Test in Subjects with Suspected CAD Anatomic Study is Better

Hyuk-Jae Chang MD, PhD
Division of Cardiology
Severance Cardiovascular Hospital
Seoul Korea

Functional Test

Two Issues

- Accuracy of stress-tests
- Do literature summaries reflect reality?

Functional Test

Two Issues

- Accuracy of stress-tests
- Do literature summaries reflect reality?

Duke Stress Perfusion Study

- Consecutive patients referred for elective diagnostic CAG with suspected CAD
- All patients with intermediate risk of CAD (no prior MI, known CAD)
- Exclusion: routine contralxs to MRI or adenosine stress-testing

Duke Stress Perfusion Study

- Results
 - 100 patients enrolled
 - 76% had priori abnormal stress-test
 - : Nuclear (48%), Echo (21%), Treadmill (8%)
- → 53% had insignificant disease (<50% stenosis)</p>
 60% had insignificant disease (<70% stenosis)</p>

- Morise and Duval
 - 1,681 patients referred for exercise stress test
 - Positive 436 patients underwent ICA (within 2 months of exercise stress test) for the first time
 - → 62% had insignificant disease (<50% stenosis)</p>

Am J Cardiol 1989

- Cecil et al
 - 2,688 referred for thallium SPECT
 - Positive 471 pts underwent ICA (within 3 months of SPECT)
 for the first time
 - → <u>58%</u> had insignificant disease (<50% stenosis)
 - → 65% had insignificant disease (<70% stenosis)

© 2003 by the American College of Cardiology Foundation and the American Heart Association, Inc.

ACC/AHA PRACTICE GUIDELINES—FULL TEXT

ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging)

COMMITTEE MEMBERS

Francis J. Klocke, MD, MACC, FAHA, Chair

Michael G. Baird, MD, FACC, FAHA Timothy M. Bateman, MD, FACC, FAHA Daniel S. Berman, MD, FACC, FAHA Blase A. Carabello, MD, FACC, FAHA Manuel D. Cerqueira, MD, FACC, FAHA Anthony N. DeMaria, MD, MACC, FAHA J. Ward Kennedy, MD, MACC, FAHA Beverly H. Lorell, MD, FACC, FAHA Joseph V. Messer, MD, MACC, FAHA Patrick T. O'Gara, MD, FACC, FAHA Richard O. Russell, Jr., MD, FACC

Martin G. St. John Sutton, MBBS, FACC

James E. Udelson, MD, FACC Mario S. Verani, MD, FACC*

Kim Allan Williams, MD, FACC, FAHA

Table 5. Sensitivity and Specificity of Exercise Myocardial Perfusion Single-Photon Emission Computed Tomography for Detecting Coronary Artery Disease (Greater Than or Equal to 50% Stenosis)—Generally Without Correction for Referral Bias

