Central versus Peripheral Blood Pressure

OREA UNIVERSITY GLOBAL PRIDE

최철웅 고려대학교 구로병원 심혈관 센터

Contents

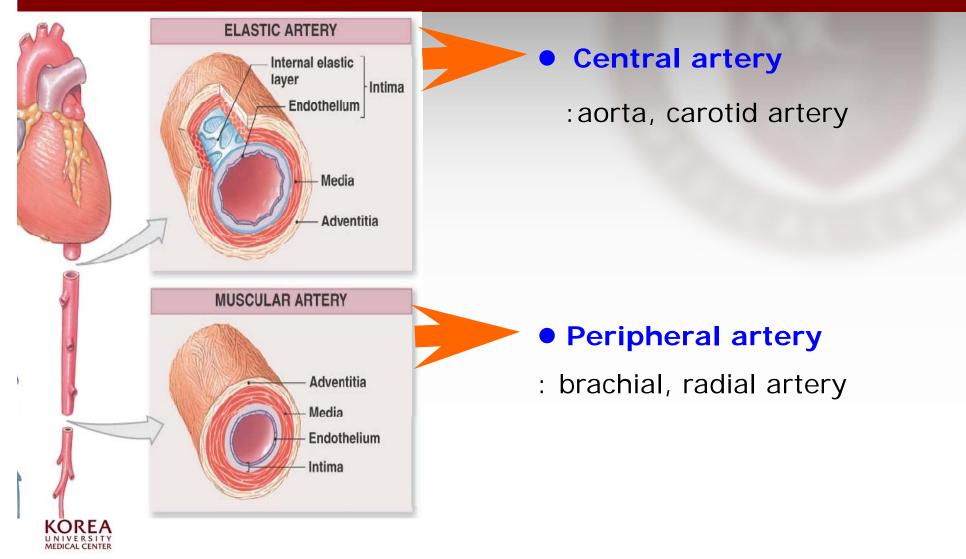
REA UNIVERSITY GLOBAL PRIDE

Central Artery vs Peripheral Artery

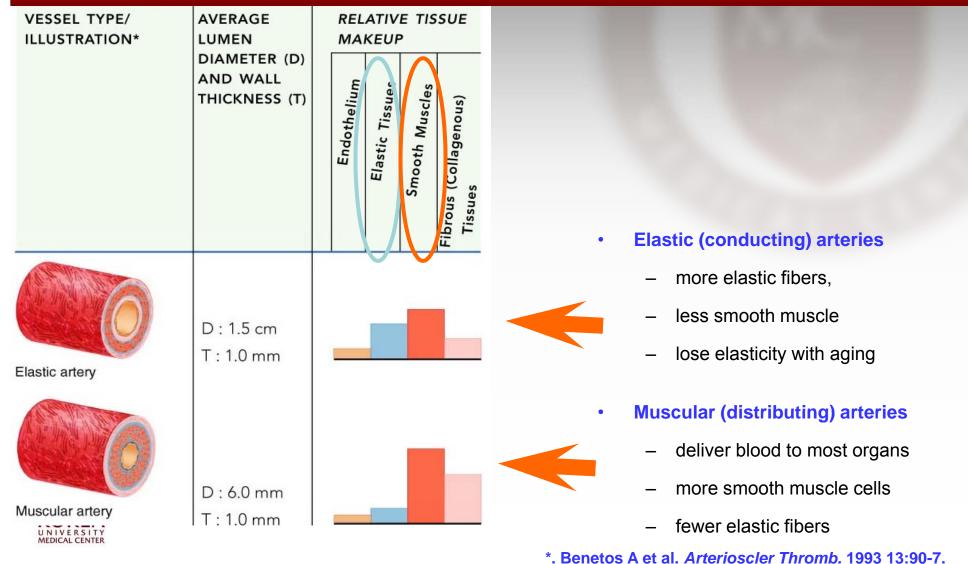
Limitation of Peripheral BP

Clinical Implication of Central BP

Measurement of Central BP

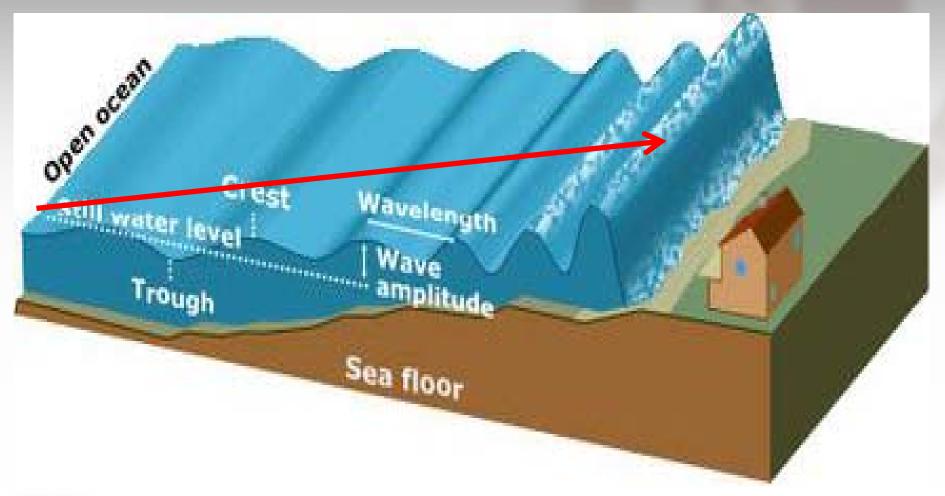

Central BP, aPWV and Clinical Outcomes

Limitation of Central BP



Central vs. Peripheral artery

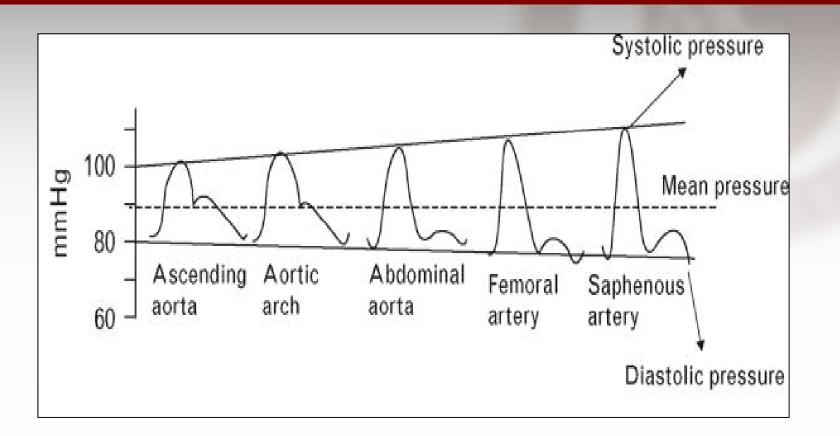
Central Vs Peripheral Artery



*. Avolio AP et al. Circulation. 1983;68:50 -58.

OREA UNIVERSITY GLOBAL PRIDE

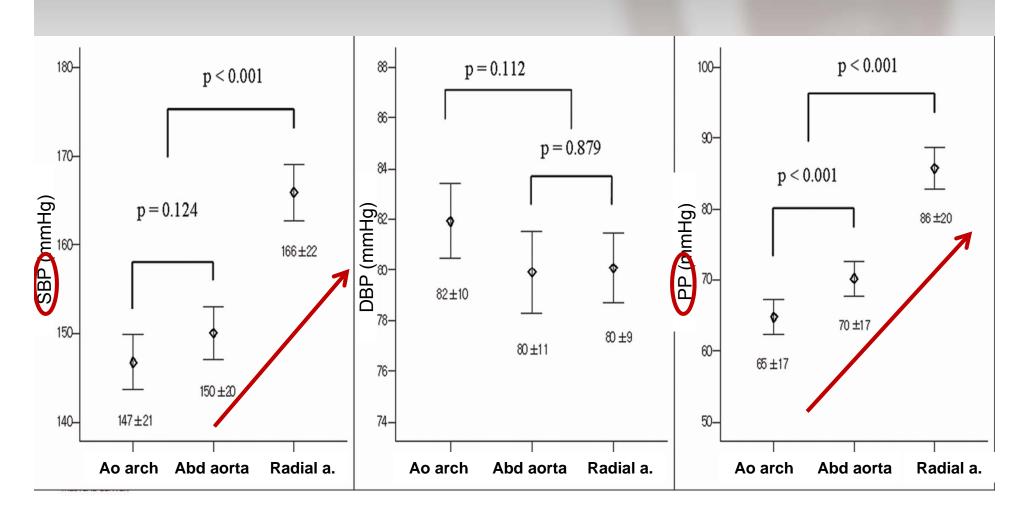
Blood Pressure Amplification



TREA UNIVERSITY GLOBAL PRIDE **Blood Pressure Amplification** 8 m/sec Young normal aorta **12 m/sec Old stiff aorta** KOREA

KOREA UNIVERSITY GLOBAL PRIDE

Blood Pressure Amplification



It is a traditional observation that BP waves differ markedly between central and peripheral sites of the arterial bed

KOREA UNIVERSITY GLOBAL PRIDE

Blood Pressure in Each Arterial Tree.

Choi CU, Kim EJ et al. J Hypertens 2010 (In press).

