How to Stop Vascular Aging in the Hypertensive Elderly?

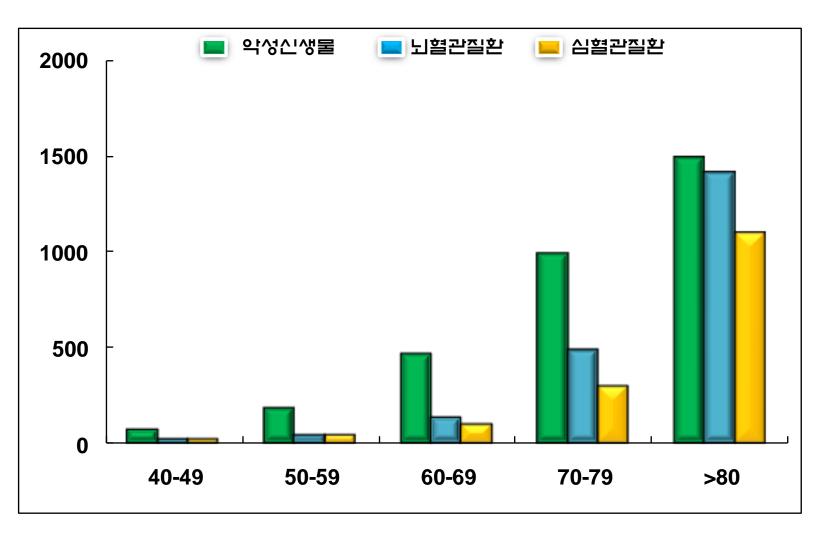
김 광 일

서울대학교 의과대학 내과 분당서울대학교 병원 내과

고령사회는 피할 수 없는 미래

이런 모습, 상상은 해보셨나요?

아이보다 이름이 많은 나라, 상상에보았나요? 2006년 OECD 국가 중 최지 출산들이 나라, 세계에서 고말했가 가장 빨리 전형 중인 나라, 2000년 노인인구비들이 37.2%에 이르는 나라, 그곳이 다른 아나 우리나라입니다. 내 아이를 꾸는 기름과 나라의 비밀를 함께 생각해 주세요. 아이들이 대한민국의 회원입니다.



노인인구의 증가: 의료비 상승

자료: 통계청

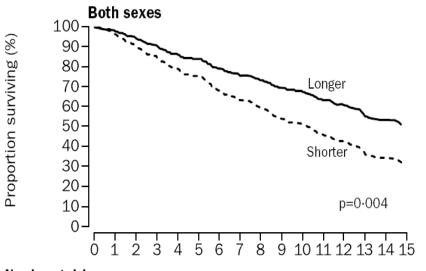
연령별 사망원인 통계 (통계청 자료)

How can we evaluate the status of vascular aging in the elderly patients?

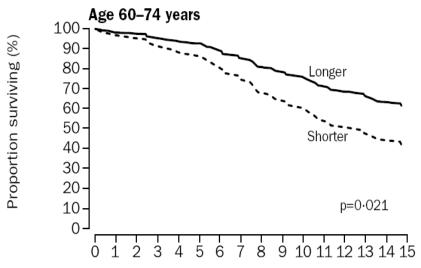
What is the biomarker of vascular aging?

Perceived age as clinically useful biomarker of ageing

	≥80 (n=345)					
	1st third	2nd third	3rd third	P value*		
Perceived age	75.9	81.0	85.1	_		
Person year	658.7	587.4	517.1	_		
Deaths	42	74	69	_		
Mortality rates per 100 years	6.4	12.6	13.3	<0.001		
Strength score	3.1	2.7	2.3	<0.001		
Grip strength	19.9	17.3	15.5	<0.001		
MMSE	26.2	25.2	23.5	<0.001		
Cognitive score	1.9	0.5	-0.3	<0.001		
Telomere length:						
Hph I/Mnl I	4.9	4.7	4.5	<0.001		
Hinf I/Rsa I	6.1	5.8	5.6	<0.001		