			Prior	Sensitivit	Sensitivity		Specificity	
Year	Author	Radiopharmaceutical	MI (%)	Pts. with CAD	%	Pts. w/out CAD	%	
2001	Elhendy (65)	Sestamibi/Tetrofosmin	0	183/240	76	67/92	73	
1999	Azzarelli (66)	Tetrofosmin	66	199/209	95	20/26	77	
1998	San Roman (67)	Sestamibi	0	54/62	87	21/30	70	
1998	Budoff (68)	Sestamibi	0	12/16	75	12/17	71	
1998	Santana-Boado (69)	Sestamibi	0	91/100	91	57/63	90	
1998	Acampa (70)	Sestamibi	47	23/25	92	5/7	71	
1998	Acampa (70)	Tetrofosmin	47	24/25	96	6/7	86	
1998	Ho (71)	T1-201	22	19/24	79	15/20	75	
1997	Iskandrian (72)	T1-201	21	717/820	87	120/173	69	
1997	Candell-Riera	Sestamibi	0	53/57	93	32/34	94	
1997	Yao (74)	Sestamibi	55	34/36	94	14/15	93	
1997	Heiba (75)	Sestamibi	31	28/30	93	2/4	50	
1997	Ho (76)	T1-201	33	29/38	76	10/13	77	
1997	Taillefer (77)	Sestamibi	17	23/32	72	13/16	81	
1997	Van Eck-Smit (78)	Tetrofosmin	NR	46/53	87	6/7	86	
1996	Hambye (79)	Sestamibi	0	75/91	82	28/37	75	
1995	Palmas (80)	Sestamibi	30	60/66	91	3/4	75	
1995	Rubello (81)	Sestamibi	57	100/107	93	8/13	61	
1994	Sylven (82)	Sestamibi	37	41/57	72	5/10	50	
1994	Van Train (83)	Sestamibi	19	91/102	89	8/22	36	
1993	Berman (84)	Sestamibi/Tl-201	0	50/52	96	9/11	82	
1993	Forster (85)	Sestamibi	0	10/12	83	8/9	89	
1993	Chae (86)	T1-201	42	116/163	71	52/80	65	
1993	Minoves (87)	Sestamibi/Tl-201	42	27/30	90	22/24	92	
1993	Van Train (88)	Sestamibi	16	30/31	97	6/9	67	
1992	Quinones (89)	T1-201	NR	65/86	76	21/26	81	
1991	Coyne (90)	T1-201	NR	38/47	81	39/53	74	
1991	Pozzoli (91)	Sestamibi	19	41/49	84	23/26	88	
1990	Kiat (92)	Sestamibi	45	45/48	94	4/5	80	

Year	Author	Radiopharmaceutical	MI (%)	Pts. with CAD	%	Pts. w/out CAD	%
			Prior	Sensitivit	<u>y</u>	Specificity	
	Average				87		73
	Total			2971/3425		772/1055	
1989	Iskandrian (96)	T1-201	45	145/164	88	36/58	62
1990	Van Train (95)	T1-201	35	291/307	95	30/64	47
1990	Nguyen (94)	T1-201	NR	19/25	75	5/5	100
1990	Mahmarian (93)	T1-201	43	192/221	87	65/75	87
1990	Kiat (92)	Sestamibi	45	45/48	94	4/5	80
1991	Pozzoli (91)	Sestamibi	19	41/49	84	23/26	88
1991	Coyne (90)	T1-201	NR	38/47	81	39/53	74
1992	Quinones (89)	T1-201	NR	65/86	76	21/26	81
1993	Van Train (88)	Sestamibi	16	30/31	97	6/9	67
1993	Minoves (87)	Sestamibi/Tl-201	42	27/30	90	22/24	92
1993	Chae (86)	T1-201	42	116/163	71	52/80	65
1993	Forster (85)	Sestamibi	0	10/12	83	8/9	89
1993	Berman (84)	Sestamibi/Tl-201	0	50/52	96	9/11	82
1994	Van Train (83)	Sestamibi	19	91/102	89	8/22	36
1994	Sylven (82)	Sestamibi	37	41/57	72	5/10	50
1995	Rubello (81)	Sestamibi	57	100/107	93	8/13	61
1995	Palmas (80)	Sestamibi	30	60/66	91	3/4	75
1996	Hambye (79)	Sestamibi	0	75/91	82	28/37	75
1997	Van Eck-Smit (78)	Tetrofosmin	NR	46/53	87	6/7	86
1997	Taillefer (77)	Sestamibi	17	23/32	72	13/16	81
1997	Ho (76)	T1-201	33	29/38	93 76	10/13	77
1997	Heiba (75)	Sestamibi	31	28/30	93	2/4	50
1997	Yao (74)	Sestamibi	55	34/36	93 94	14/15	93
1997	Candell-Riera	Sestamibi	0	53/57	93	32/34	94
1997	Iskandrian (72)	TI-201	21	717/820	87	120/173	69
1998	Acampa (70) Ho (71)	Tl-201	22	19/24	79	15/20	75
1998 1998	Acampa (70)	Sestamibi Tetrofosmin	47 47	23/25 24/25	92 96	5/7 6/7	71 86

Another Functional Test?

Two Issues

- Accuracy of stress-tests
- Do literature reflect reality?