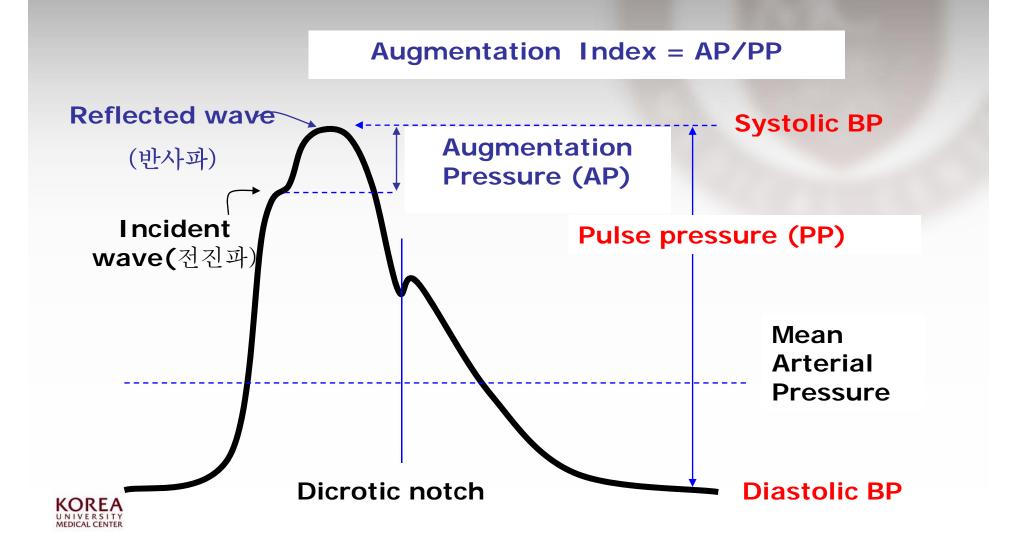
Limitation of Brachial BP

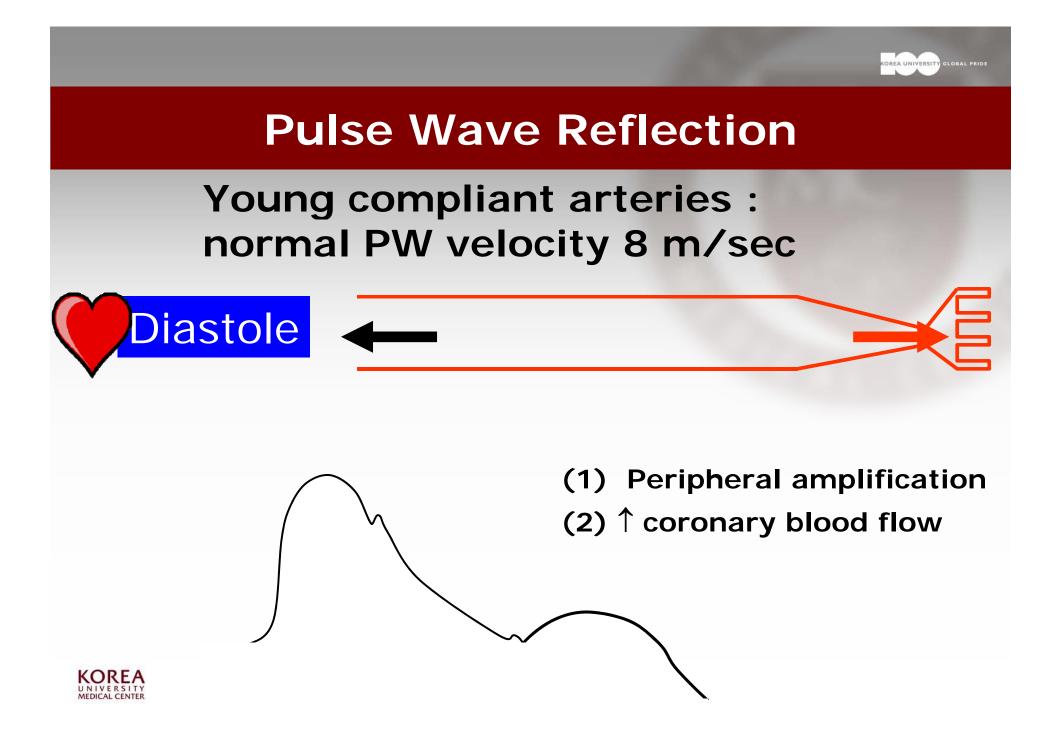
In younger people

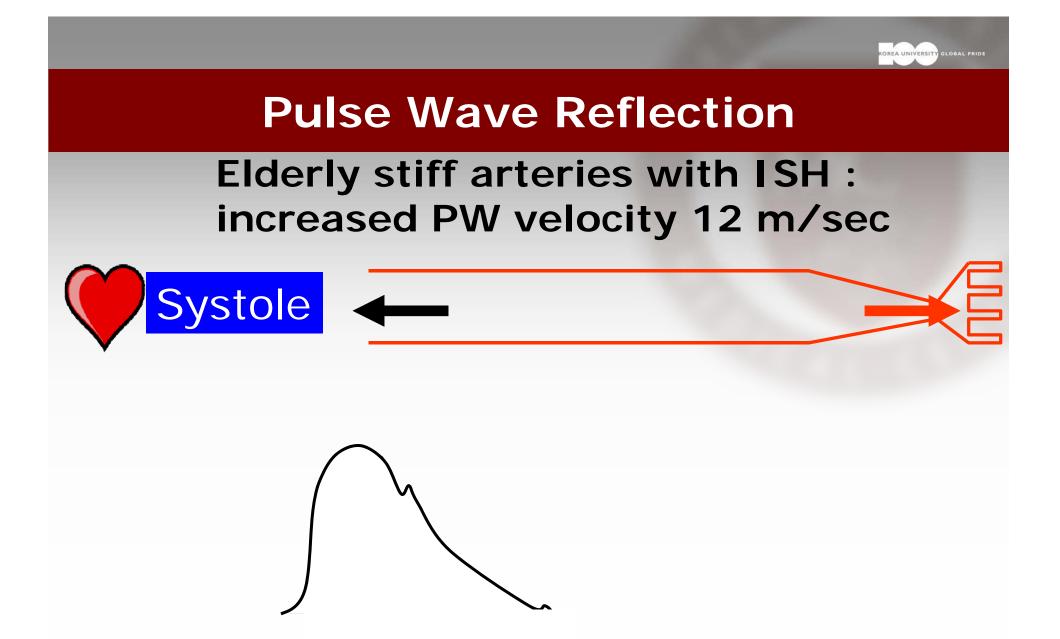
Overestimate the central systolic and pulse pressure

In elderly

- Tachycardia, systolic heart failure, exercise, drug
- → Difference between brachial pressures and central aortic pressures

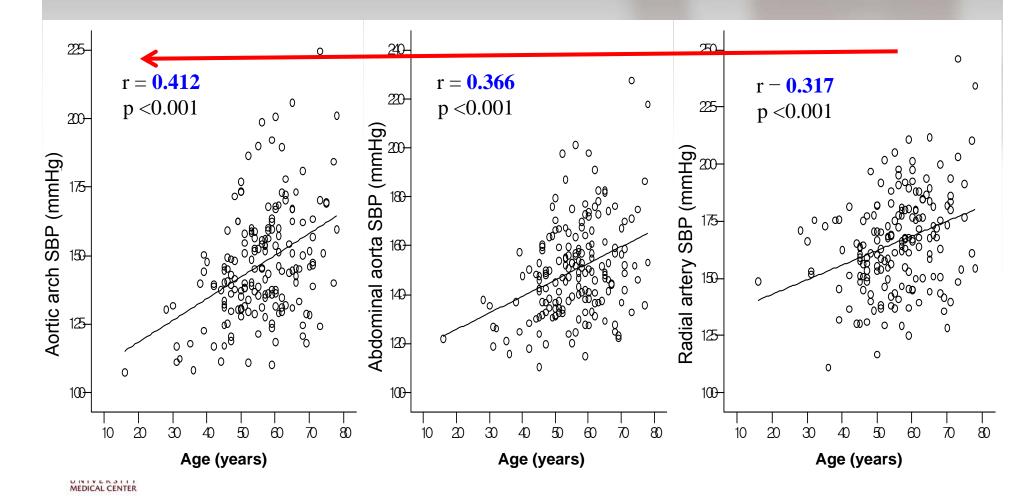

Clinical Implication of Central BP


REA UNIVERSITY GLOBAL PRIDE

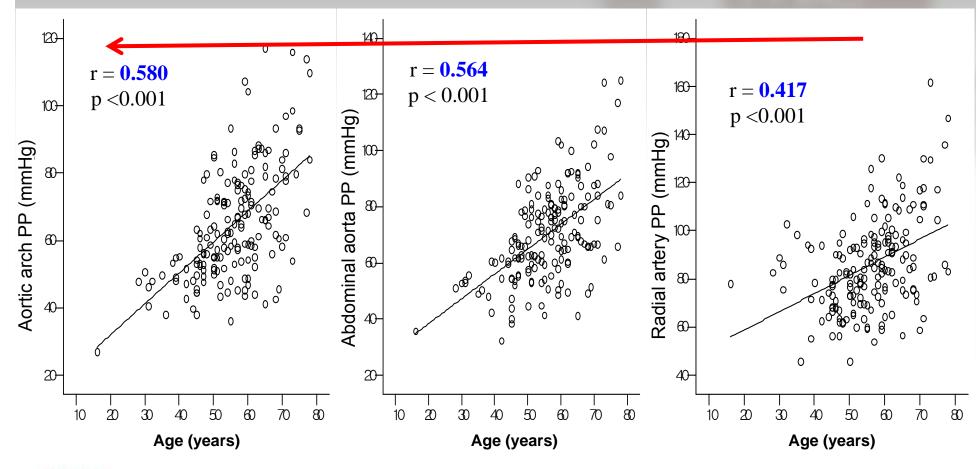


Central Arterial Pulse Wave

OREA UNIVERSITY GLOBAL PRIDE



(1) Ventricular-vascular mismatch(2) The reflected wave augments aortic BP in late systole



Correlation between Ageing and SBP in Each Arterial Tree

Choi CU, Kim EJ et al. J Hypertens 2010 (In press).

Correlation between Ageing and PP in Each Arterial Tree

Clinical Implication of Central BP

DREA UNIVERSITY GLOBAL PRIDE

Increased Aortic SBP

- Increased vascular afterload and developed LVH
- Decreased coronary perfusion pressure
- Increased MVO2 and subendocardial ischemia
- Increased endothelial dysfunction and atherogenesis

Clinical Implication of Central BP "Beyond BP Control"

OREA UNIVERSITY GLOBAL PRIDE

HOPE, LIFE, ANBP2 studies

 "Beyond BP control" are perhaps associated with arterial properties or central BP

Appropriateness of Measuring Central Pressure

REA UNIVERSITY GLOBAL PRIDE

 Brachial BP is not the perfect surrogate for central BP

Central BP should be more closely related to the pathophysiology of cardiovascular disease

•Nichols. WW et al. Theoretical, Experimental and Clinical Principles. Fifth Edition. 2005:193-213, 339-386 •Safar. ME et al. Handbook of Hypertension: Arterial Stiffness and Wave Reflection. 2005.

