Assessment of Myocardial Aging and Atherosclerosis

한림의대 강동성심병원 박 대 균

CardioVascular aging is disease ?

 Aging is associated with HF, Stroke and HT
 Vascular change with aging is similar to atherosclerosis and hypertensive change
 Aging is an independent factor for CVD

LVH, HF, and AF increase with Age

E/A decline with aging

Baltimore Longitudinal Study on Aging (BLSA)

Progression of Diastolic Dysfunction

1. Normal

- 2. Abnormal relaxation
- 3. Pseudonormalization
- 4. Restrictive pattern

Change in LV with aging

 Ieftventricular (LV) wall thickening: myocyte ↑ & collagen ↑
 LV early diastolic filling rate ↓ : fibrous change, Ca2+
 Change in EDV from rest to exercise significantly increases with age.

Aging of Cardiomyocytes

Downward-pointing arrow (\$\phi\$) indicates a decrease in effects; upward-pointing arrow (\$\phi\$) indicates an increase. LV - left ventricular; MI - myocardial infarction.

LV systolic function with aging

HR, CO and LV contractility with aging

Deficient Cardiovascular Regulation With Aging in Healthy Humans

Deficits in sympathetic modulation of Heart Rate and LV contractility
Elaboration of catecholamines
Impaired responses to -adrenergic receptor stimulation

Difference of BB effect with exercise between young and old

First bars < 40 years; Second bars > 60 years

HR variability and arrhythmia

Assessment of Myocardial Aging

Echo: LVH (좌심실 심근비대) 좌심실 확장기능평가: Doppler LVEF, ESVI/EDVI, LV elastance (ESP/ESV) Holter: HR variability, Premature Beats or AF Cardiac CT and cardiac MRI

LVH by M-mode

The calculation of LVM is based on a mathematical formula (prolate ellipsoid LV, long/short axis length =2)

LV Mass (g) = 0.8 * (<u>1.04*[(LVIDd + PWTd + IVSTd)³ -</u> (LVIDd)³]) + 0.6

as modified by Devereux et al. using the American Society of Echocardiography (ASE)

Table 1 Partition values for electrocardiogram (ECG) criteria of left ventricular hypertrophy (LVH), upper limit of normal for left ventricular mass (LVM) indexed to body surface area (BSA) for M-mode and two-dimensional echocardiography as well as cardiac magnetic resonance imaging (MRI)

	Male	Female
ECG		
Sokolow-Lyon (LIFE study)	\geq 38 mm	\geq 38 mm
Cornell	\geq 28 mm	\geq 20 mm
Cornell product	\geq 2440 mm/ms	\geq 2440 mm/ms
Sokolow-Lyon product	\geq 4000 mm/ms	\geq 3000 mm/ms
Echocardiography		
M-mode LVM indexed BSA	\geq 125 g/m ²	\geq 110 g/m ²
2-D echo LVM indexed BSA	\geq 102 g/m ²	\geq 88 g/m ²
Cardiac MRI		
TGE LVM indexed BSA	\geq 96 g/m ²	\geq 77 g/m ²
SSFP indexed BSA	\ge 83 g/m ²	\geq 67 g/m ²

2-D, two-dimensional; TGE, turbo gradient echo; SSFP, steady-state free precession.

LV mass measurement by 3D echo

Causes of arterial aging

Endothelial cells: Endothelial dysfunction
 NADPH oxidase

 Intima:
 Atheroma, Macrophages,

T Smooth muscle cells

- Media & Adventitia: Matrix remodeling:
 ↓ Elastin, ↑ Collagen, ↑ MMPs, ↑ VSMC, ↑ ICAM
- Deposition: AGEs, Calcium
- Extrinsic Influences: Hypertension,

metabolic syndrome, Diabetes, etc

Elastin and Collagen in human upper thoracic aortic media with aging

Spina et al. Arteriosclerosis 1983

Sources of ROS in vascular cells

Assessment of Vascular aging, Preclinical status or Atherosclerosis

- Flow-mediated vasodilation (FMD)
- o pulse wave velocity (PWV)
- carotid augmentation index (AIx)
- ankle brachial index (ABI)
- carotid IMT
- coronary artery calcification
- mitral annular calcification and AV sclerosis

