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I ALWAYS Have Fun at APCDE!
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Myocardial Strain: What is It??

L0

L

Strain: dimensionless index of 
change in length 

Strain () = L-L0/ L0

LV strain may offer a pure index of 
regional LV function but is difficult 
to measure
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Strain: More Than a Number
3D Tensor with Linear and Shear Components

Linear strain Shear strain

Eij = Eji
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Stress-Strain Relationships
Fundamentals of Biomechanics
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Shear Modulus
Fundamentals of Biomechanics
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From Sarcomere to Stroke Volume
A Little Goes a Long Way!

Diastole

Systole

2.07 

1.81 

50 mL 20 mL

Diastole Systole

SL = 13%
epi = 7%
mid = 15%
endo = 26%
rad = +37%
EF = 60%

1.4 cm
1.0 cm
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Source of Arterial Pressure
Myocardial Wall Stress

Fundamentals of Biomechanics

Sphere Approximation
Laplace’s Law

Pressure:  P

Radius:  r

Wall
thickness:  h

Wall 
stress:  

 = P·r
2h

In reality, in 2011, there 
is NO WAY to directly 
measure wall stress in 

vivo
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Echocardiographic Methods 
to Measure Strain

Derived from tissue velocity
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 v dt 

v
s


 ’ dt 

Velocity Displacement

Strain rate Strain
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Strain Derived from Tissue Velocities 

RV

Septum

Lat

-30%

-20%
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Predictors of Tissue Doppler Strain Rate
Relationship to invasive indices during ischemia

’SYS vs: r

ES P/V 0.89

+dP/dtmax 0.86

EF 0.77

ESV 0.57

’DIAS vs: r

EDP 0.82

-dP/dtmax 0.81

Tau 0.72

EDV 0.60

Systolic Strain Rates Diastolic Strain Rates

Greenberg et al. Circ 2002; 105:99-105
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• Detects only single component of strain
• Limited scope of radial (anteroseptum and 

posterior wall) and circumferential (septum 
and lateral wall) strain from parasternal 
window

• Subject to noise, particularly strain rate
• Very tedious to perform

Limitations of TDI Strain
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Deriving strain directly from the B-mode image
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Derivation of 2D Strain by Echo
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Not a New Idea, Just Better Implementation 
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Longitudinal Strain from B-Mode Echo
Normal Subject
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Longitudinal Strain
Dilated Cardiomyopathy
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Bull's-eye Plot from 3 Apical Views 
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LAD Infarct
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Normal Global Strain and Strain Rate by Age
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Marwick et al. JACC Imaging 2009; 2: 80-84

Strain: 203% without age variation
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What About Torsion?

• Torsion is the longitudinal-
circumferential shear 
component of strain
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Torsion from 2D Echo

Apical twist

8°

Notomi et al. JACC 2005; 45:2034-41
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LV Torsional profile in a cardiac cycle
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LV Torsional profile in a cardiac cycle
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Alteration of LV Torsion in Childhood
No Twist as Infant, Develops by Adolescence

9 days to 6 months, n=3
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4 to 9  years, n=5
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Notomi et al. Circulation 2006; 113: 2534-2541

< 6 months: 4 4 to 9 years : 7 14 to 16 years : 11
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The Molecular Spring Titin May Play a Role  

Grenzier and Labeit Circ Res 2004; 94: 284-295
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Titin is Stiffer in Adults Than Children  

Lahmers et al.  Circ Res 2004; 94: 505-13
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Rest

Exercise

Torsion During Exercise

Apical twist

Apical twist

8°

18°

Notomi et al. Circ 2006; 113: 2524-2533
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y = -0.44x + 0.87
r  = 0.72
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Notomi et al. Circ 2006; 113: 2524-2533
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Notomi et al. Circ 2006; 113: 2524-2533
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Putting It All Together
• During systole, a significant amount of elastic 

energy is stored in the myocyte and the interstitum 
as torsion

• The earliest mechanical manifestation of diastole is 
an abrupt untwisting that is largely completed 
before the mitral valve opens

• This untwisting helps to establish a base-to-apex 
intraventricular pressure gradient in early diastole 
that assists in the low pressure filling of the heart

• Modulation of this mechanism allows the heart to 
augment its function many-fold during exercise
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Why Has Strain/Torsion Not Become Mainstream?
• In 2011 very few clinical reports have any 

advanced mechanics
• No interoperability

– Each company has proprietary format
– No DICOM scan line format
– Different results with different equipment

• No standardization
• Changing workflow requirements

– On-line or off-line?
– Need for separate review software

• Too many parameters!
– And what do they mean???

• No reimbursement
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Comparison of Radial Strain Measurements 

• 34 children imaged with Philips and GE
• Strain analyzed on QLab and EchoPAC
• Very poor correlation (r2 < 0.2)
• GE almost 2x Philips
• Impossible to compare on serial studies

Radial strain
r = 0.19 Radial systolic SR

r = 0.26

Radial diastolic SR
r = 0.40

Koopman et al. JASE 2011; 23: 919-28
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Strain Can Be Defined in Many Ways
Some 1D Strain Definitions

• Small Strain 

• Green Lagrange Strain

• Almansi Strain

• Logarithmic Strain
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Small Strain or Large Strain?
Manufacturers Do Not Specify their Approach

Uniaxial Tension of a Beam
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Increasing discrepancy at higher stretch
Clinically relevant at ±20%
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Transmural strain

Seo et al. Circ Img 2009; 2: 451-9

3D strain



Strain11:45

Approaches to Standardization
In vitro strain phantom??

Stigo et al, Cardiovasc Ultrasound 2010; 8: 40

• Agar gel with reflectors formed inside a mold
• Sonomicrometer crystals imbedded within
• Rhythmic deformation applied to gel
• Can only validate 1D strain
• Agar dehydrates so phantom rapidly deteriorates
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Possible Approaches
• Improved interoperability

– Can we develop a DICOM scan line format
– Barring that would individual companies provide a 

way for others to work with their data
– ASE and EAE have formed task force with industry

• Standardization
– Develop a strain phantom?

• Changing workflow requirements
– On-line or off-line must give the same values!

• Too many parameters!
– Need for comparative studies

• Approach to reimbursement
– Can we prove the value of this without devaluing the 

rest of echo
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LV Mechanics: Present State of the Art

We now have the 
echocardiographic tools 
available to let us assess 

LV contraction, 
relaxation, compliance, 

suction, and filling 
pressure.

3D Modelling of 
LV Torsion
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“Tuna’s tears”