REA UNIVERSITY GLOBAL PRIDE

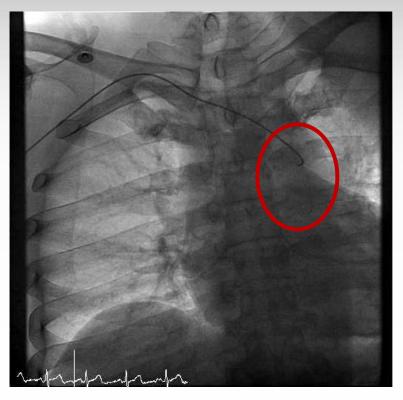
Measurement of Central BP

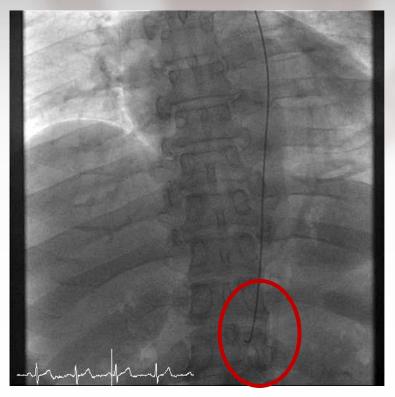
DREA UNIVERSITY GLOBAL PRIDE

Invasive method

- Fluid Field Catheter
- High Fidelity Catheter Micro-tip Pressure
 Transducer

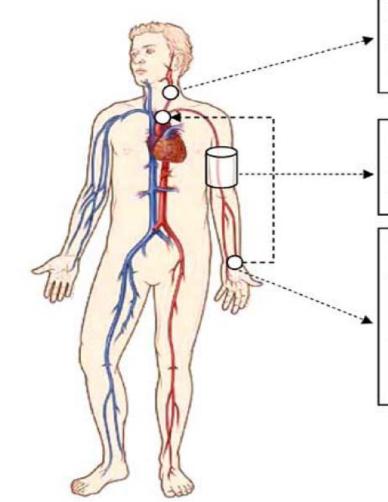
Non-invasive methods


- Applanated arterial tonometry
- Echo-Tracking



Invasive Method

Aortic arch

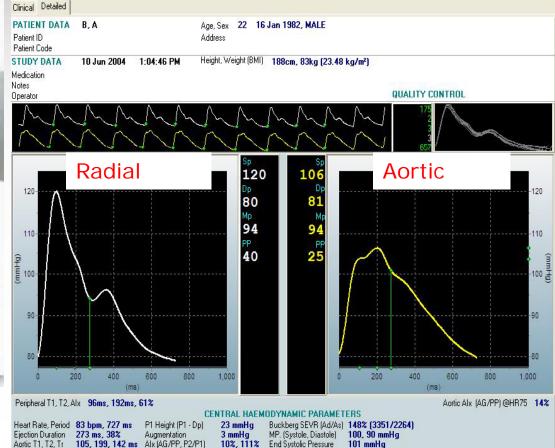

Abdominal aorta

Non-invasive Method

Recording of carotid BP

Direct estimation of central pressures by applanation tonometry or echo-tracking.

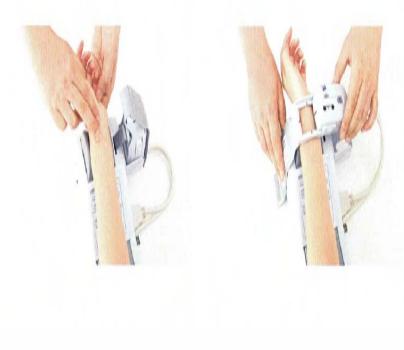
Recording of brachial BP

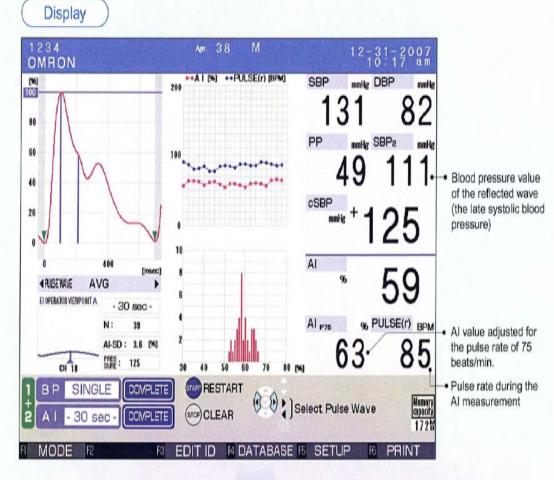

Statistical derivation of central pressures by using regression equations.

Recording of radial BP

- a) Indirect estimation of aortic pressures by applying generalized transfer functions to radial pressure waves.
- b) Estimation of aortic systolic pressure by detection of 2nd systolic peak of the radial artery.

OREA UNIVERSITY GLOBAL PRIDE


Non-invasive Method (GAON, Korea)

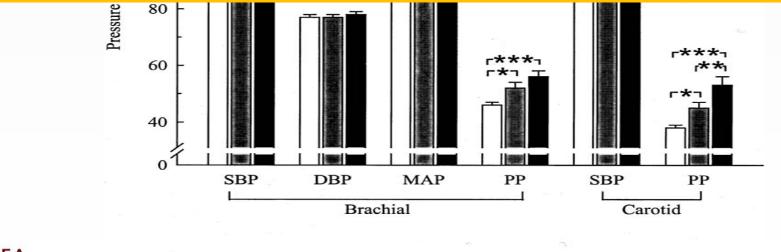


Non-invasive Method (HEM-9000AI, Japan)

Desksize suits for ambulatory practice with simple procedure

COREA UNIVERSITY GLOBAL PRIDE

Central Pressure as Marker of Disease


REA UNIVERSITY GLOBAL PRIDE

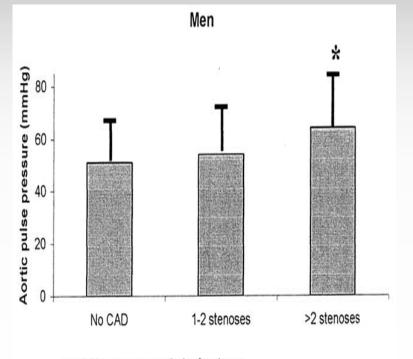
Carotid Pressure and CAD Severity

Central BP are more sensitive markers of CAD severity than brachial BP.

Controls Moderate CAD

KOREA UNIVERSITY MEDICAL CENTER

Waddell, T. K. et al. Hypertension 2001;38:927-931


Severe CAD

REA UNIVERSITY GLOBAL PRIDE

Aortic PP and Extent of CAD

99 patients with CAD

*p<0.001 ; one-way analysis of variance

Table 3. Multiple logistic regression analysis of prediction of coronary artery disease

Characteristic	Relative Risk	95% CI	<i>P</i> Value
Men	1.04	1 00 1 07	020
Age	1.04	1.00-1.07	.030
Pulse pressure (for a 1-mm Hg increase)	1.02	1.00-1.04	.043
Women	1.84	0.99-3.43	.053
Age PVD	1.04 9.47	1.00-1.09 0.94-95.5	.046 .057

PVD = peripheral vascular disease.

aortic PP was significantly correlated with the presence and extent of CAD

Danchin N et al. Am J Hypertens. 2004;17:129-33.

TABLE 2. Relations of Central and Brachial Blood Pressures and Arterial Stiffness to Carotid Hypertrophy and Extent of Atherosclerosis*

Variable

Intimal-Medial Thickness

Plaque Score

Vascular Mass

OREA UNIVERSITY GLOBAL PRIDE

Central BP is more strongly related to vascular hypertrophy and extent of atherosclerosis than is brachial BP

P value, brachial PP vs brachial SBP†	<0.001	< 0.02	< 0.001
P value, central PP vs central SBP†	<0.001	ΠS	<0.001
P value, central vs brachial SBP†	<0.001	< 0.001	< 0.001
P value, central vs brachial PP†	< 0.002	< 0.05	< 0.001
P value, arterial stiffness vs brachial SBP†	< 0.005	< 0.001	< 0.001
P value, arterial stiffness vs brachial PP†	ns	ns	< 0.02

SBP indicates systolic blood pressure; PP, pulse pressure; ns, not significant.

*All correlations P<0.001.

†Correlations compared by Z statistics.

Central PP and Cardiac Mass

The greater change in LVM on Per/Ind was linked to central and not brachial BP.

Left ventricular mass change (%) 469 hypertensive patients

OREA UNIVERSITY GLOBAL PRIDE

Adjustment (Adj) with	Adj mean (Per/Ind) (95% CI)	Adj mean (atenolol) (95% Cl)	Adj mean (Per/Ind – atenolol) (95% Cl for difference)
Carotid SBP (Model 1)	-6.6 (-10.2 to -3.0)	-1.4 (-5.7 to +2.8)	-5.17 (-10.88 to +0.53)
Brachial SBP (Model 2)	-6.2 (-9.9 to -2.5)	-2.0 (-6.4 to +2.4)	-4.19 (-10.00 to +1.62)
Carotid PP (Model 3)	-7.2 (-10.8 to -3.6)	-0.7 (-4.9 to +3.6)	-6.50 (-12.31 to -0.71)
Brachial PP (Model 4)	-6.3 (-10.0 to -2.6)	-1.8 (-6.2 to +2.6)	-4.53 % (-10.48 to +1.42)

Adjusted (Adj) means [95% confidence interval (CI)] (derived from the general linear model of Table 4) for: left ventricular mass (LVM) change (%) in the Per/Ind (perindopril and indapamide) group; LVM change (%) in the atenolol group; and LVM change (%) in the (Per/Ind – atenolol) groups. Only model 3 (carotid PP) reaches statistical significance. SBP, systolic blood pressure; PP, pulse pressure.