PWV (pulse wave velocity): stiffness of central artery

C-f PWV > 12 m/sec

Aortic pulse wave velocity in healthy BLSA volunteer subjects

Circulation 1993;88:1456–1462

Reflected wave (augmentation)

PP (SBP-DBP) with aging

Framingham Heart Study

PWV, AI and ABI (Colin VP200)

Flow mediated Vasodilation (FMD)

Impaired brachial-artery endothelial function independently predicts long-term cardiovascular events in patients with peripheral arterial disease. The findings suggest that noninvasive assessment of endothelial function using brachialartery FMD may serve as a surrogate end point for cardiovascular risk. (J Am Coll Cardiol 2003;41:1769 –75)

FMD (endothelial function) with age

Carotid IMT

The common carotid IMT in healthy BLSA volunteers as a function of age

Carotid IMT as a risk factors or subclinical disease

Combined

IMT

measure

(per ISD)

Diastolic

blood

pressure

(per 11.33

Systolic

blood

pressure

(per 21.5

smoking

(per 25

pack-vears)

Pack-years LDL and HDL Diabetes

(per 1SD)

cholesterol (ves vs no)

Atrial Fibrillation

(yes vs no)

Traditional risk factors accelerate aging of vascular walls, especially at younger ages

Coronary artery calcium score

Agatston score: \sum (pixel x density x slice thickness/3)

Density:

1 for 130-199 HU (Hounsfield units), 2 for 200-299 HU, 3 for 300-399 HU, and 4 for 400 HU and greater

The tomographic slices (3 mm): 50-60 slices

AV sclerosis and **MAC**

Arterial elasticity

Arterial stiffness and the development of hypertension: the ARIC Study. *Hypertension 1999;34:201–206*

Echocardiographic evaluation of left ventricular end-systolic elastance in the elderly

Fig. 1. Left ventricular end-systolic elastance (E_{es}) in the dilated cardiomyopathy, control, hypertensive cardiomyopathy and elderly groups (*p<0.01 vs. all groups; ${}^{\$}p$ <0.05 vs. adult control).

The European Journal of Heart Failure (2005)

senescent heart

Genetic or Biomarkers of Atherosclerosis and Inflammation

- C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a)

- Adhesion molecules
- Telomere length
- Oxygen free radical
- Extracellular matrix

Telomere Length, CAC

Cardiovascular risk stratification

Aging and HF

- 1. Aging is associated with a progressive increase in the prevalence of <u>CAD</u>, <u>HT and DM</u>, resulting in the development of ischemic, hypertensive or diabetic cardiomyopathy.
- 2. Cardiac aging is linked with the development of LVH and fibrosis, leading to diastolic dysfunction and HFPEF
- 3. Aging-associated changes in other organ systems may affect cardiac pathophysiology contributing to the pathogenesis of heart failure.
- 4. Aging heart exhibits <u>defective responses to cardiac injury</u>, leading to accentuated <u>adverse remodeling and increased</u> dysfunction

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)

 the Age, Gene/Environment Susceptibility (AGES) --Reykjavik Study
 the Atherosclerosis Risk in Communities (ARIC) Study
 the Cardiovascular Health Study (CHS)
 the Framingham Heart Study (FHS)
 the Rotterdam Study (RS)

- Incident events: MI, stroke, TIA, HF, PVD, Mortality, Dimentia
- Subclinical features: echo., Holter, ECG, cardiac MRI, Carotid IMT,, cerebral MRI, coronary Ca, ABI, Abd Aortic US, Bone density, endothelial function, vessel wall stiffness, PFT, sleep studies, retinal photography,
 Traditional risk factors: DM, HT, AF, BP, Lipids, FBS, GTT, smoking, medication, Ht/Wt, cognitive fn, depression, QoL, Physical activity, renal fn, biomarkers

경청해 주셔서 감사합니다.