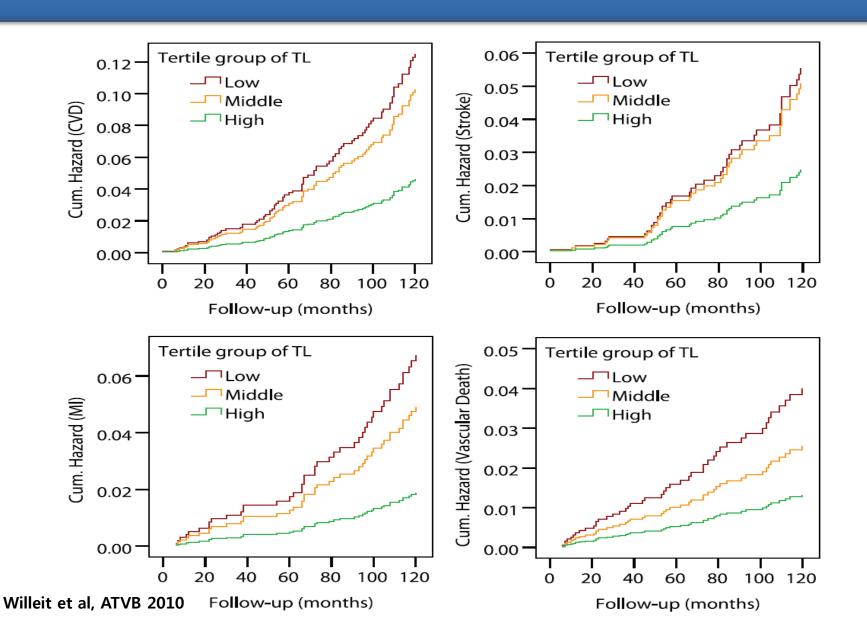

Criteria for biomarker of aging

- It must predict the rate of aging. (It must be a better predictor of life span than chronological age.)
- It must monitor a basic process that underlies the aging process, and not the effects of disease.
- It must be able to be tested repeatedly without harming the person, for example, a blood test or an imaging technique.
- It must be something that acts in both humans and laboratory animals, such as mice, so that it can be tested in animals before being validated in humans.


Potential biomarkers of ageing

Underlying biological process	Possible biomarker	Change	Validated in studies				
		with age	Cell culture/	Human			
			animal	Cross-sectional	Longitudinal		
Oxidative stress	8-OHdG (DNA)	Increase	+	+	-		
	MDA	Increase	+	+	-		
	HNE	Increase	+	+	-		
	oxLDL (lipids)	Increase	+	+	-		
	Carbonyl groups (proteins)	Increase	+	-	-		
Protein glycation	CML	Increase	+	+	-		
	Pentosidine	Increase	+	+	-		
Inflammation	IL-6	Increase	+	+	+		
	CMV-positive CD8 T-cells	Increase	+	+	-		
Replicative senescence	Senescence-associated β-Gal	Increase	+	-	-		
·	P16 ^{INK4a}	Increase	+	-	-		
Telomeres	Telomere length	Decrease	+	+	-		
Hormones	Growth hormone	Decrease	+	+	-		
	IGF	Decrease	+	+	-		
	DHEA	Decrease	+	+	+		
	Oestrogen	Decrease	+	+	+		
	Testosterone	Decrease	+	+	-		

Telomere length in blood DNA & survival


Number at risk
Longer 72 71 69 67 60 56 52 51 50 46 45 42 41 36 35 34
Shorter 71 69 63 59 57 56 51 46 43 40 37 34 31 27 25 23

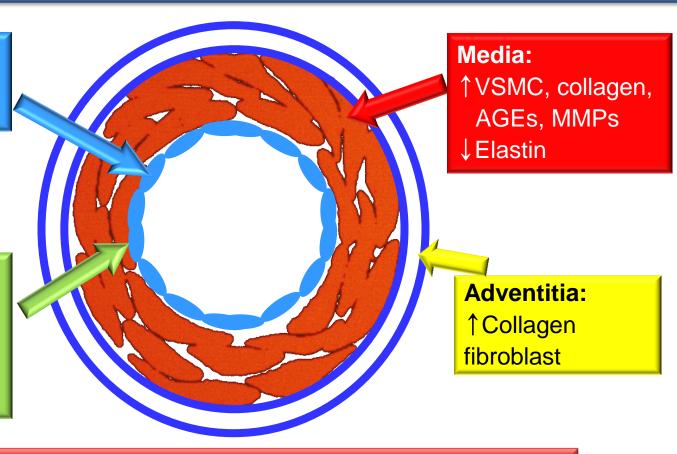
Number at risk

Longer 48 48 47 46 44 41 39 39 38 36 35 33 33 31 30 29 Shorter 45 44 44 42 41 41 39 35 32 32 30 28 26 25 23 22

