 12 Months A Multicenter, Randomized, Double-Blind Trial

Axel Schmermund, MD; Stephan Achenbach, MD; Thomas Budde, MD; Yuri Buziashvili, MD; Andreas Förster, MD; Guy Friedrich, MD; Michael Henein, MD; Gert Kerkhoff, MD;
Friedrich Knollmann, MD; Valery Kukharchuk, MD; Avijit Lahiri, MD; Roman Leischik, MD; Werner Moshage, MD; Michael Schartl, MD; Winfried Siffert, MD; Elisabeth Steinhagen-Thiessen, MD; Valentin Sinitsyn, MD; Anja Vogt, MD; Burkhard Wiedeking, MD; Raimund Erbel, MD

(Circulation. 2006;113:427-437.)

Although the target reduction in LDL was achieved, there was no treatment effect on the rate of calcified plaque progression \rightarrow Statin could not attenuate CAC progression

Treatment of valvular calcification – clinical trials

N Engl J Med 2008;359:1343-56.

Aortic valve calcification: aortic stenosis

Intensive Lipid Lowering with Simvastatin and Ezetimibe in Aortic Stenosis

Aortic-Valve Events

- [가설] lipid-lowering treatment might prevent progression of aortic-valve stenosis and thus reduce the need for aortic-valve replacement.
- [결과] Simvastatin and ezetimibe did not reduce the composite outcome of combined aortic valve events and ischemic events in patients with aortic stenosis.

Treatment of vascular calcification – new target

Doherty TM et al. PNAS. 2003

Origin of osteoblastic or osteogenic cells in vasculature is a great topic of debate.

- vascular smooth muscle cell (VSMC): contractile → proliferative, synthetic form
- calcifying vascular cell (CVC): may be a certain clone or subpopulation of VSMC
- pericyte: a kind of mesenchymal progenitors
- mesenchymal stem cell (circulating or resident), adventitial myofibroblast (resident ?) and fibrocyte (circulating)
- calcifying vascular progenitor cells (circulating, resident)

Treatment of vascular calcification – new cellular target

Vascular calcifying progenitor cells

Osteoblastic differentiation of calcifying progenitor cells

A. FBS 10% only

B. FBS 10% + TNF-α

Osteoclastic differentiation of calcifying progenitor cells

TRAP staining (FBS + RANKL + M-CSF)

PPARγ activation suppresses osteoblastic differentiation and promotes osteoclastic differentiation

R 25µM

ALP staining

Osteoblast-related genes

Sca-1+/PDGFR α -

TNF TNF TNF TNF

+R1 +R10 +R25

GFP+ Sca-1+ /PDGFRa+ GFP+ Sca-1+ /PDGFRa-

TRAP staining

Osteoclast-related genes

R=Rosiglitazone (PPARγ agonist)

Sca-1+/PDGFR α +

TNF TNF TNF TNF

CBFA

BMP2

OPG

RANKL

GAPDH

+R1 +R10 +R25

- Introduction and clinical significance
- Type of vascular calcification
- Cellular determinants
- Molecular determinants and inducers (or inhibitors)
- Osteoporosis and vascular calcification
- Treatment of vascular calcification

Conclusions

- Vascular calcification is an important feature of progressive atherosclerosis, a poor prognostic factor of future adverse cardiovascular events.
- 2. Recent studies have shown that the pathophysiologic process of vascular calcification is tightly-regulated, active process .
- Recent advances in understanding molecular and cellular mechanisms of vascular calcification may lead to the development of new therapeutic strategies for cardiovascular diseases.
- Eventually, we hope that vascular calcification, once considered irreversible process, would be regressed and reserved through decalcifying therapy in the future.

Acknowledgements

Seoul National University Cardiovascular Research Lab

Thank you for your attention !!

Treatment of vascular calcification - hypothesis

Cho HJ et al . Unpublished data

Mechanism of osteogenesis, showing the major genes, growth factors, and signaling pathways culminating in fully mature chondrocytes, osteoblasts, and osteoclasts

Doherty T M et al. PNAS 2003;100:11201-11206

©2003 by National Academy of Sciences

Vascular calcification : clinical significance ?

정기 검진상 우연히 발견된 High calcium score (CAC score = 3609)

CAC score: coronary artery calcium score

Heavy calcification

→ not just a marker of severe disease, but an enemy of treatment

Molecular determinants and inducers - summary

- 1) Inflammatory signal: pro-calcific environment
- 2) BMP-2: inducer for bone formation
- 3) Msx2: BMP-2-inducible transcription factor in medial calcification
- 4) Runx2/Cbfa: osteoblast-specific transcription factor
- 5) Osteoclacin: osteoblast-specific marker
- 6) Alkaline phosphatase (ALP): functional osteoblast phenotypic marker
- 7) RANK/RANKL/Osteoprotegerin (OPG): balancing factors in osteoporosis, arterial calcification
- 8) Osteopontin (OPN): pro-inflammatory and pro-atherogenic, but anticalcific and decalcific factor ?

Vascular calcification : clinical significance

Table 2 Frequency of Revascularization Procedures and Cardiac Events During Follow-Up Results in the CAC Cohort							
	CAC Grouping						
Groups	0	1–9	10–99	100-399	400–999	≥1000	p Value*
All CAC patients (n = $1,153$)							
Patients (n)	252	52	205	274	230	140	
% ischemia	1.2%	1.9%	1.5%	4.0%	7.8%	20.0%	<0.0001
lschemic (n = 64)							
lschemic patients (n)	3	1	3	11	18	28	
Early cath (<60 days)	1 (33%)	1(100%)	1 (33%)	6 (55%)	11 (61%)	13 (46%)	0.99
Revascularized <60 days	0 (0%)	0 (0%)	0 (0%)	5 (46%)	9 (50%)	13 (46%)	0.06
Revascularized \geq 60 days	0 (0%)	0 (0%)	0 (0%)	1 (9.1%)	1 (5.6%)	3 (10.7%)	0.41
CD/MI*	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	2 (7.1%)	0.23
Annualized CD/MI rate	0%/yr	O%∕yr	O%∕yr	O%∕yr	O%∕yr	2.7%/ yr	0.88
Nonischemic ($n = 1,089$)							
Nonischemic patients (n)	249	51	202	263	212	112	
Early cath (<60 days)	2 (0.8%)	1 (2.0%)	0 (0%)	5 (1.9%)	3 (1.4%)	6 (5.4%)	0.01
Revascularized <60 days	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	3 (2.7%)	0.007
Revascularized ≥60 days	2 (0.8%)	0 (0%)	6 (3.0%)	6 (2.3%)	11 (5.2%)	7 (6.3%)	0.001
CD/MI*	1 (0.4%)	0 (0%)	0 (0%)	2 (0.8%)	6 (2.8%)	2 (1.8%)	0.02
Annualized CD/MI rate	0.2%/yr	0%/yr	0%/yr	0.3%/yr	1.0%/yr	0.6%/ yr	0.10

Survival according to baseline CAC score

Shaw et al, Radiology, 2003

LaMonte et al, Am J Epidemiol 2005

Vascular calcification : clinical significance

mLAD 70%, dLCx 50%, mRCA 50% with calcification

Naghavi et al, Am J Cardiolgoy, 2006