Central Pressure as Predictors of Events

REA UNIVERSITY GLOBAL PRIDE

Central Aortic Pressure and Clinical Outcomes (CAFE study)

Aortic PP may be a determinant of clinical outcomes

End Point in the CAFE Cohort					
	χ²	Р	HR	95 % CI	
Updated Cox proportional-hazards model adjusted for age and baseline risk factors			pat	ients with	n hypertensio
Model 1 (305 events)					
Peripheral PP	3.83	0.050	1.10	1.00-1.22	
Central PP	3.91	0.048	1.11	1.00-1.23	
Augmentation	2.26	0.133	1.14	0.96-1.36	
P ₁ height	3.04	0.081	1.17	0.98-1.40	
Model 2 (245 events)					
Peripheral PP	4.5	0.034	1.12	1.01-1.24	
Central PP	5.0	0.026	1.13	1.02-1.26	
Augmentation	4.2	0.040	1.21	1.01-1.45	
P1 height	2.5	0.114	1.16	0.96-1.40	
Model 3 (225 events)					
Peripheral PP	4.1	0.044	1.12	1.00-1.25	
Central PP	4.1	0.043	1.13	1.00-1.26	
Augmentation	3.1	0.080	1.18	0.98-1.43	
P1 height	2.4	0.118	1.17	0.96-1.42	

OREA UNIVERSITY GLOBAL PRIDE

TABLE 4. Multivariable Cox Models of Relation of Traditional Risk Factors and Central and Brachial Blood Pressures to Cardiovascular Outcome

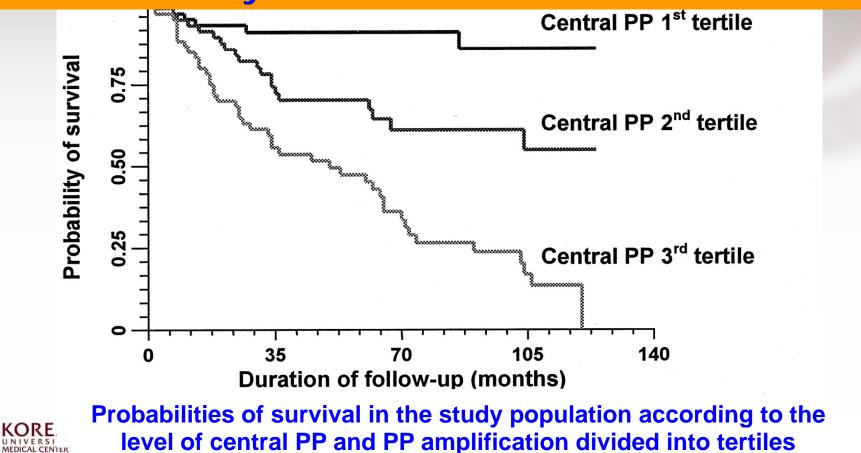
Variable	HR (95% Cls)				
Age, year	1.06 (1.04-1.07)*	1.05 (1.04-1.07)*	1.06 (1.04-1.07)*	1.05 (1.03-1.07)*	1.05 (1.04-1.07)*
Male gender	1.13 (0.87-1.45)	1.17 (0.91-1.52)	1.13 (0.88-1.46)	1.22 (0.94-1.58)	1.10 (0.83-1.45)
BMI, kg/m²	0.99 (0.97-1.01)	0.99 (0.97-1.01)	0.99 (0.97-1.01)	0.99 (0.97-1.01)	0.99 (0.97-1.01)

Central PP was more strong predictor of CVE than brachial PP

monnogen, myrae	1.001 (1.000-1.002/]	1.001 (1.000-1.002/]	1.001 (1.000-1.002/]	1.001 (1.000-1.002/8	1.001 (1.000-1.002)+
Diabetes mellitus	2.48 (1.91-3.22)*	2.44 (1.88-3.17)*	2.47 (1.91-3.21)*	2.41 (1.86-3.13)*	2.42 (1.838-3.22)*
Heart rate, bpm	1.012 (1.001–1.022)‡	1.013 (1.002–1.023)‡	1.013 (1.008–1.143)‡	1.012 (1.001–1.022)‡	1.013 (1.001–1.025)‡
Brachial SBP	1.08 (1.02–1.14)‡				
Brachial PP		1.10 (1.03–1.18)†			
Central SBP			1.07 (1.01–1.14)‡		
Central PP				1.15 (1.07-1.24)*	
Arterial stiffness					1.06 (1.01–1.11)‡

All blood pressures per 10 mm Hg.

BMI indicates body mass index; SBP, systolic blood pressure; PP, pulse pressure.



*P<0.001; †P<0.01; ‡P<0.05; §P<0.005.

REA UNIVERSITY GLOBAL PRIDE

Central PP and Mortality in ESRD

Carotid PP are strong independent predictors of allcause mortality.

Safar ME et al. Hypertension. 2002;39:735-8

Patients With CAD

OREA UNIVERSITY GLOBAL PRIDE

Predictors of all-cause mortality $(n = 324)$				
Predictor*	Hazard Ratio (95% CI)	p Value		
PP (per 10 mm Hg increase)*	1.18 (1.05-1.33)	0.004		
Diastolic BP (per 10 mm Hg increase)	0.76 (0.62-0.94)	0.01		
Peripheral vascular disease	1.96 (1.1-3.51)	0.02		
Diabetes mellitus	1.87 (1.15-3.06)	0.01		
Congestive heart failure	2.43 (1.42-4.16)	0.001		
Left ventricular ejection fraction (per 10% increase)	0.74 (0.63–0.86)	< 0.001		
Aspirin use	0.59 (0.36-0.97)	0.03		
Statin use	0.52 (0.31-0.90)	0.01		
Hematocrit (per 10-point increase)	0.65 (0.48-0.90)	0.008		
Digoxin use	2.41 (1.36-4.26)	0.002		
Serum Creatinine (per mg/dl increase)	1.17 (1.04-1.31)	0.007		
Modified Charlson score (per point increase)	1.10 (1.05–1.16)	<0.001		

Aortic PP significantly predicted death

Aortic arch PP & CAD in Chest Pain Pts

	Multivariate analysis		
	OR	95% CI	р
Age	1.071	1.022-1.123	0.004
Sex	3.940	1.632-9.512	0.002
DM	2.734	1.080-6.921	0.034
aoPWV			
Tertile 1, ≤720cm/s	1		
Tertile 2, 721-1044cm/s	2.740	1.036-7.245	0.042
Tertile 3, >1044cm/s	3.680	1.181-11.460	0.025
Abdominal PP	0.951	0.904-1.001	0.055
Aortic arch PP	1.058	1.008-1.111	0.022

*. Multivariate analysis was performed after adjusting for age, sex, DM, dyslipidemia, HTN, smoking, aoPWV, arPWV, radial PP, abdominal aorta PP and aortic arch PP.

Choi CU, Kim EJ et al. J Hypertens 2010 (In press).

Central BP and Cardiovascular Events (ICARe Dicomano Study)

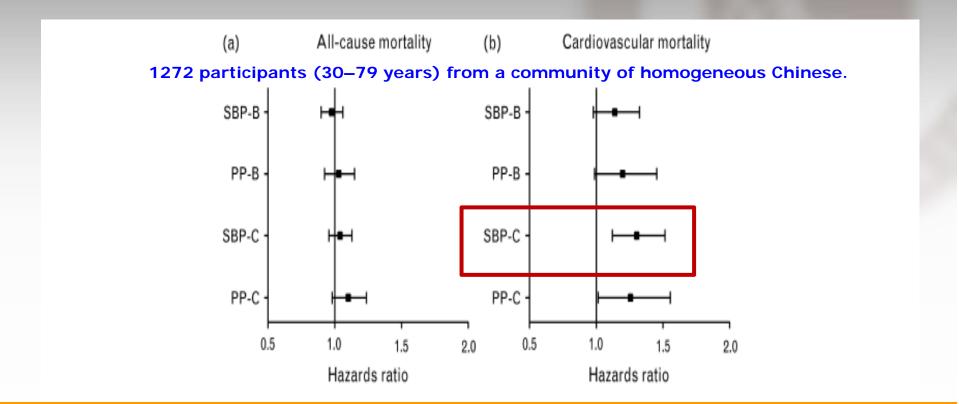
	ľ	Ta	b	e	6	
--	---	----	---	---	---	--

Independent Predictors of Cardiovascular Events

In Unselected Geriatric Population

HR (95% CI) HR (95% CI) p Value p Value

HR (95% CI) p Value HR (95% CI)


p Value

TREA UNIVERSITY GLOBAL PRIDE

Carotid BP was more strong predictor of CVE than brachial BP

Brachial SBP (/10 mm Hg)	0.119				
Brachial PP (/10 mm Hg)		0.063			
Carotid SBP (/10 mm Hg)		1.19 (1.0	08-1.31) <0.0001		
Carotid PP (/10 mm Hg)				1.23 (1.10-1.37)	<0.0001

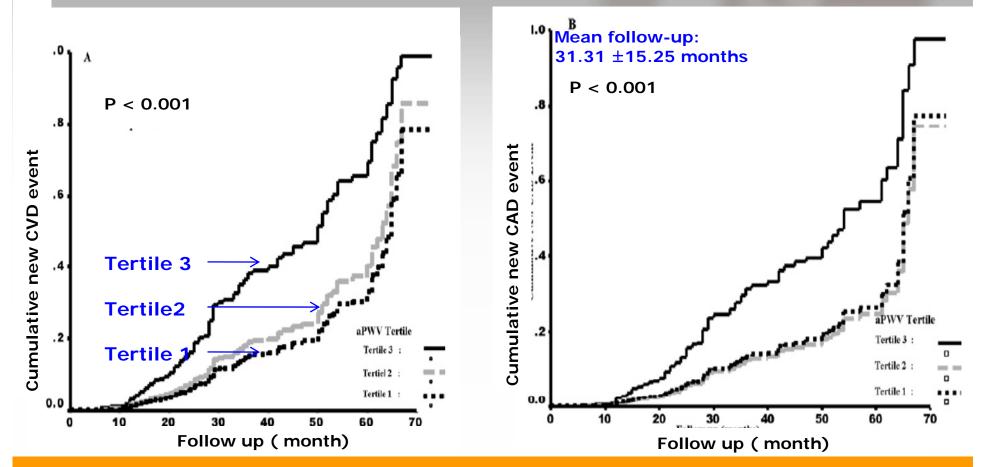
Pini R et al. J Am Coll Cardiol. 2008;51:2432-9.

Central SBP is more valuable than other BP variables in predicting CV mortality.

- paroo procediro, est. Si oracimar ofotomo procediro, est. Si contrat ofotomo procediro.


Wang KL et al. J Hypertens. 2009;27:461-7.