Biased Populations: Pre/Post-test referral bias

- Appropriate population are those with intermediate risk of CAD
 (i.e. exclude known prior MI, known prior CAD)
- Intermediate risk population?
 - Pre-test referral ("spectrum") bias
 - Post-test referral ("work-up") bias

"Sickest of the sick VS. the wellest of the well"

Ransahaff et al, NEJM 1978 Rozanski et al, NEJM 1983

Biased Populations: Pre-test referral (spectrum) bias

Factors Affecting Sensitivity and Specificity of a Diagnostic Test: The Exercise Thallium Scintigram

- Meta-analysis, 56 publications on exercise thallium scintigraphy (1977 to 1986)
- 6,083 patients with catheterization correlation
- Multivariable analysis: "the % of patients with prior MI (in each individual study) had the highest correlation with test sensitivity (0.45, P<0.001)"
- Without vs. With MI: sensitivity, 17% lower

"Reported sensitivity of thallium scintigraphy is higher than that expected in clinical practice because of the presence of the inappropriate inclusion of post-infarct patients"

Biased populations: Post-test referral bias

- Post-test referral ("work-up") bias
 - Extreme case:
 - ..once the test used as the absolute "gate-keeper" to ICA

"If only positive test responders sent to ICA, 100% sensitivity, 0% specificity...

even if the test in question had a true sensitivity of 90% and a true specificity of 90%... because only positive test responders are catheterized"

Although exercise radionuclide ventriculography was initially reported to be a highly specific test for CAD, later studies reported a high false-positive rate. Why?

	Study		
	Early Period (1978-1979)	Recent Period (1980-1982)	P-Value
Angiographically Normal Patients	32	45	\
Normal response rate	94% (EF) 84% (WM)	49% (EF) 36% (WM)	<0.001
Probability of CAD before testing	7%	38%	<0.001
Radionucleotide imaging before CAG	22%	78%	<0.001
Abnormal results	6%	55%	<0.001

2 factors are responsible for the temporal decline in specificity:

- → a change in the population being tested (pre-test referral bias)
- → a preferential selection of patients with a positive test response for CAG (post-test referral bias)

Biased populations: Posttest referral bias

Post-test referral ("work-up") bias: Solutions

- Have patients with negative stress test get catheterization
- Correction algorithms
 - Assumption: Predictive values are constant for the catheterized and general population, thus the sensitivity and specificity can be corrected by knowing the proportion of abnormal SPECT test
 - Diamond method
 - Begg & Greenes method

Am J Cardiol 1986 Biometrics 1983

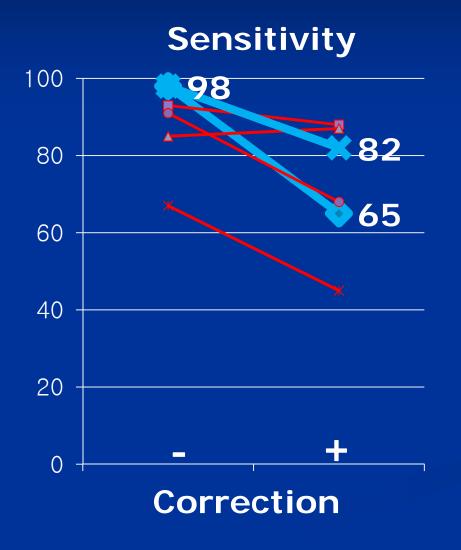
Biased populations: Post-test referral bias

© 2003 by the American College of Cardiology Foundation and the American Heart Association, Inc.

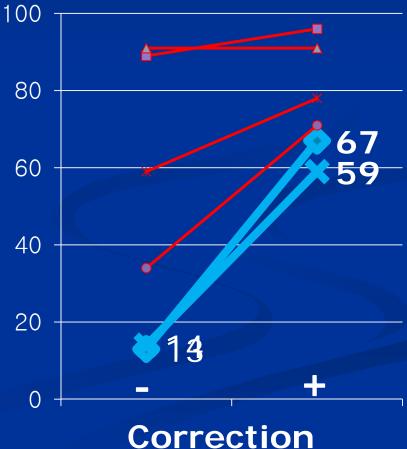
ACC/AHA PRACTICE GUIDELINES—FULL TEXT

ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging)