Clinical outcome according to telomere length

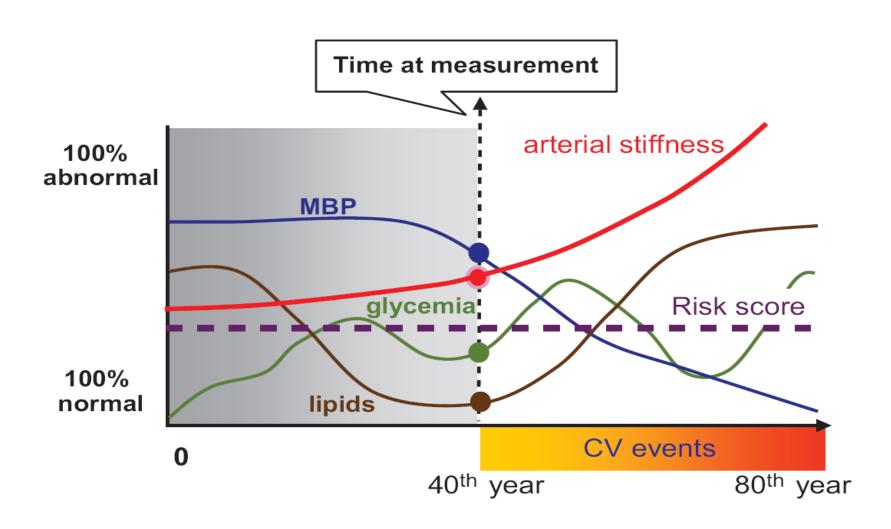
Telomere length & risk of CHD

	Cases	Controls	OR (95% CI)	р
All individuals				
Highest tertile	123 (25%)	355 (34%)	(ref)	
Middle tertile	186 (38%)	355 (34%)	1.51 (1.15–1.98)	0.0029
Lowest tertile	175 (36%)	348 (33%)	1.44 (1.10–1.90)	0.0090
Individuals who received place	ebo			
Highest tertile	62 (21%)	180 (35%)	(ref)	
Middle tertile	118 (41%)	176 (34%)	1.93 (1.33-2.81)	0.0005
Lowest tertile	109 (38%)	161 (31%)	1.95 (1.33-2.84)	0.0006
Individuals who received prav	astatin			
Highest tertile	61 (31%)	175 (32%)	(ref)	
Middle tertile	68 (35%)	179 (33%)	1.12 (0.75–1.69)	0.5755
Lowest tertile	66 (34%)	187 (35%)	1.02 (0.68–1.53)	0.9380

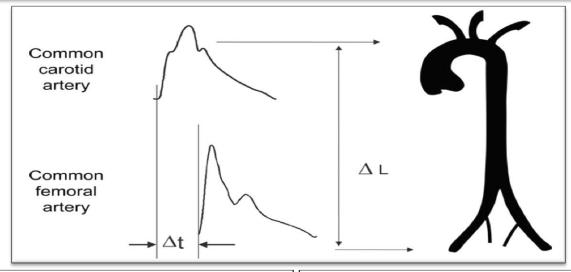

Mechanism of vascular aging

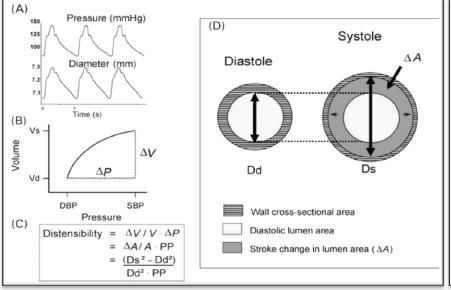
Endothelial Cells:

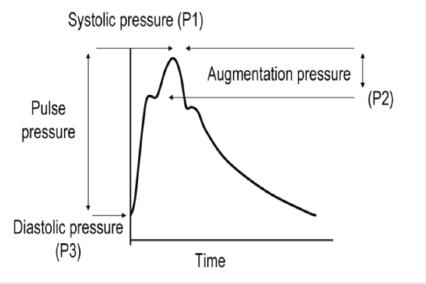
Endothelial dysfunction Increased permeability