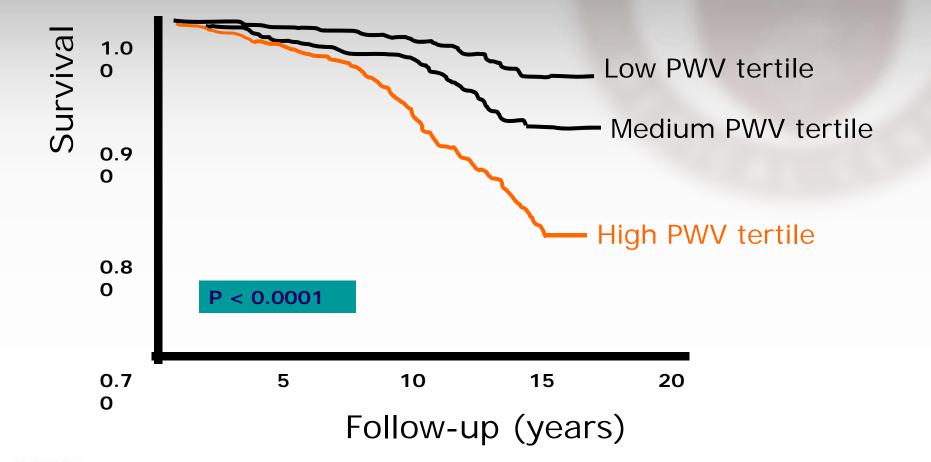
Central PWV and Clinical Data


aPWV and Severity of CAD

PWV is an independent risk marker for CAD and strongly associated with the severity of CAD.

Lim HE, Park CG et al Blood Pressure 2004;13:369-75

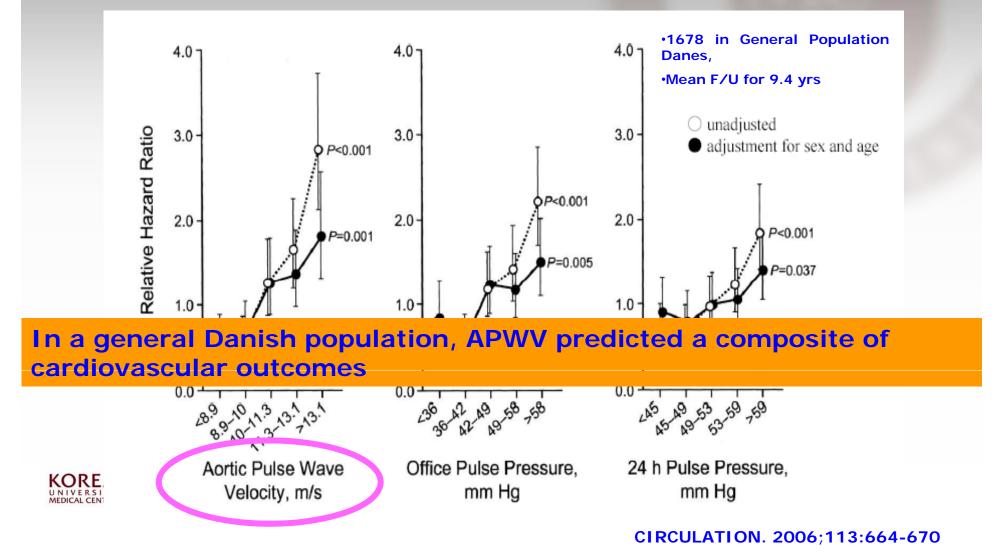
aPWV & Future CVD in Chest Pain Pts

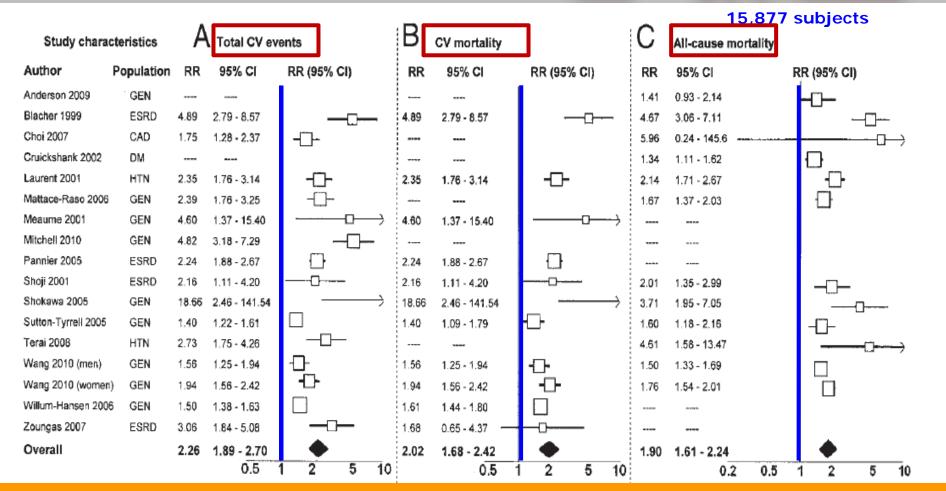


aPWV is an independent risk factor for future CV events and CAD

Choi CU, Park CG et al. Am J Hypertens. 2007;20:1163-9.

KOREA UNIVERSITY GLOBAL PRIDE


aPWV and All-cause Mortality in Hypertensive Subjects



HYPERTENSION. 2001;37:1236-1241

aPWV and Composite Endpoint (CV mortality, CHD, Stroke)

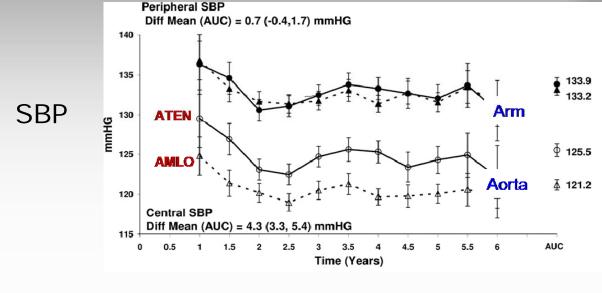
aPWV and CVE,All-Cause Mortality Meta-analysis

Aortic PWV is a strong predictor of future CVE and all-cause mortality

Vlachopoulos C et al.J Am Coll Cardiol. 2010;55:1318-27

Management of Central Blood Pressure

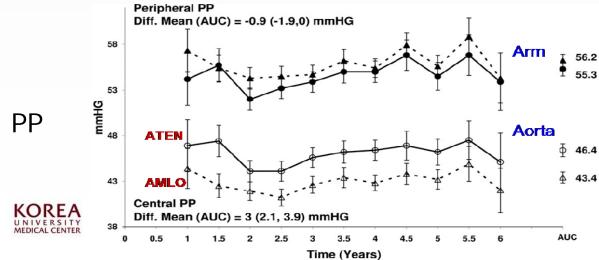
Despite similar effects on brachial pressure, antihypertensive drugs have differential effects on central pressure.



Hypertension. 2009;54:409-13.

OREA UNIVERSITY GLOBAL PRIDE

O'Rourke M. Hypertension 1990; 15:339–347


The Conduit Artery Functional Evaluation (CAFE) ASCOT SUBSTUDY

 ✓ Amlodipine±Perindopril vs Atenolol±Thiazide
 ✓ N=2073, 4 yr F/U

OREA UNIVERSITY GLOBAL PRIDE

patients with HTN

CIRCULATION 2006;113:1213-25

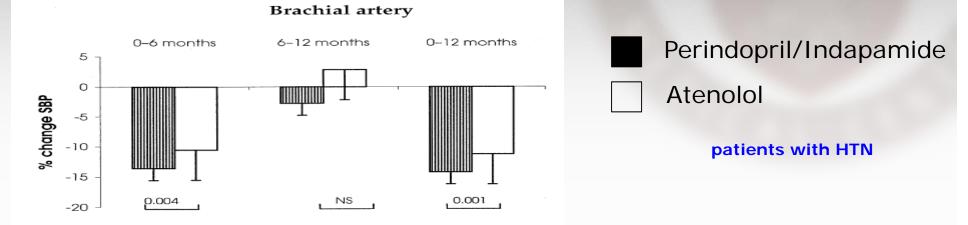

Atenolol vs Eprosartan: Effects on Central BP

Table 2. Hemodynamic and bio	IE 2. Hemodynamic and biochemical parameters of study subjects			Hypertensive Subjects		
Parameter	Baseline	Atenolol	Eprosartan	P value		
Brachial systolic BP (mm Hg) Brachial diastolic BP (mm Hg)	152 ± 2 98 ± 2	135 ± 2* 90 ± 2*	136 ± 2* 92 ± 2*	.7 .5		
Brachial PP (mm Hg)	54 ± 1	45 ± 2*	44 ± 2*	.7		
MAP (mm Hg)	117 ± 2	106 ± 1*	106 ± 2*	.9		
Aortic systolic BP (mm Hg)	139 ± 3	128 ± 2*	123 ± 3*	.03		
Aortic diastolic BP (mm Hg)	100 ± 2	91 ± 2*	92 ± 2*	.4		
Aortic PP (mm Hg)	39 ± 1	37 ± 2	31 ± 2*	.005		
PP amplification	1.38 ± 0.04	$1.21 \pm 0.04^*$	$1.42 \pm 0.04^*$	<.001		
Heart rate (beats/min)	76 ± 3	57 ± 2*	76 ± 3	<.001		
AIX (%)	22 ± 3 7 5 ± 0 3	28 ± 2* 6 8 ± 0 2*	16 ± 3* 7 1 ± 0 3*	<.001		

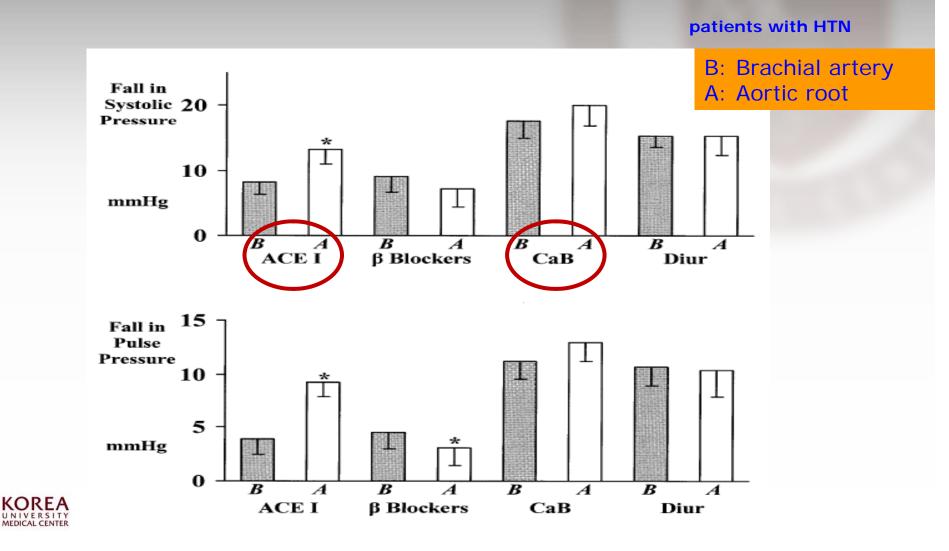
Inhibitors of the RAAS may cause a significantly greater fall of central pressures for a similar fall of brachial pressure

U N I V E R S I T Y MEDICAL CENTER

Low-dose Combination of Perindopril/Indapamide in Hypertensive Subjects: Comparison with Atenolol

Carotid artery

Under Per/Ind, but not atenolol, normalization of brachial SBP is achieved with a significantly greater reduction of central SBP


MEDICAL CENTER

REASON trial, London GM et al. J Am Coll Cardiol 2004;43:92-9.

