CT of congenital heart disease

Ki Seok Choo Department of Radiology Pusan National University Yangsan Hospital

MR vs CT in CHD

	MR	СТ
Spatial resolution	0.9x1.1x1.2-2.4	0.4x0.4x0.4
Risks	sedation	Radiation
Possible Cx	Immediate desaturation Cyanotic spell Respiratory acidosis Bradycardia, etc	Possible cancer after 10-20 years
Examination time	About 45 min	5-15s
Scheduling	Weeks to months	Hours to days
cost	Expensive	cheaper

Pediatric radiology 2008:438-451

CT > Echo

- Great vessels: Aorta, pulmonary artery and vein
- Adult CHD
- Post-surgical F/U- residual stenosis, defect
- Central airway problem: trachea, proximal bronchus
- Intra-cardiac abnormality?

소아심장과 선생님께서

- Aorta가 좀 가는것 같은데 어때요?
- Pulmonary artery course가 좀 이상한데 요? size는 괜찮나요?
- Pulmonary vein의 drain은 어디로 되나요?
- Air way 눌린데는 없나요? Lung은 요?
- BCPS (BT shunt), Fontan pathyway 는 patent 하나요?

Extracardiac anomaly

- Arch anomaly
- Pulmonary artery abnormality (ex. Sling)
- Abnormal Pulmonary vein drain (ex. TAPVC)
- Airway problem

Pediatric radiology 2006 :219-223

Aortic arch anomaly

- A. left aortic arch with aberrant right subclavian artery
- B. right aortic arch with aberrant left subclavian artery
- C. right aortic arch with left descending aorta (circumflex retroesophageal aortic arch)
- D. double aortic arch
- E. persistent fifth aortic arch
- F. isolation of subclavian artery from aorta

Double aortic arch

Lt. pulmonary artery sling

- Anomalous or aberrant left pulmonary artery originate from posterior aspect of right pulmonary artery
- In classic form, wrap around junction of trachea and right mainstem bronchus to pass in front of esophagus
- Compression of the lower trachea leads to respiratory symptoms of wheezing and stridor
- Bronchial compression causes air trapping, pneumonia, and atelectasis

Subcarinal sling

Airway anomalies

- Tracheal bronchus
- Bridging bronchus
- Cardiac bronchus
- TEF
- Congenital tracheal stenosis
- Bronchial atresia
- Atrial isomerism

Coarctation of the aorta

Juxtaductal type =postductal type

tubular hypoplasia =preductal type

TAPVC

TAPVC

TAPVC

Table 1 Comparison of echocardiography and MDCT in evaluation of TAPVC

Finding	Echocardiography	MDCT	Surgery	P value
Drainage site of the common pulmonary vein	20	23	23	0.233
Stenosis of the vertical vein	4	7	7	0.192
Atypical vessel into the systemic vein in the case of vertical vein stenosis	0	1	1	1

Pediatric radiology 2009 :950-954

S/P TCPC

ECG synchronization

- Retrospective ECG gated spiral scan
- Prospective ECG-Triggered sequential scan
- Combo CT scan
- -> Non ECG spiral scan + prospective ECG-triggered sequential scan

Retrospective ECG gated spiral scan

S/P CoA correction

Prospective ECG-Triggered sequential scan

LV and RV function

IV injection

- Concentration and amount of iodinated contrast agent
- Empiric vs bolus tracking vs test injection
- Bi-phasic (100%-saline) vs Tri-phase (100%-50%-saline)
- Site-arm, leg, umblical
- S/P BCS, TCPS etc

Radiation dose

- Optimal kVp and mAs-> depending on body weight
- Tube current modulation
 - ECG correlation and attenuation correlation
- Optimal ECG Pulsing
- Cardiac filter
- 3 D noise reduction kernel

New boron

- Non-ECG gating in Single 128 MDCT
- -> $0.13 0.5 \, \text{mSV}$
- ECG gating (prospective)-> in dual 128
 MDCT
- -> 0.68-1.3 mSv

Conclusion

- MDCT can provide accurate morphologic as well as functional data at now although MDCT have several limitation
- Radiologist and clinician should familiarize advantage and disadvantage of MDCT