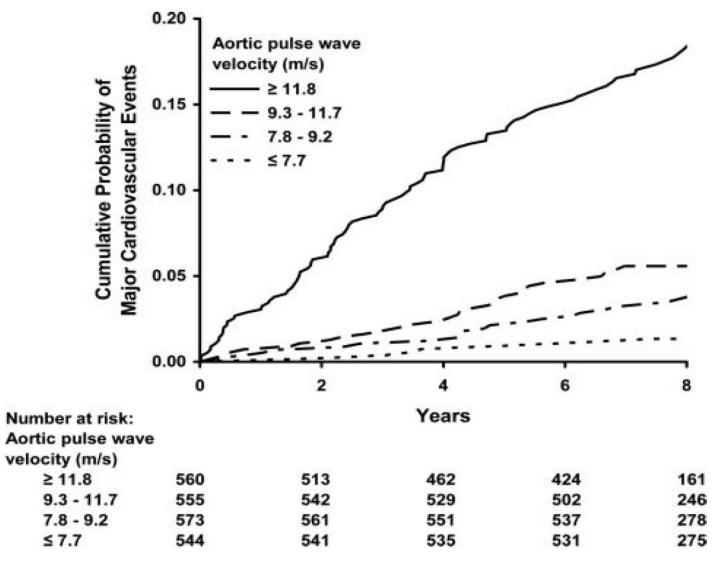

Intima:

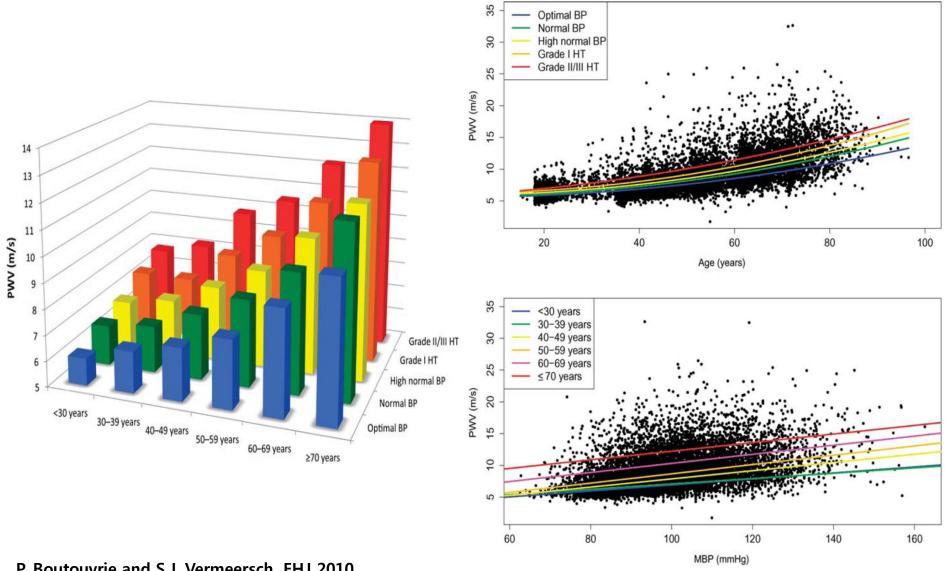
↑Collagen, AGEs, Mø, leukocytes, ICAM, MMPs, TGFβ, VSMC ↓Elastin