Comparison of the Effects of Antihypertensive Agents on Central BP

10 wk
110 . 0+
140±3*
82±3
58±4*
126±2*
42±3*

Effect of Different Antihypertensive Drug Classes on Central Aortic Pressure

Morgan T et al. Am J Hypertens. 2004;17:118-23.

Effect of Antihypertensive Drug on Central Hemodynamics

\leftrightarrow	\leftrightarrow	
	$\overline{\frown}$	$\downarrow/\!\!\leftrightarrow$
\downarrow	$\uparrow/\!$	\leftrightarrow
\downarrow	\downarrow	$\downarrow/\!\!\leftrightarrow$
\leftrightarrow	\downarrow	NA
$\downarrow/\!$	\downarrow	$\downarrow/\!\!\leftrightarrow$
\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	$\downarrow/\!\!\leftrightarrow$
$\downarrow/\!\!\leftrightarrow$	\downarrow	NA
E—angiotensin-converting	enzyme; NA—not available; PWV	/—pulse wave velocity.
	$\begin{array}{c} \downarrow/\leftrightarrow\\ \downarrow\\ \downarrow\\ \downarrow\\ \downarrow\\ \downarrow\\ \downarrow/\leftrightarrow\end{array}$	$\begin{array}{cccc} \downarrow & \downarrow \\ \leftrightarrow & \downarrow \\ \downarrow /\leftrightarrow & \downarrow \\ \downarrow /\leftrightarrow & \downarrow \\ \downarrow \\$

KOREA UNIVERSITY GLOBAL PRIDE

Limitation of Central Pressure

Determination of normal values for wave reflections indices and central BPs is mandatory.

Extension of the existing data regarding the superiority of central BP over and above brachial BP in a wider range of populations and disease states is desirable

KOREA UNIVERSITY GLOBAL PRIDE

Summary & Conclusion I

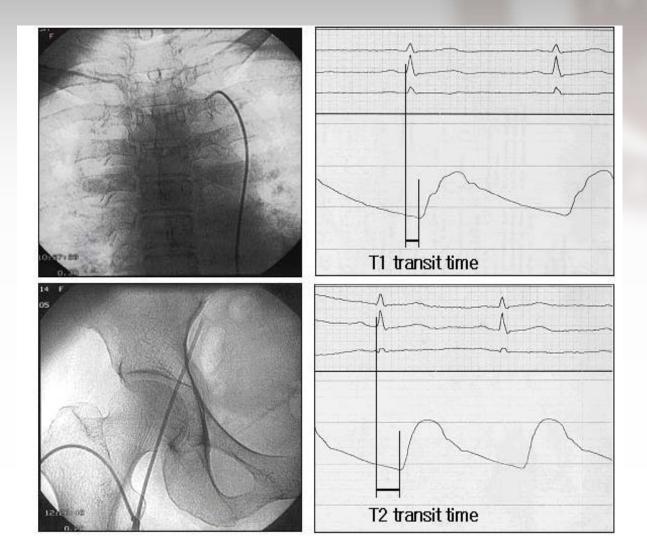
Central Pressures

- Differ significantly from peripheral pressures
- More closely related to the pathophysiology of CVD
- Central BP estimation is feasible by simple and reproducible methods
- Subjected to greater changes by drugs than peripheral BP.

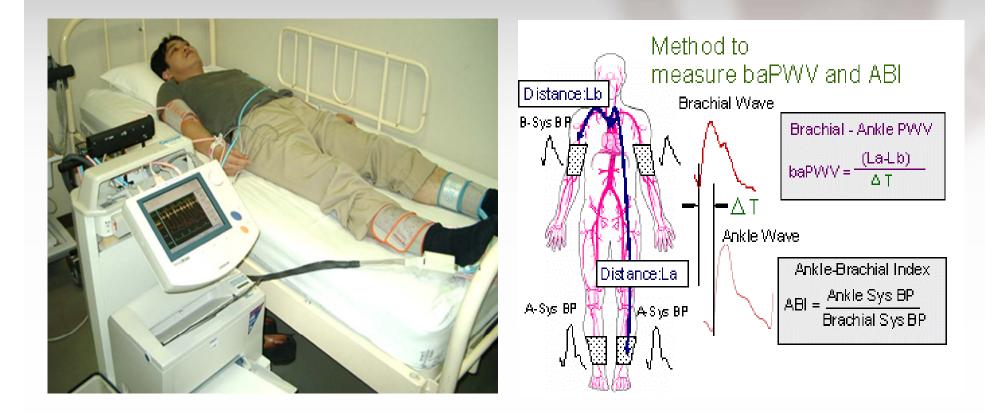
Summary & Conclusion II

The assessment of central BP, together with aortic PWV, may give new additional data for the stratification of CV risk in the management of HTN and CVD.

The prognostic value of central BP in large-scale prospective clinical trials remains a great challenge.



• Back up


PULSE WAVE VELOCITY: Invasive method

PULSE WAVE VELOCITY: Non-invasive method

Association between Age and Each Blood Pressure Using Multivariate Analysis

		Total (n=175)
Age-Associations	β	р	R ²
Aortic arch SBP	0.58	<0.001	0.268
Aortic arch DBP	-0.22	0.004	0.145
Aortic arch PP	0.80	<0.001	0.403
Abd aorta SBP	0.53	0.001	0.197
Abd aorta DBP	-0.30	0.001	0.128
Abd. aorta PP	0.83	<0.001	0.374
Radial artery SBP	0.53	0.002	0.153
Radial artery DBP	-0.21	0.005	0.106
Radial artery PP	0.74	<0.001	0.216

*.Multivariate regression analysis was done after co-adjusting for sex, CAD, diabetes mellitus, dyslipidemia, the use of antihypertensives, heart rate and smoking. KOREA

UNIVERSITY MEDICAL CENTER

Association between Age and Each Blood Pressure Using Multivariate Analysis

	CAD (+, n=71)			C	AD(-, n=1	04)
Age-Associations	β	р	R ²	β	р	R ²
Aortic arch SBP	0.54	0.042	0.260	0.55	0.003	0.299
Aortic arch DBP	-0.36	0.019	0.211	-0.17	0.062	0.161
Aortic arch PP	0.89	<0.001	0.402	0.72	<0.001	0.425
Abd aorta SBP	0.64	0.021	0.243	0.44	0.016	0.245
Abd aorta DBP	-0.43	0.007	0.218	-0.26	0.015	0.122
Abd aorta PP	0.56	<0.001	0.374	0.70	<0.001	0.448
Radial artery SBP	0.63	0.042	0.256	0.43	0.033	0.103
Radial artery DBP	-0.42	0.004	0.184	-0.13	0.141	0.115
Radial artery PP	0.45	<0.001	0.353	0.57	0.001	0.157

*.Multivariate regression analysis was done after co-adjusting for sex, diabetes mellitus, dyslipidemia, the use of **contensives**, heart rate and smoking.

Association between Age and Each Blood Pressure Using Multivariate Analysis

	HTN Tx (+, n=61)		HTN Tx (-, n=71)		=71)	
Age-Associations	β	р	R ²	β	р	R ²
Aortic arch SBP	0.44	0.021	0.241	0.71	0.006	0.387
Aortic arch DBP	-0.35	<0.001	0.196	-0.04	0.753	0.119
Aortic arch PP	0.79	<0.001	0.395	0.75	<0.001	0.472
Abd aorta SBP	0.44	0.026	0.197	0.58	0.019	0.246
Abd aorta DBP	-0.45	<0.001	0.197	-0.13	0.362	0.060
Abd. aorta PP	0.50	<0.001	0.400	0.71	<0.001	0.402
Radial artery SBP	0.42	0.041	0.154	0.54	0.056	0.220
Radial artery DBP	-0.31	0.001	0.165	-0.01	0.676	0.117
Radial artery PP	0.37	<0.001	0.221	0.59	0.016	0.302

*.Multivariate regression analysis was done after co-adjusting for sex, CAD, diabetes mellitus, dyslipidemia, heart rate and smoking.

the question follows as to whether central aortic pressures should be measured more routinely in clinical practice

- first, can central aortic pressure be measured in routine clinical practice?
- Second, the only point in measuring central aortic pressures would be if the measurement provided more accurate information than brachial BP about the patients' risk and a better assessment of their response to treatment.