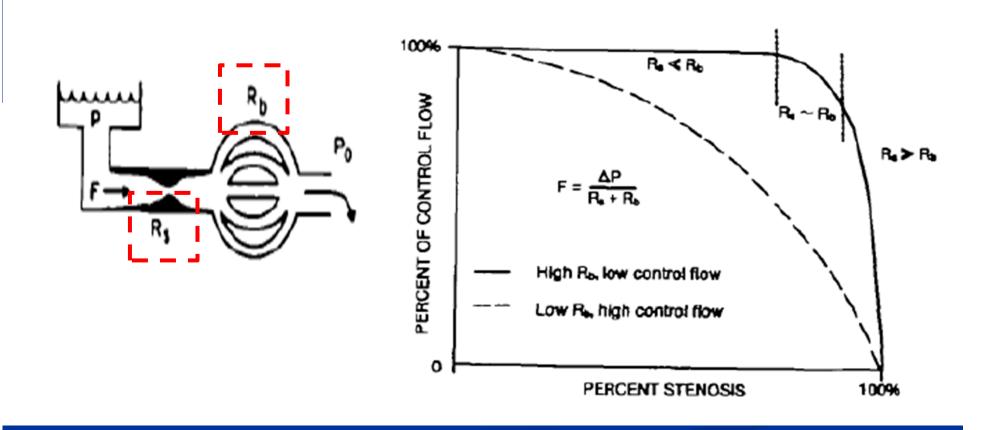

Non-invasive test before & after adjustment for referral bias

				Sen	sitivity	Spe	cificity
Year	Author	Modality	Total Patients	Biased	Adjusted	Biased	Adjusted
2002	Miller et al. (108a)	Exercise SPECT sestamibi/Tl-201	Overall: 1853	98	65	13	67
1998	Santana-Boado et al. (69)	Exercise/dipyridamole and SPECT sestamibi	Men: 100 Women: 63	93 85	88 87	89 91	96 91
1996	Cecil et al. (108b)	Exercise SPECT TI-201	Overall: 2688	98	82	14	59
1993	Schwartz et al. (282)	T1-201	Men: 845	67	45	59	78
1986	Diamond (108c)	Exercise planar Tl-201	Overall: 2269	91	68	34	71


- 3/52 (6%) corrected for post-test referral bias
- 2 studies excluded prior MI, known CAD, and corrected for posttest referral bias

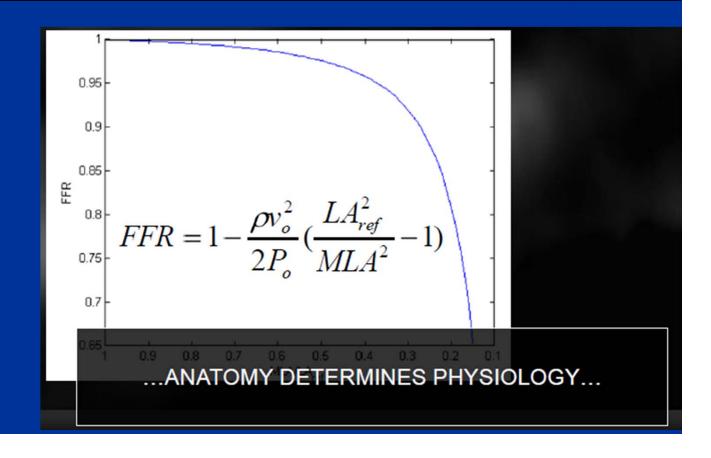
Miller et al. Am J Med 2002; Cecil et al., J Clin Epidemiol 1994

Noninvasive test before & after adjustment for referral bias

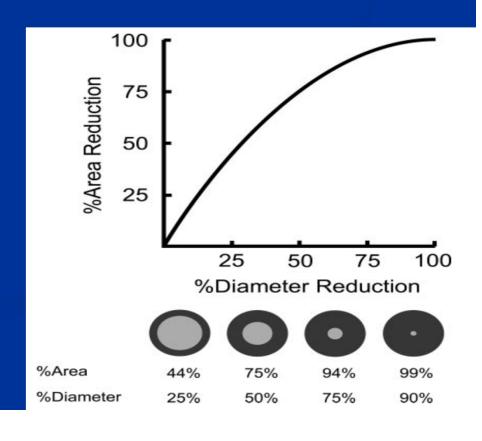


Another Functional Test? Summary

- Myocardial stress imaging
 - High rate of ICA with insignificant CAD
 - Accuracy of stress testing in appropriate population (intermediate pretest probability and after correction for posttest referral bias) is lower than literature summaries
- → Non-invasive functional test: Not enough!


