심부전이 동반된 관상동맥질환: Is 'viability issue' still viable?

김 준홍 MD, PhD

부산의대 양산 부산대 병원

Is 'viability issue' still viable?....????

Unprecedented improvement in Tx of CAD over the last 3 decades

Thrombolytic treatment
 Percutaneous coronary intervention

Multivessel disease with increased LV volume

concept of 'viability'

Definition of "ischemic cardiomyopathy"

 is currently applied to patients with significantly impaired left ventricular dysfunction (left ventricular ejection fraction 35 to 40 percent) that results from coronary artery disease
 Most common cause of HF

Myocardial Stunning and Hibernation

Myocardial Stunning

Myocardial Hibernation

A case of Hibernating Myocardium

M/58

■ 3년전부터 effort related chest pain

- 최근 들어 증상이 심해짐 (minimal effort related chest pain)
- RF : HTN/chol
- T chol 250 mg/dl BNP 709 pg/mL, CRP 0.32 mg/dL
- ECG : NSR, nonspecific ST change
- Echo : Mulitiple RWMA

& global hypokinesia (22%) Moderate functional MR

Chest PA

CAG finding

RCA = diminutive RCA

Cardiac MRI finding

PCI with LV assist devices

Serial change of LV recovery after PCI :

Assessment of Viability

SPECT

PET

Dobutamine - ECHO

MRI

SPECT (Single Photon Emission CT)

A large, moderately severe, reversible inferior wall defect (arrows) reflecting a severe flow reserve abnormality.

Myocardial metabolism in ischemic myocardium

MBF

fasting FDG

Glucose loaded FDG

Ischemic myocardium

↑Glucose uptake

↑ Glycogen breakdown

↑ Glucolysis

↓ Mitochondrial metabolism

↓ FFA uptake

Cardiac MRI detecting myocardial infarction

imaging 1g of myocardial necrosis with a spatial resolution of 2mm

Accuracy for predicting recovery of wall motion after revasuclarization

Which one is better?

- **SPECT/PET** : excellent sensitivity
- Echo & CV MRI with dob stress
- : superior specificity and positive predictive value.
- late-enhancement CV MRI
- : better negative predictive value for segments of nonviable segments in 6

months after revascularization compared with <u>MIBI or PET</u>

Assessment of viable myocardium in Q wave region

Impact of revascularization in ICMP

LV function improvement ? Reverse remodeling ? Mortality benefit ?

Impact of Revascularization on LVEF according to the presence of Hibernating myocardium

A mean increase in LVEF of about 8 percent after revascularization

	No. of studies	Hibernation		No Hibernation		
		LVEF before	LVEF after	LVEF before	LVEF after	
FDG PET	12	37	47	39	40	
Th	5	30	38	29	31	
MIBI	4	47	53	40	39	
Dob Echo	7	35	43	35	36	

How much of Viable myocardium (VM) is needed to achieve LV function improvement ?

To predict at least 5% of EF improvement

VM > 25% of of LV on Dob Stress Echo Bax JJ et al *J Nucl Med*. 2002;43:795–802.

VM > 38% using conventional nuclear medicine and PET. Bax JJ et al. . *Am J Cardiol*. 2003;92:1–4.

Impact of Revascularization on remodeling according to the presence of Hibernating myocardium

Impact of Revascularization on Mortality according to the presence of Hibernating myocardium

Pooled data from retrospective studies

20 %

Underwood et al : European Heart Journal 2004;25:815

PET mismatch and Prognosis in patients with medical Tx only

Impact of Revascularization on Mortality according to the presence of Hibernating myocardium

STATE-OF-THE-ART PAPER

Revascularization in Severe Left Ventricular Dysfunction The Role of Viability Testing Panithaya Chareonthaitawee, MD, FACC,* Bernard J. Gersh, MB, CHB, DPHIL, FACC,* Philip A. Araoz, MD,† Raymond J. Gibbons, MD, FACC* *Rochester, Minnesota*

of patients might experience benefit (50). On the basis of the available literature, we suggest that when 25% to 30% of the LV is dysfunctional but viable by noninvasive testing, revascularization might be considered (Fig. 6). The decision

(J Am Coll Cardiol 2005;46:567-74)

Patients do not always recover in function after revascularization

In 1/3 of all patients (n=118), LVEF didn't improve after CABG

Predictor of LVEF improvement

- 1. Viable myocardium
- 2. LVESV (140ml)

LVESV > 140 ml

Highest sensitivity/specificity to predict the absence of global recovery (68/65%)

LV size as a determinant outcome of revascularization ; LV remodeling

Law of LaPlace. T = Pr

LVEDD > 7 cm (4 cm/m2): operative mortality is high

Time course of recovery of viable myocardium protract up to 14 months

May be due to different stage of structural abnormality

Failure to Improve Left Ventricular Function After Coronary Revascularization for Ischemic Cardiomyopathy Is Not Associated With Worse Outcome

Circulation. 1999;100:1298

Failure to Improve Left Ventricular Function After Coronary Revascularization for Ischemic Cardiomyopathy Is Not Associated With Worse Outcome

F/U (Months)

Circulation. 1999;100:1298

Summary : approach to ICMP

But.... Do we have the definite evidence of study designed as prospective random trial about myocardial viability?