KOREA UNIVERSITY GLOBAL PRIDE

Amplification 차이

- Mean BP and diastolic BP change little from the aortic root to brachial artery and represent the tonic component of BP.
- In contrast, systolic BP is the more dynamic, pulsatile pressure component and is amplified with increasing distance from the aortic root. This systolic and pulse pressure amplification process is principally a function of the timing of pressure wave reflections in the circulation.
- These reflections are more likely to augment systolic and pulse pressure as the pressure wave moves from the aortic root and closer to reflecting sites at the periphery [1]. This amplification phenomenon is more pronounced in younger people with healthy conduit arteries who thus have greater brachial systolic and pulse pressures relative to their corresponding central aortic pressures.
- Aortic: brachial pulse pressure amplification can be quite marked in young healthy people, and atypical brachial: aortic ratio is 1.5.
- The amplification process diminishes with ageing, principally due to aortic stiffening and an increased pulse wave velocity. Thus, with ageing or aortic stiffening or both, central aortic pressures are closer to the brachial pressures but are rarely the same

Aortic PP was a Significant Risk Factor for the Extent of CAD

Table 4. Multiple regression analysis of the number of diseased coronary vessels

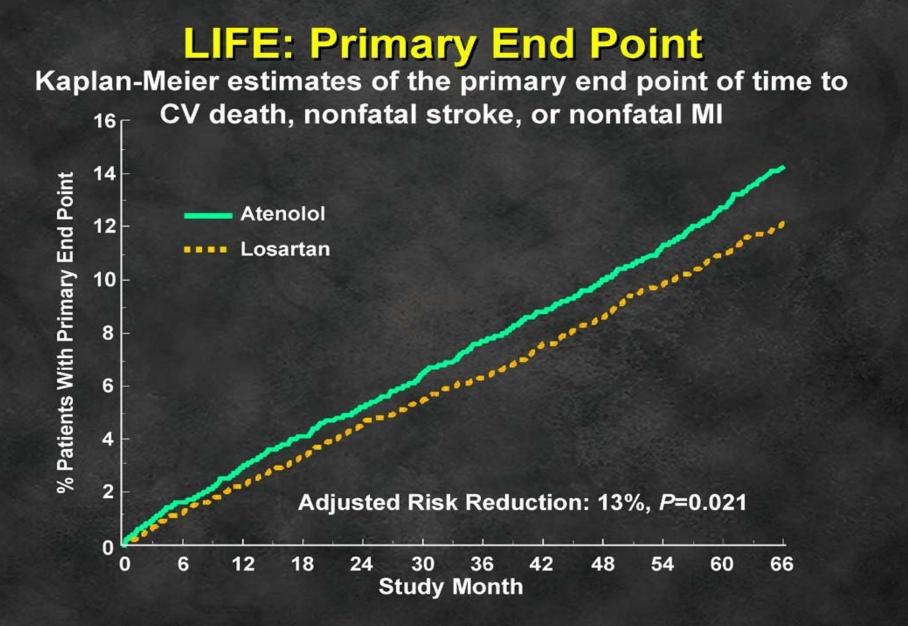
Factor	Regression Coefficient	R ²	Р
Gender (0 male, 1 female)	-0.55	0.022	.013
Aortic pulse pressure (mm Hg)	0.0125	0.10	.023
Dyslipidemia (1 yes/0 no)	0.286	0.059	—
Age (y)	-0.011	0.028	_
Diabetes mellitus (1 yes/0 no)	0.249	0.024	_
Aortic mean BP (mm Hg)	0.005	0.005	_
Current smoker (1 yes/0 no)	0.09	0.0006	_

Dependent variable: number of diseased vessels ($r^2 = 0.24$; P < .001). Abbreviation as in Table 3.

MEDICAL CENTER

Asc. Aorta SBP are Related to Extent of CAD

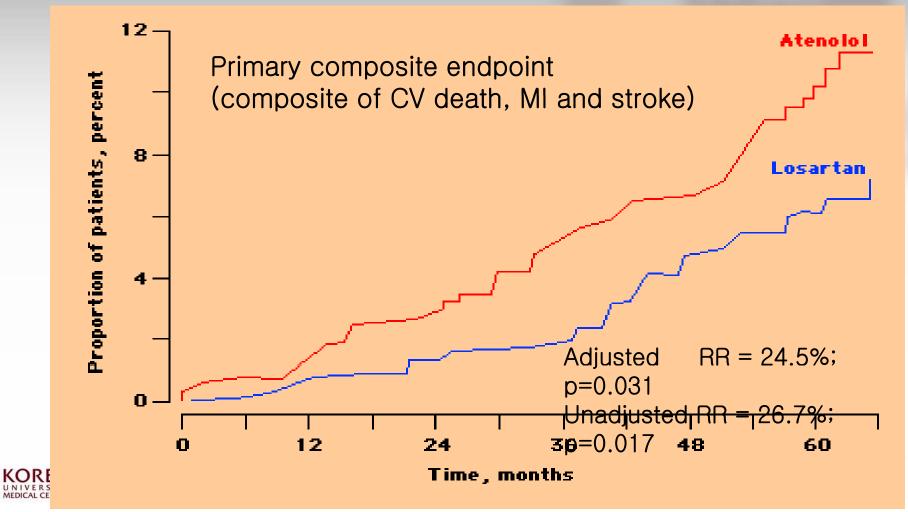
Table 3. Odds ratios for the association between each hemodynamic parameter and the risk of three-vessel coronary artery disease (CAD) (1 = three-vessel CAD, 0 = one- or two-vessel CAD)


	Odds Ratio (95% CI)				
Parameter	Univariate	Multivariate*			
Sphygmomanometer brachial BP					
Systolic BP per 10 mm Hg	1.15 (1.03-1.28)				
Diastolic BP per 10 mm Hg	1.11 (0.92-1.36)				
Mean BP per 10 mm Hg	1.18 (1.00–1.40)				
Pulse pressure per 10 mm Hg	1.20 (1.04-1.38)				
FSP per 0.1	1.27 (0.99-1.62)				
FDP per 0.1	0.62 (0.38-1.02)				
Invasively measured ascending aortic BP	3 <i>2</i>				
Systolic BP per 10 mm Hg	1.16 (1.06-1.27)				
Diastolic BP per 10 mm Hg	0.93 (0.77-1.12)				
Mean BP per 10 mm Hg	1.12 (0.96-1.30)				
Pulse pressure per 10 mm Hg	1.28 (1.15–1.44)	1.15 (1.01-1.30)			
FSP per 0.1	1.58 (1.30-1.92)	1.28 (1.03-1.60)			
FDP per 0.1	0.40 (0.27-0.59)	0.61 (0.39-0.95)			

MEDICAL CENTER

Implications for Cuff (Brachial) BP

- Inaccurate indicator of hypertension ?
- Poor indicator of central systolic BP, cardiac load, and LVH ?
- Poor indicator of renal and cerebral microcirculatory pulsatile loads and organ damage ?
- Poor indicator of beneficial effects of antihypertensive drugs ?



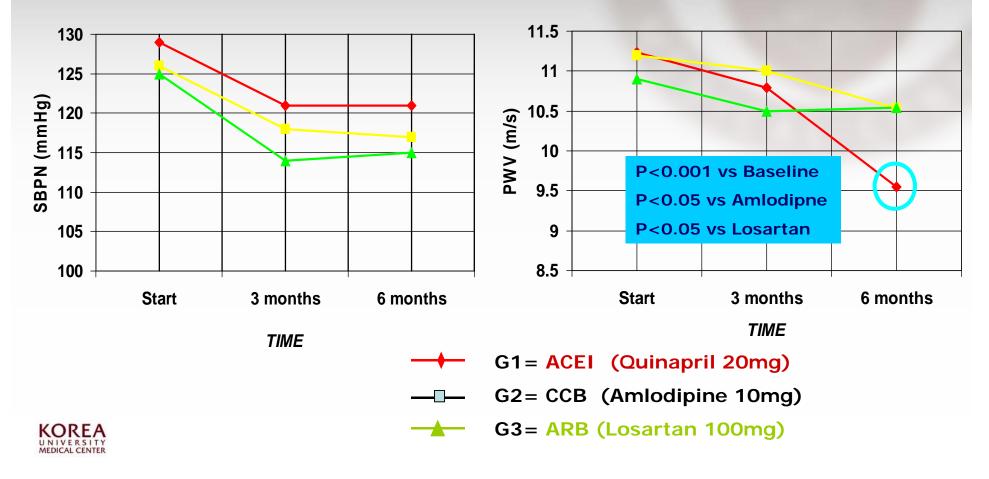
ANBP2 study 결과

End Point	Hazard Ratio (95% Cl)	P Value	ACE Inhibitors Superior Diuretics Superior 0.2 1.0 5
All cardiovascular events or death from any cause	0.89 (0.79-1.00)	0.05	-8-
First cardiovascular event or death from any cause	0.89 (0.79-1.01)	0.06	-8-
Death from any cause	0.90 (0.75-1.09)	0.27	
Male Subjects			
End Point	Hazard Ratio (95% Cl)	P Value	ACE Inhibitors Superior Diuretics Superior 0.2 1.0 5
All cardiovascular events or death from any cause	0.83 (0.71-0.97)	0.02	
First cardiovascular event or death from any cause	0.83 (0.71-0.97)	0.02	
Death from any cause	0.83 (0.66-1.06)	0.14	
Female Subjects			ACE Inhibitors Superior Diuretics Superior
End Point	Hazard Ratio (95% Cl)	P Value	0.2 1.0 5
End Point		0.98	
End Point All cardiovascular events or death from any cause	1.00 (0.83-1.21)		
	1.00 (0.83-1.21) 1.00 (0.83-1.20)	0.98	-+-

LIFE - Cardiovascular Benefits of Losartan Confirmed in Diabetic Subgroup

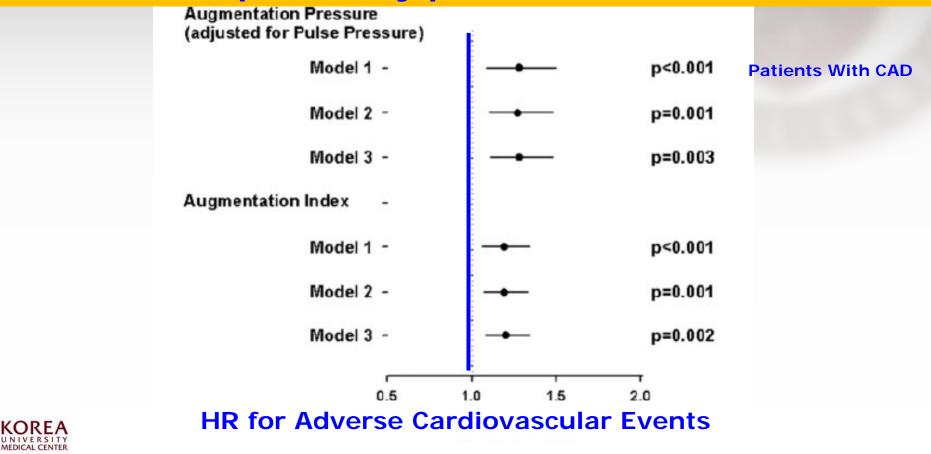
Lindholm LH et al Lancet 2002;359:1004-1010