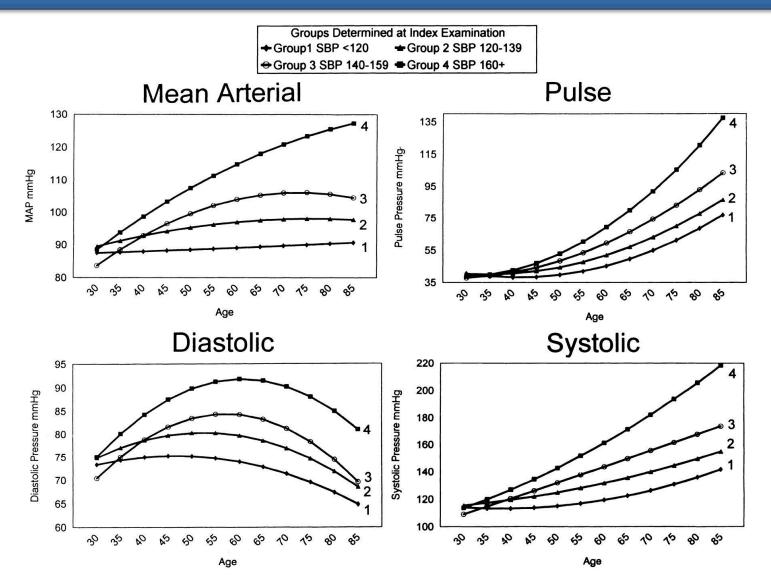


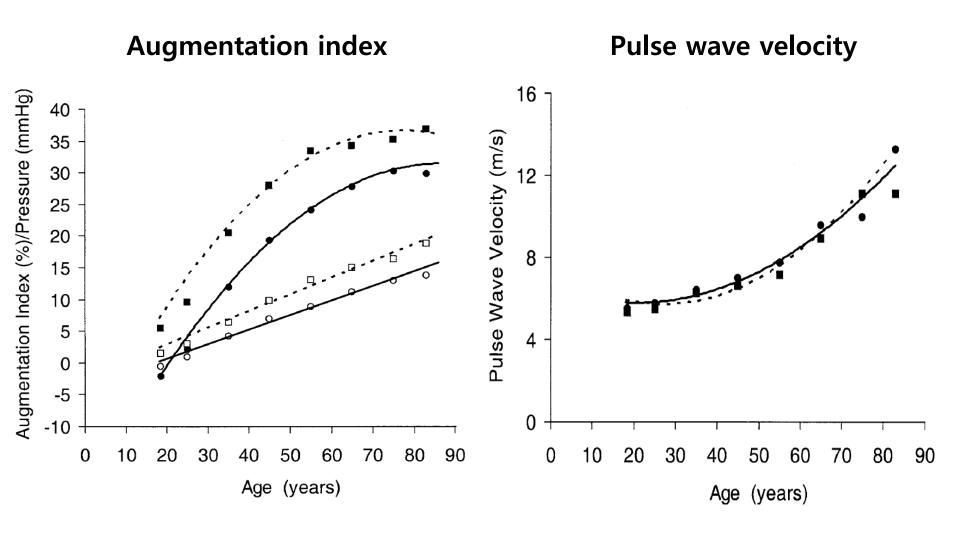

↑ Systolic and pulse pressures
 ↑ Vascular stiffness indices, pulse wave velocity
 Altered central arterial pressure wave contour
 Net effect: ↑ LV pulsatile load (afterload)

