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Definition of Heart Failure

“HF is a complex clinical syndrome
that can result from any structural or
Functional cardiac disorder that
impairs the ability of the ventricle to
fill with or eject blood”
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Congestive Heart Failure
Multibillion $ Device/Tx Strategies

Transplant LVAD AICD BiV Pacer

Cost of CHF Therapy is Not Sustainable



Future of Cardiovascular Medicine in 
Heart Failure

• Diseased based diagnosis and therapy
– Prevention and management of coronary artery disease, 

CHF, BP
– Detection of preclinical disease/prevention strategies

• Genomics
– How gene mutations and their regulation affect the 

development, and progression of heart disease.
• Proteomics 

– Expression, function and interaction of the human proteins, 
and their changes and effects in cardiovascular disease 

• Regenerative medicine
– Methods and effectiveness of strategies to regenerate heart 

muscle



Heart Failure & Aging
• Congestive Heart Failure(CHF)

– Highly prevalent

– Incidence & prevalence increases with age

– Poor prognosis with 4-year survival of ~50%

– Aging is one of the major risk factors

– Susceptibility, age of onset, pace of progression

: highly variable 

 conventional risk factor cannot explain this variability



Heart Failure & Aging
• Aging

– Age associated change lower threshold for the 
expression of HF

– Significant changes in diastolic function, hypertension, 
atherosclerosis, valve calcification, senile amyloid
deposition

– Molecular mechanism of aging heart

→ accumulation of DNA damage & telomere attrition

→ senescent cell↑ with decreased function



Understanding Cellular Aging is Essential: 

PREVENTION
• Reverse or prevent disease

THERAPEUTICS
• Pharmaco-genomics
(Genome-based drug design)

DIAGNOSTICS
• Diagnosis
• Prognosis

Disease Cell Mechanism



Myocytes Changes in MI
Need for Regenerative Rx

Anversa P. Nature 415; 240 2002



Cellular therapy of MI
• Transplantation of embryonic stem cells   
• Human umbilical vein endothelial cells  
• Adult bone marrow cells (BMC)  
• Implantation of skeletal myoblasts
• Bone-marrow-derived cardiomyocytes

– Challenge is to deliver them to the right place

– Need to increase degree of cell survival by 
improving neovascularization



Porcine Model of Myocardial Infarction



Porcine Model of Myocardial Infarction



Trilogy of Aging Hearts

• Left ventricular hypertrophy

• Heart failure

• Atrial fibrillation



Functional changes of the 
aging heart

• Myocardial stiffness↑
→ LVEDP↑
→ Early diastolic filling↓

• During exercise
– Stroke vol↑ through cardiac dilatation (EDV↑)
– Lesser increase in HR, greater increase in BP

: Response to catecholamine↓, SA node pacemaker cell↓
• Aortic distensibility↓
→ isolated systolic HTN



Aging on Human Heart

Systolic function Diastolic function

Circulation 2003:107; 346



Aging on Human Heart



Aging on Human Heart



Aging on Human Heart



Morphological and cellular changes 
of the heart

• Most components of the myocardium undergo 
structural changes

• Myocytes loss 
- Hypertrophy of remaining myocytes
- Apoptosis or programmed cell death

• Collagen content, fibrosis, senile cardiac 
amyloid deposition, lopofuscin↑



• Cellular changes
– Increasing age does not result in an increase in left 

ventricular mass

– 35% of myocytes in ventricles is lost between the age 
of 30~70

– May be related with reduction of capillary density that 
causes ischemic injury

– Compensatory mechanism makes the volume of 
remaining myocytes increase

Morphological and cellular changes 
of the heart



• Molecular changes
– Cellular and molecular alterations underlie the functional 

abnormalities of the aging myocardium

– Represent adaptive compensatory phenomena that result in 
energy preservation

• Defect in SR Ca2+ ATPase pump activity

– control the rate of Ca2+ reuptake into the SR during relaxation

• Significant reduction in cardiac SR Ca2+ ATPase protein concentration

 Significant prolongation of isovolumetric relaxation occurs.