Then...
What Test Should We Count On?

Inherent Relationship between Lumen and Flow


Inherent Relationship between Lumen and Flow

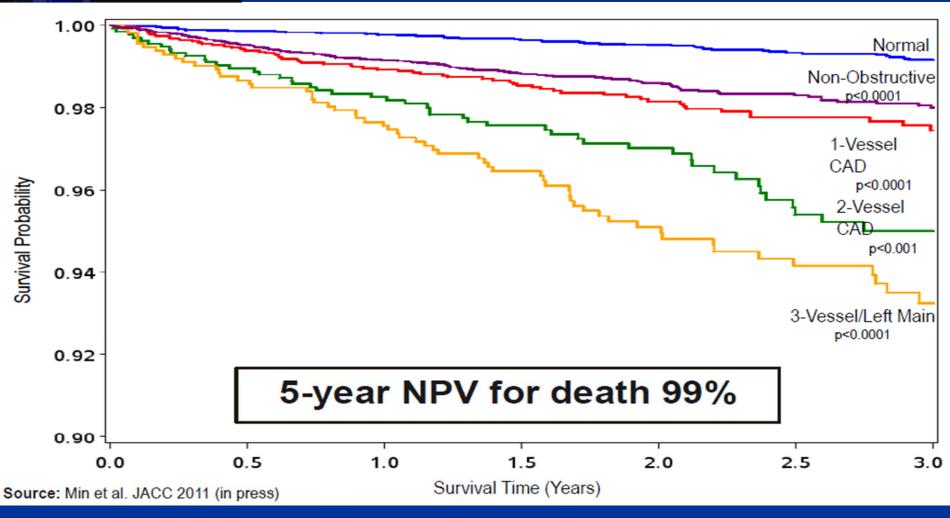
Flow is predominantly determined by the smallest cross-sectional area in the coronary bed: the Minimal Luminal Area (MLA)..

We can measure the lumen in non-invasive manner

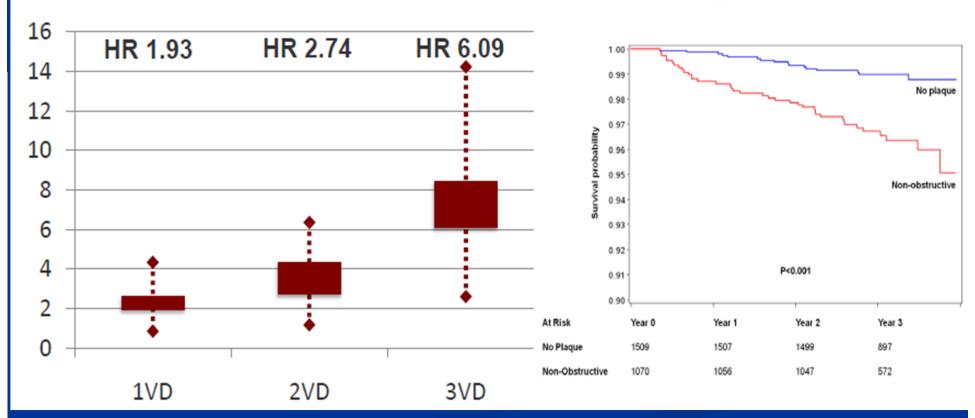
- If we can measure the lumen, we can predict physiology!
- MLD: % DS (2D concept, XA)
- MLA: % area stenosis (IVUS, <u>CCTA</u>)