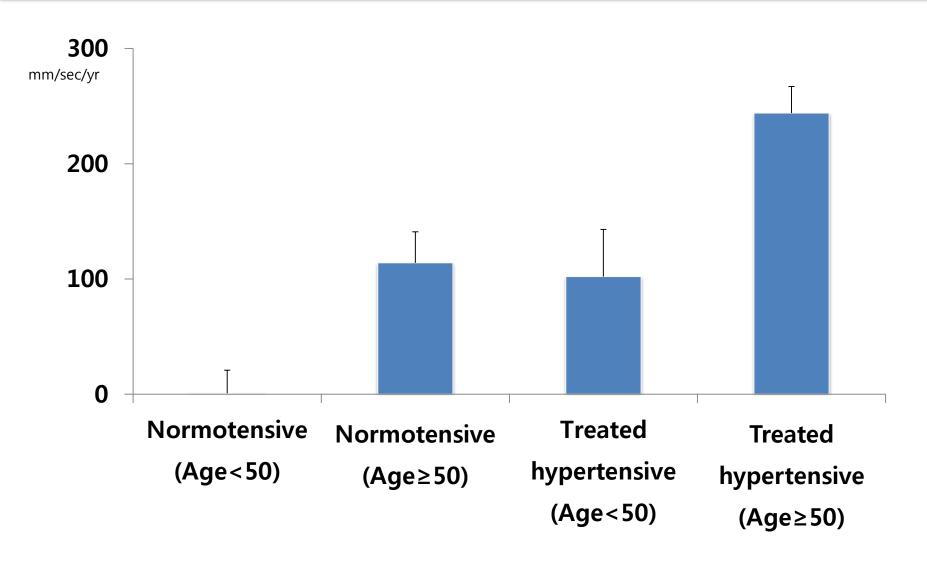

Arterial stiffness as a marker of aging

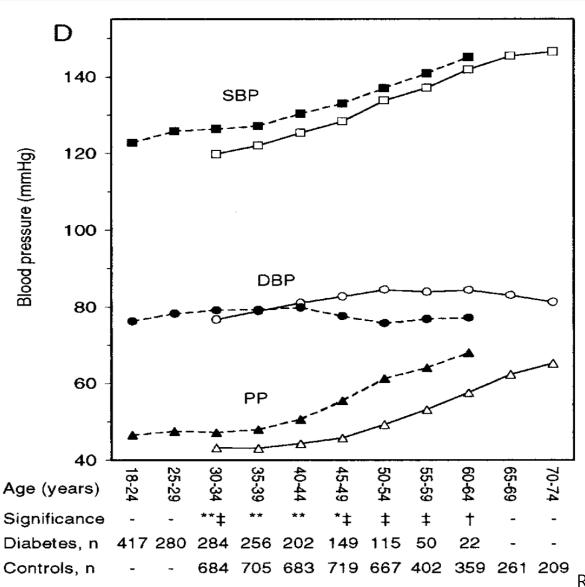

Measurement of arterial stiffness




Arterial Stiffness & Cardiovascular Events


Normal & reference values for PWV


Arterial pressure components by age: Group averaged individual regression analysis


Differential Effects of Aging on Wave Reflection & Pulse Wave Velocity

Annual PWV progression

Altered Age-Related Blood Pressure Pattern in Type 1 Diabetes

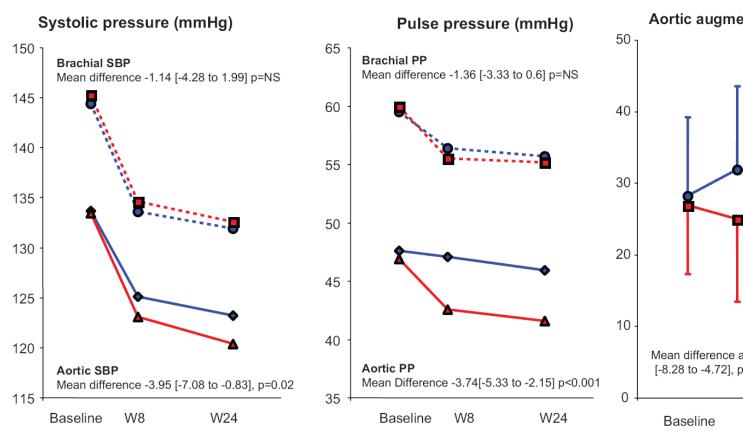
Impact of Cardiovascular Risk Factors on Aortic Stiffness & Wave Reflections

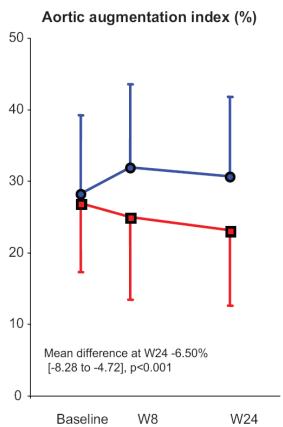
aPWV	Beta	R ² Change	Р	Alx	Beta	R ² Change	Р
Univariable models				Univariable models			
Age, gender			< 0.001	Age, gender, height, HR			< 0.001
Hypertension, yes/no	0.20		< 0.001	Hypertension (yes/no)	0.08		< 0.001
Hypercholesterolemia, yes/no	0.01		0.3	Hypercholesterolemia (yes/no)	0.04		< 0.001
Smoking, yes/no	0.04		< 0.001	Smoking (yes/no)	0.03		0.001
Diabetes, yes/no	0.08		< 0.001	Diabetes (yes/no)	0.01		0.3
Multivariable model, adjusted $R^2 = 0.68$				Multivariable model, adjusted $R^2 = 0.74$			
Age	0.61	60.7	< 0.001	Age	0.61	61	< 0.001
MAP	0.19	4.6	< 0.001	Gender	0.17	4.3	< 0.001
Heart rate	0.10	0.8	< 0.001	Heart rate	-0.24	3.3	< 0.001
Gender	-0.08	0.8	< 0.001	MAP	0.31	4.7	< 0.001
Diabetes, yes/no	0.07	0.6	< 0.001	Height	-0.12	8.0	< 0.001
Hypertension, yes/no	0.06	0.2	< 0.001	Hypertension (yes/no)	-0.06	0.2	< 0.001
Smoker, yes/no	0.03	0.1	0.003	Smoker (yes/no)	0.03	0.1	0.002
Statin therapy, yes/no	0.03	< 0.1	0.007	Hypercholesterolemia (yes/no)	0.02	0.1	0.004
Hypercholesterolemia, yes/no	-0.02	0.1	0.008				

Non-pharmacological and pharmacological treatment associated with a reduction in arterial stiffness