ANBP 2 Primary Result

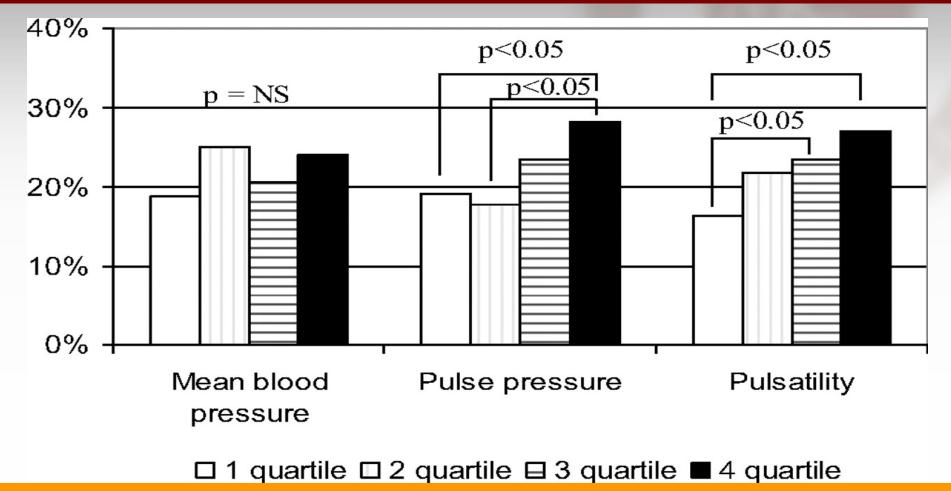


Reference 1000 patient years Adjusted for age, gender

aPWV and antihypertensive therapy ACEI vs CCB vs ARB


Different effects on PWV for the same Systolic BP reduction

Rajzer & al Am J Hypertens 2003;16:439-44



Aortic AP independently predicts adverse outcomes

Central Pressure and Cardiovascular Events in CAD Pts

Central PP was independently related to the CVE

Jankowski P et al. Hypertension. 2008;51:848-55.

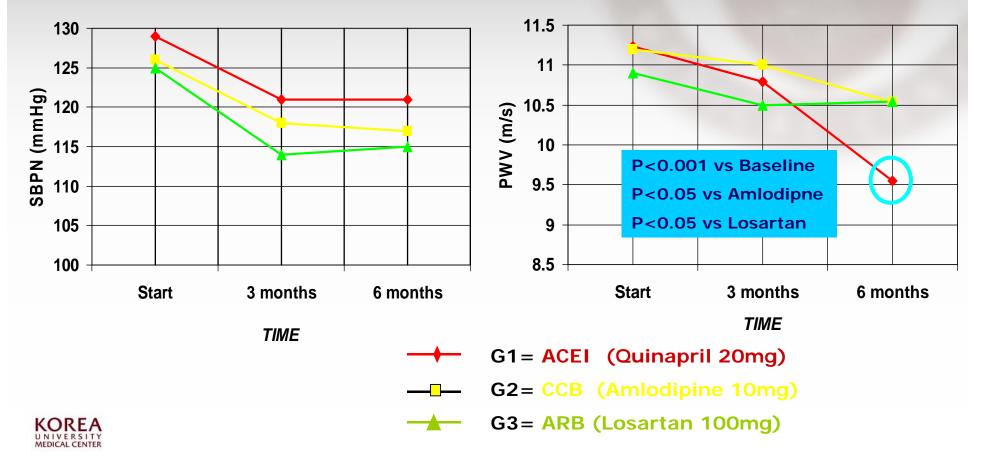
Table 1 Central aortic pressures and major clinical outcomes in recent clinical studies

Patient group	Follow-up (months)	Outcome	Number of events	Dominant BP variable in multivariate analysis	Hazard ratio per 10mmHg ^a or SD (95% Cl)
End-stage renal disease	52	All cause mortality	70	Central pulse pressure (C)	1.4 (1.1–1.8)
Male coronary heart disease patients	39	All cause mortality	64	Central pulse pressure (D)	1.18 ^a (1.05–1.33)
Treated hypertensive patients	36	Composite of CV and renal events	305	Central pulse pressure (R)	1.11 ^ª (1.0-1.21)
Unselected cohort of American Indians	58	Fatal and nonfatal CV events	319	Central pulse pressure (R)	1.15 ^a (1.07–1.24)
Unselected elderly population	96	CV mortality	45	Central systolic pressure (C)	1.33 ^a (1.03–1.72)
Coronary heart disease patients	54	Fatal and nonfatal CV events	246	Central pulse pressure (D)	1.25 (1.09–1.43)
Unselected Chinese community	120	CV mortality	130	Central systolic pressure (C)	1.30 ^a (1.12-1.52)

MEDICAL CENTER

Estimation of central systolic blood pressure using an oscillometric blood pressure monitor

TREA UNIVERSITY GLOBAL PRIDE


Hao-Min Cheng^{1,2}, Kang-Ling Wang^{2,3}, Ying-Hwa Chen^{2,3}, Shing-Jong Lin^{1,4}, Lung-Ching Chen^{2,3}, Shih-Hsien Sung^{2,3}, Philip Yu-An Ding^{2,3}, Wen-Chung Yu^{2,3}, Jaw-Wen Chen^{1,4} and Chen-Huan Chen^{1,2,4}

Current noninvasive techniques for assessing central aortic pressure require the recording of an arterial pressure wave using a high-fidelity applanation tonometer. We therefore developed and validated a novel method to estimate the central aortic systolic pressure using an oscillometric blood pressure monitor alone. Invasive high-fidelity right brachial and central aortic pressure waves, and left-brachial pulse volume plethysmography from an oscillometric blood pressure monitor, were obtained at baseline and 3 min after administration of sublingual nitroglycerin in 100 patients during cardiac catheterization. In the initial 50 patients (Generation Group), Central systolic blood pressure was predicted by a multi-variate prediction model generated from the comprehensive analysis of the invasive brachial pressure wave, including brachial late-systolic shoulder pressure value and parameters related to wave reflection and arterial compliance. Another prediction model was similarly constructed from the noninvasively calibrated pulse volume plethysmography. Both models were validated in the subsequent 50 patients (Validation Group) with results: r=0.98 (P<0.001) and mean difference= -0.1 ± 7.6 (95% confidence interval -8.3 to 9.3) mm Hg for the invasive model, and r=0.93 (P<0.001) and mean difference= -0.1 ± 7.6 (95% confidence interval -15.0 to 14.8) mm Hg for the noninvasive brachial pressure wave alone from an oscillometric blood pressure could be estimated by analysis of the noninvasive brachial pressure wave alone from an oscillometric blood pressure could be estimated by analysis of the noninvasive brachial pressure wave alone from an oscillometric blood pressure monitor. *Hypertension Research* advance online publication, 26 March 2010; doi:10.1038/hr.2010.37

aPWV and Antihypertensive Therapy ACEI vs CCB vs ARB

Different effects on PWV for the same Systolic BP reduction

Rajzer & al Am J Hypertens 2003;16:439-44

The Anti-Hypertensive Role of Statins

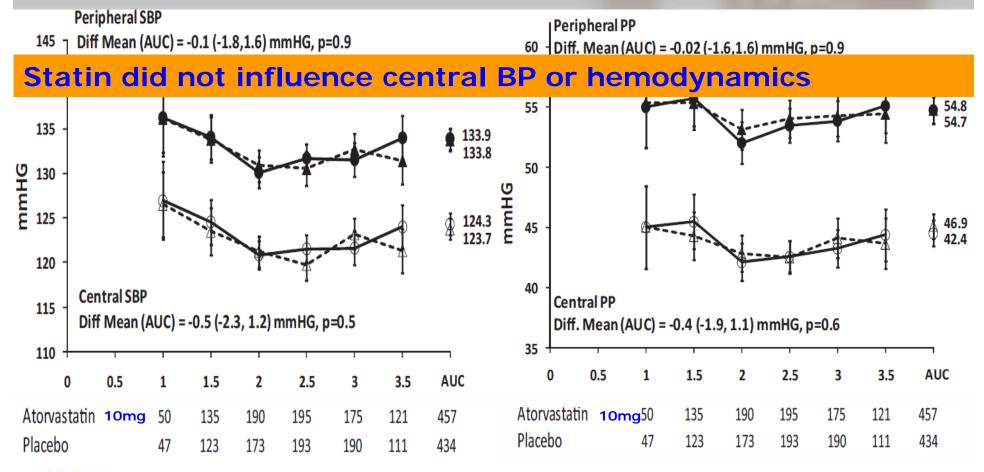

Principal investigators	Type of study/ study design	Data extrapolated from trial(s)						
		Patient characteristic	BP value	Placebo		Statin		'P' value
				Baseline	Treated	Baseline	Treated	
Glorioso et al 1999	Double blinded, randomized, cross over trial	N=25 HTN +	Systolic	149±6	149 ± 6	149±6	141 ± 5	0.001
		↑Chol	Diastolic	97±2	97±2	96±2	91±4	0.001
Sposito et al 1999	Randomized clinical trial without blinding	N=70 HTN +	Systolic	149 ± 8	137 ± 6	153 ± 9	130 ± 5	< 0.01
		↑ Chol	Diastolic	102±2	87±8	100±3	81±4	<0.01
Borghi et al	Double blinded,	N=135 HTN +	Systolic	157.7±24	147.2 ± 7	160.7 ± 21	142.5 ± 17	< 0.001
2000	randomized placebo controlled trial	↑ Chol + Normal Chol.	Diastolic	95.7±8	89.8±4	94.1±9	84.1±5	<0.05
Prasad et al	Retrospective	N=113 HTN +	Systolic	133.9 ± 14	133.1 ± 17	135 ± 16	128.3 ± 15	0.005
2003	cohort study of renal	↑ Chol Renal Transpl.	Diastolic	83.9±8	82.5±10	82.5 ± 10	79.4 ± 9	0.05

 Table 1 Data from various trials on the effects of statins on blood pressure

Statins may provide substantial reduction of blood pressure in the Hypertensive, independent of their lipid-lowering effect.

MEDICAL CENTER