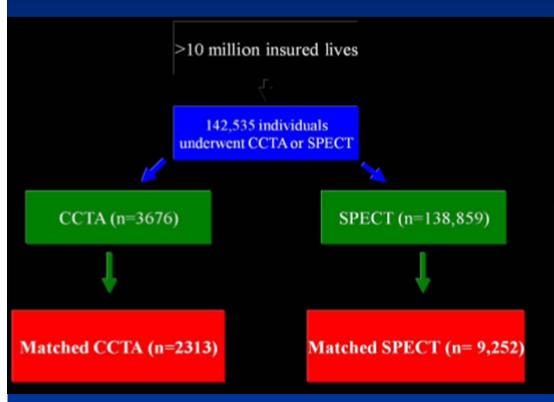
Diagnostic Performance of CCTA

Diagnosis of obstructive CAD compared to other modalities


Test	Sensitivity	Specificity
Exercise ECG treadmill ¹	68%	77%
Exercise Echo treadmill ²	86%	81%
Dobutamine Echo ²	~85%	~85%
Exercise nuclear treadmill ³	87%	73%
Pharmacologic nuclear ³	89%	75%
Coronary CTA ⁴	95%	83%

- 1. ACC/AHA 2002 Guideline Update for Exercise Testing
- 2. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography
- 3. ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging
- ACCURACY study


Prognostic Value of CCTA

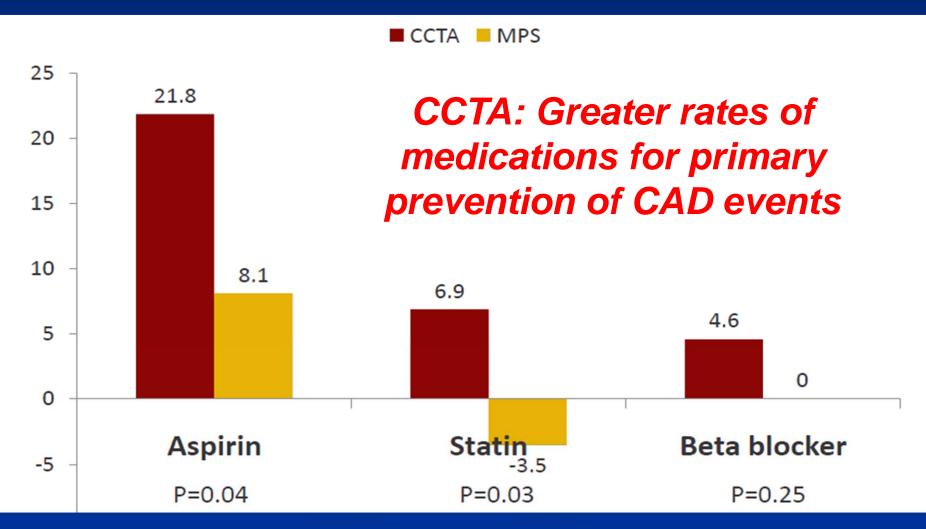

KM Survival by Per-Vessel Obstructive CAD

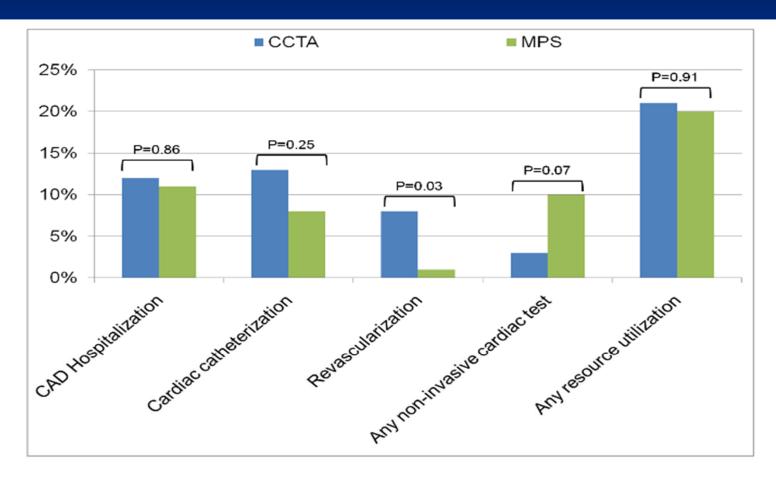
Prognostic Value of CCTA applies to individuals with mild CAD