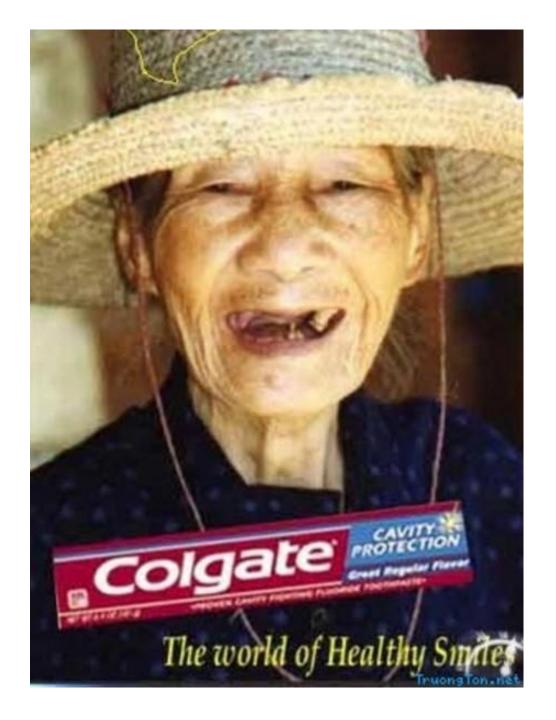
Non-pharmacological	Pharmacological
Exercise training	Anti-hypertensive treatment
Dietary changes	Diuretics
Weight loss	Beta-blockers
Low-salt diet	ACE-inhibitors
Moderate alcohol	AT1 blockers
consumption	Calcium channel antagonists
Garlic powder	Treatment of congestive heart failure
Alpha-linoleic acid	ACE-inhibitors
Fish oil	Nitrates
HRT	Hypolipidaemic agents
	Statins
	Antidiabetic agents
	Thiazolidinediones
	AGE-breakers
	Alagebrium (ALT-711)

TNF-α Antagonists Reduce Arterial Stiffness

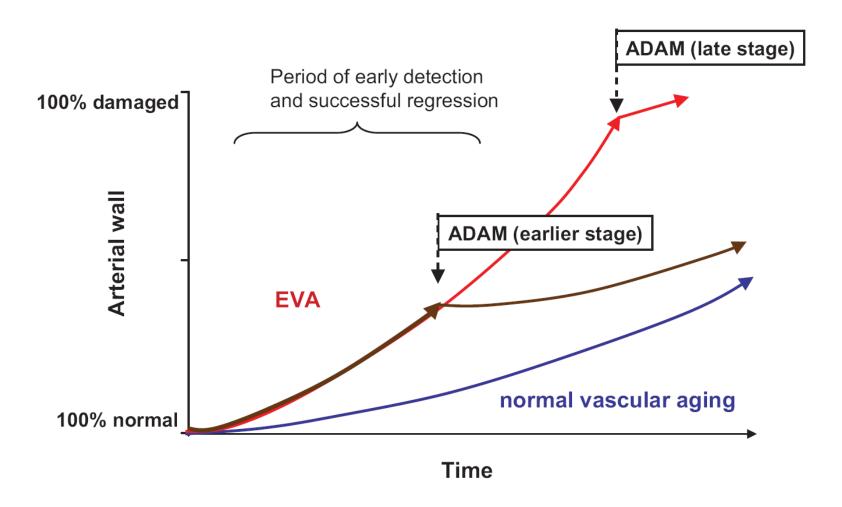

		Baseline		Change				
Variable	Anti-TNF (n=35)	Control (n=25)	Р	Anti-TNF (n=35)	Control (n=25)	Р		
Brachial SBP, mm Hg	129.8±20.5	132.0±17.0	0.65	-2.5±9.5	-2.6±10.1	0.97		
Brachial DBP, mm Hg	79.1 ± 10.7	79.2 ± 8.7	0.97	-2.4 ± 7.1	-2.1 ± 7.4	0.91		
Central SBP, mm Hg	120.6 ± 20.5	121.7 ± 17.5	0.83	-2.5 ± 9.5	-3.5 ± 9.6	0.70		
Central PP, mm Hg	41.5 ± 14.2	41.2 ± 12.0	0.93	-1.0 ± 7.8	-1.4 ± 6.6	0.85		
MAP, mm Hg	97.1 ± 13.7	97.7 ± 12.1	0.87	-2.1 ± 7.9	-2.6 ± 7.8	0.80		
HR, bpm	64.9 ± 10.0	63.1 ± 9.7	0.48	-0.2 ± 9.1	2.0 ± 9.3	0.37		
Central AP, mm Hg	$9.6 \!\pm\! 7.3$	8.4 ± 6.5	0.52	0.7 ± 3.4	0.6 ± 3.1	0.91		
Alx, %	$23.0 \!\pm\! 12.4$	$19.8 \!\pm\! 12.5$	0.33	0.1 ± 7.1	-1.0 ± 5.8	0.53		
aPWV, m/s	7.45±1.44	7.47±1.29	0.96	-0.50 ± 0.78	0.05 ± 0.54	0.002		