Morphological and cellular changes 
of the heart



Morphological and cellular changes 
of the heart

• Prolonged contraction and relaxation
- changes in calcium homeostasis

• Troponin, myosin production↓
- Prolonged contraction with decreased force of 

myofilaments
- Down regulation of genes involved in contractile 

activity
• Mitochondria

– Larger but less efficient , ATP production per cell↓



Deficient Regulation Mechanisms
• Deficits in sympathetic modulation of heart rate 

and LV contractility

• Elaboration of catecholamines

• Impaired responses to beta-adrenergic receptor 

stimulation

• Impaired vascular-ventricular load matching

• Decreased heart rate variability



Aging on Human Heart



• Reduce cardiovascular reserve and increasing 
the risk of heart failure

- Age related changes in cardiovascular function plus the 
high prevalence of hypertension and CAD

• Increase in the prevalence of heart failure with 
normal left ventricular systolic function

- Significant reduction in early left ventricular filling

Characteristics of Aging Heart



• Increase in left atrial size and pressure
– High prevalence of atrial fibrillation
– Further impairs LVdiastolic filling by reduced atrial

contraction
• Reduced b-adrenergic responsiveness

– Limits heart rate and the contractile response to stress 
– Non-compliant left ventricle is unable to accommodate 

increases in intravascular volume
– Pulmonary edema occurs when receiving intravascular 

fluid or left ventricular function is impaired

Characteristics of Aging Heart



Cardiomyocyte Turnover During Aging
• DNA of cardiomyocytes continues to be synthesized 

many years after birth
– Cardiomyocyte DNA synthesis decreases with age

– Cells in human heart renew well into adulthood

– ~1% cardiomyocyte renewal rate at the age of 25 and 
0.45% at the age of 75

– At the age of 50 years, 55% of the cardiomyocytes
remain from the time around birth



Validated Animal Models of HF: Test Genomic Rx

Schmitt JP, MacLennan DH, et al.  Science 2003;  299:1410-3

Mutant mouse hearts exhibit 
similar phenotype 
to human disease 



• Stem cells do not replace adult mouse cardiomyocytes
during at least 1 year of aging

• If at a later stage, stem contribute to cardiomyocyte
renewal or regeneration

• Precursor cells participate in the formation of new 
cardiomyocytes after injury
- In the setting of myocardial infarction or pressure-
overloaded hearts

• Bone marrow and adipose tissue are pool of multiple type 
of progenitor cells

Cardiomyocyte Turnover During Aging



Telomeres and heart failure
• Telomeres
- DNA structures made up of tandem repeats (TTAGGG in humans)
- Located at the end of chromosomes
- Critical function as protective cap, preventing the chromosomal ends 

• Telomere length 
- Measure from leukocyte or cardiac tissue
- Cumulative replicative history, exposure to environmental factors
- Strongly associated with date of birth (chronological) age
- Biological / cellular aging 
- Highly variable among individuals of the same age
- Hereditable from parents



Telomeres



Telomeres and heart failure
• If telomere reach critical short length
- Cell will no longer divide, become dysfunctional or senescent

• Environmental factors associated with telomere length
- Oxidative stress (smoking, UV radiation)

• Disruption of telomere binding-binding protein
- Chromosomal instability, senescence, apoptosis

• Telomerase 
- Ribonucleoprotein enzyme
- Elongation of telomere sequence by addition of nucleotides to their 

ends
- Detectable in stem cell, germline cell, malignant cell, epithelial and 

lymphoid cells



Telomeres



Telomeres and heart failure
• Telomere length is associated with CHF, HTN, DM, 

premature MI, RAAS activation
- Shorter telomeres (25% shorter than controls)
- Associated with severity of CHF symptoms
- Worse renal function( powerful predictor of outcome in CHF)
- Associated with 5% reduced LV ejection fraction 

• Cardiomyocytes with shortened telomeres 
- positive for p16INK4a
( marker for cellular senescence : large in aged diseased heart)



Telomeres and heart failure
• Dose short telomere length directly contribute to the 

development and progression of heart failure?
- Telomere dysfunction is a common pathway of cardiomyocyte
senescence and dysfunction
- Diminished regenerative capacity (exhaustion of progenitor 
pool with repair capacity)
- Fifth-generation telomerase knockout mice  severely 
reduced telomere length  severe LV failure
- Stabilize telomeres by over expression of TRF2 prevent 
doxorubicin –induced cardiac apoptosis

• However, convincing evidence in humans for a causal role 
of telomere is lacking.



Conclusions and Future Perspectives

• Therapeutic strategies to improve myocardial 

function and outcome in CHF are urgently 

needed

• Cellular aging process including telomere 

biology might be involved aging and age-

associated pathology



Conclusions and Future Perspectives

• Large, prospective, longitudinal studies to 

provide the association between telomere 

length and CHF are needed

– To develop novel strategies in the treatment and 

prevention of CHF, for example stem-cell 

modifying



The Future: Cellular, Genomics, Proteomics 
and Personalized Rx

Human Genome, Gene chips, Tailored therapy