The first prospective randomized trial

STICH Viability study

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction

ACC 2011, NEJM Apr 4, 2011

To test the hypothesis that CABG improves survival in patients with ischemic LV dysfunction compared to outcome with aggressive medical therapy

Study Design : ICMP < EF 35%

Study Design : ICMP < EF 35%

Baseline characteristics

	Viable (n=487)			Non-Viable (n=114)		
Variable	MED (n=243)	CABG (n=244)	P value	MED (n=60)	CABG (n=54)	P value
Age	60 ± 10	62 ± 9	NS	62 ± 9	60 ± 9	NS
Gender (% male)	84%	86%	NS	92%	93%	NS
Previous MI	78%	75%	NS	93%	96%	NS
Multivessel CAD	72%	73%	NS	68%	78%	NS
Proximal LAD	65%	63%	NS	70%	70%	NS
Risk score*	11.9 ± 8.4	12.8 ± 903	NS	13.7 ± 9.8	12.9 ± 9.3	NS
LV EF (percent)	28 ± 8	27± 8	NS	23 ± 9	23 ± 9	NS
LV EDVI (ml/m ²)	118 ± 38	116 ± 35	NS	151 ± 51	140 ± 54	NS
LV ESVI (ml/m ²)	86 ± 34	86 ± 32	NS	121 ± 50	111 ± 51	NS

Viable vs Non-viable

MED vs CABG

Is 'viability issue' still viable?....????

?

Yes!! • A lot of pooled data • Meta analysis The first prospective random trial (STICH viability)

Thallium vs Tc-labeled tracer

Much less distribution with time Better image resolution Less radiation exposure (short half life)

PET (Positron Emission Tomography) superior spatial resolution and attenuation correction

"Flow metabolism mismatch" gold standard of viability

Wave front of necrosis in infarction in the absence of collaterals.

Kim et al, N Engl J Med 16:1445, 2000.

SPECT (Single Photon Emission CT)

A large, moderately severe, reversible inferior wall defect (arrows) reflecting a severe flow reserve abnormality. A milder reversible inferior wall defect (arrows) reflecting a less severe stenosis or a more severe stenosis with well-developed collaterals minimizing the defect severity.

"Syncopal attack during CABG permisson...."

And then refuse CABG...

PCI with LV assist devices

ECMO + IABP insertion

Which one is better?

	Patients,	Sensitivity, Mean	Specificity, Mean	PPV, Mean	NPV, Mean
CMD	Ш	(35% 0)	(35% 61)	(95% 01)	(95% 01)
Contrast enhanced ⁶⁷	29	97 (91–100)	68 (51-85)	73 (57–89)	93 (84–100)
Dobutamine stress ^{73–75}	193	94 (90–97)	90 (86–94)	86 (81–91)	92 (88–96)
Total		94 (91–97)	87 (83–91)	84 (79–89)	87 (89–96)
Conventional nuclear		. ,	, ,	, ,	, ,
^{99m} Tc-sestamibi ⁷⁶	30	96 (89–100)	55 (37–73)	87 (75–99)	80 (66–94)
SPECT FDG ⁷⁰	47	89 (80–98)	86 (76–96)		
²⁰¹ TI rest, reinjection ^{22,76,77}	104	86 (80–93)	63 (54–73)	69 (60-8)	85 (78–92)
Total	181	89 (84–93)	68 (61-75)	73 (66–81)	84 (78–90)
Echocardiography					
DSE ^{22,66,72,73,77-80}	424	76 (72–80)	81 (77-84)	66 (61-71)	89 (86–93)
DSE SRI ⁶⁶	55	82 (72–92)	80 (69–91)		
End-diastolic wall thickness ²²	43	94 (87-100)	48 (33–63)	53 (38–68)	93 (85–100)
Total	522	78 (74–81)	78 (74–81)	64 (59–70)	90 (86–93)
PET					
PET-FDG ^{67,70,75,79-81}	280	89 (85–93)	57 (51–63)	73 (66–80)	90 (86–95)
Total	280	89 (85–93)	57 (51–63)	73 (66–80)	90 (86–95)

SPECT/PET : excellent sensitivity
Echo & CV MRI with dob stress
: superior specificity and positive
predictive value.
late-enhancement CV MRI
: better negative predictive value for
segments of nonviable segments in 6
months after revascularization
compared with <u>MIBI or PET</u>

Circulation. 2008;117:103-114.