47.452	-1.44 7.47 ± 1.29	0.90 —	0.30 ± 0.78	0.03 ± 0.34	0.002
	Variable	Regres	nt (CI)	Р	
	Sex	-0.02	0 (-0.340, 0.2	299)	0.90
	Age, y	-0.00	2 (-0.015, 0.0	011)	0.74
	Anti-TNF- α therapy	-0.48	5 (-0.789,-0).165)	0.003
Angel et al, Hypertension 2010	Δ MAP, mm Hg	0.029 (0.008, 0.050)			0.008

Antihypertensive Drugs & Central Pressure in ISH


	Perin	dopril	Ate	nolol	Lercan	nidipine	Bendro	fluazide	2-Way ANOVA, Time,
Parameter	Placebo	10 wk	Placebo	10 wk	Placebo	10 wk	Placebo	10 wk	Drug
Peripheral SBP, mm Hg	153±3	136±4*	156±2	138±4*	146±2	133±3*	154±3	140±3*	<0.001, 0.1
Peripheral DBP, mm Hg	$80\!\pm\!2$	$75 \pm 2*$	84 ± 2	76±3*	80 ± 2	79 ± 3	$85\!\pm\!2$	82 ± 3	<0.001, 0.3
Peripheral PP, mm Hg	72 ± 4	$61 \pm 4*$	72 ± 3	62±3*	66 ± 3	$54 \pm 4*$	$69\!\pm\!4$	$58\pm4^*$	<0.001, 0.3
Central SBP, mm Hg	$140\!\pm\!4$	123±4*	144±3	130±4*	132 ± 2	118±3*	$139\!\pm\!2$	$126 \pm 2*$	<0.001, 0.02‡
Central PP, mm Hg	58 ± 4	46±3*	59±2	53±3	51±3	38±4*	53±4	42±3*	<0.001, 0.02‡§
P1 height, mm Hg	42 ± 3	$36\pm3^*$	42 ± 2	35±2*	$37\!\pm\!2$	$30\pm2^*$	$39\!\pm\!2$	$32 \pm 2*$	<0.001, 0.1
PP amplification	$1.33\!\pm\!0.08$	$1.35\!\pm\!0.06$	1.24 ± 0.03	$1.17 \pm 0.02^*$	$1.31\!\pm\!0.04$	1.42 ± 0.06	$1.33 \!\pm\! 0.04$	$1.38\!\pm\!0.04$	0.2, 0.03‡
MAP, mm Hg	$104\!\pm\!2$	$96\!\pm\!2^{\!\star}$	$108\!\pm\!2$	97±3*	$102\!\pm\!2$	$97\!\pm\!2$	$109\!\pm\!2$	$102 \pm 2*$	<0.001, 0.1
HR, bpm	$71\!\pm\!3$	73 ± 3	$67\!\pm\!2$	$57\pm3*$	$73\!\pm\!2$	75 ± 3	$75\!\pm\!3$	$77\!\pm\!3$	0.4, 0.001†‡§
AP, mm Hg	15 ± 2	10±2*	17 ± 2	19±2	14±2	8±2*	13 ± 2	$11\!\pm\!2$	0.002, 0.02‡
Alx, %	25±3	20±4	29±2	34±2*	26±2	19±3*	25±3	24±3	0.2, 0.03†‡§
Aortic PWV, m/s	9.01 ± 0.59	9.34 ± 0.47	9.64 ± 0.50	8.82 ± 0.46	9.54 ± 0.60	9.79 ± 0.89	10.25 ± 0.28	10.55 ± 0.57	0.9, 0.4

Central BP lowering efficacy



amlodipine-valsartanamlodipine-atenolol

EVA & ADAM

EVA: Early vascular aging, ADMA: aggressive decrease of atherosclerosis modifiers

Thanks for your attention!