❖ 2,583 consecutive patients undergoing CCTA with ≤50% stenosis

HEALTHCARE COSTS:

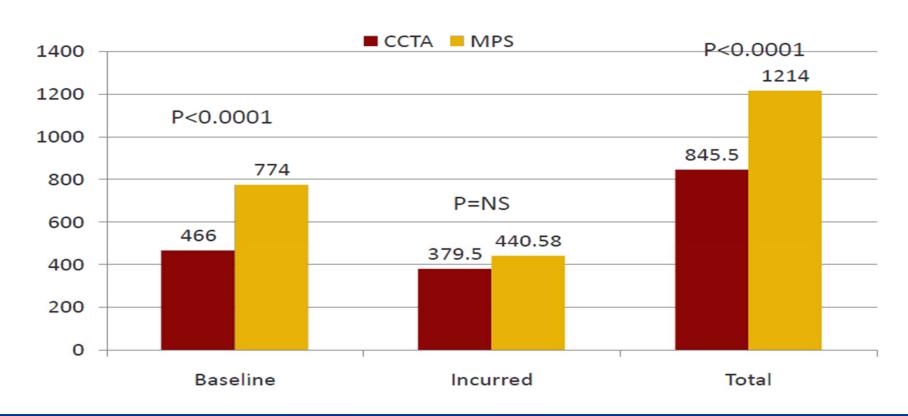
- --Additional testing
- --Medical therapies
- --Interventional therapies
- -- CAD-related hospitalization

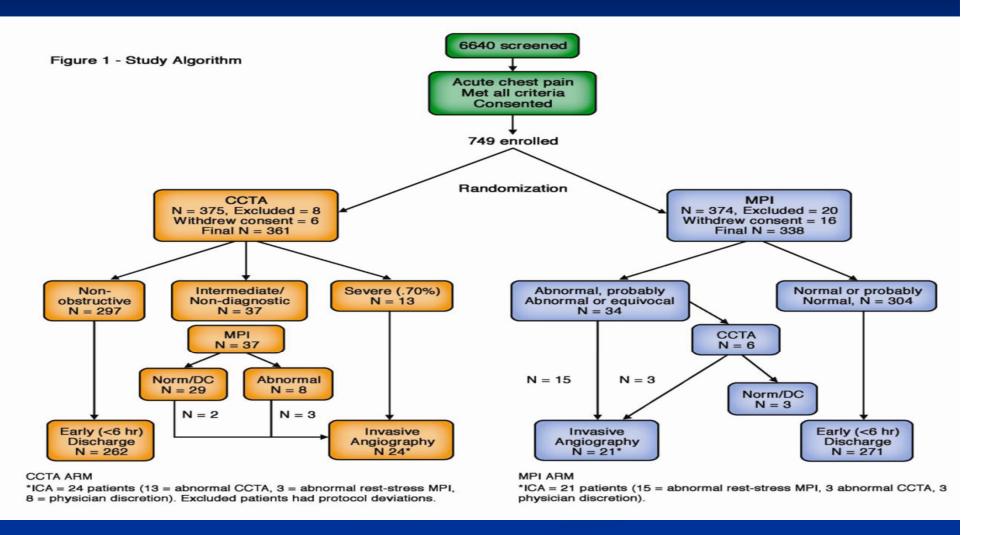

CLINICAL OUTCOMES:


- -- Myocardial infarction
- --Angina
- --CAD-related hospitalization
- --CAD-related outpatient visits

Multi-center study of 142,535 patients undergoing

CCTA vs. MPS: Cost and clinical outcomes


Min JK, et al, AJC 2008


No differences in angina-specific (SAQ) or general QoL (EQ5D)

Similar incurred costs between CCTA and MPS

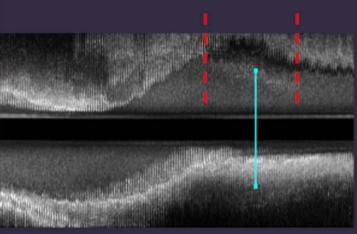
CT STAT Trial:

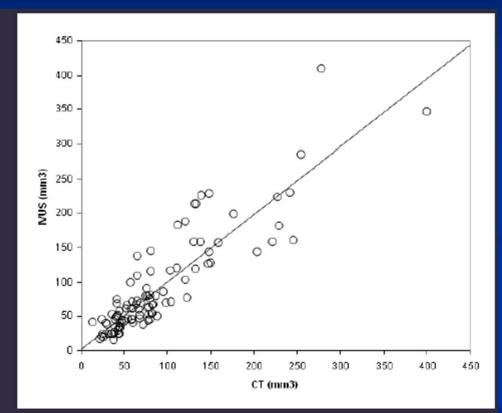
Efficiency, Cost, and Safety in Acute Chest Pain

CT STAT Trial

Study outcomes: Efficiency, Cost, and Safety

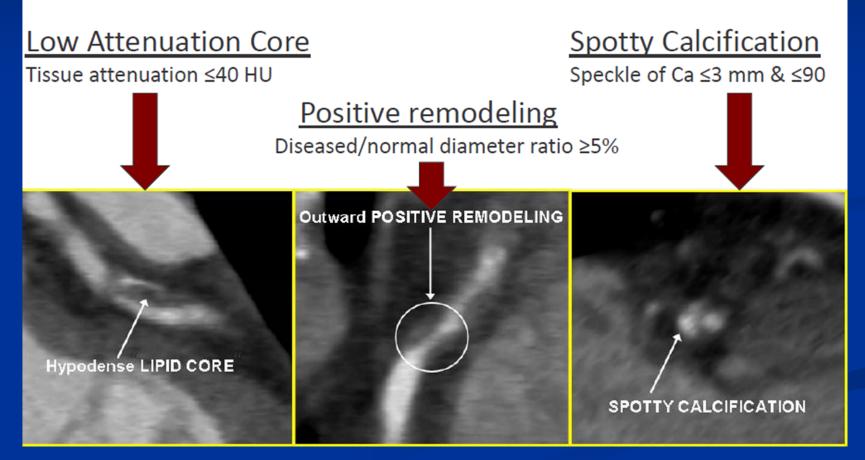
	CCTA Group N=361	MPI Group N=338	P Value
Time-to-diagnosis (hours) Median (25 th , 75 th percentile)	2.9 (2.1, 4.0)	6.2 (4.2, 19.0)	<0.0001
Total ED costs (dollars) Median (25 th , 75 th percentile)	2137 (1660, 3077)	3458 (2900, 4297)	<0.0001
MACE events in patients With normal index test	2/268 (0.8%)	1/266 (0.4%)	0.29


Raff et al. JACC 2011

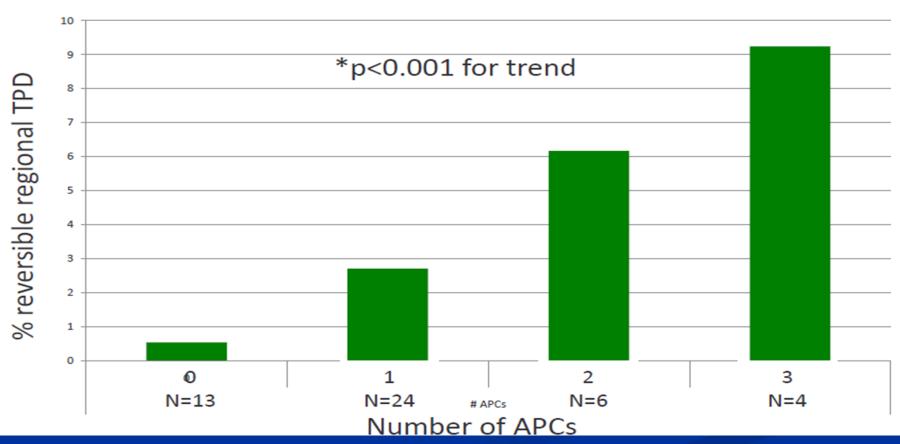

CCTA Refining Risk Prediction Through Plaque Imaging:

Plaque Quantitation

Plaque quantifitation: Volume

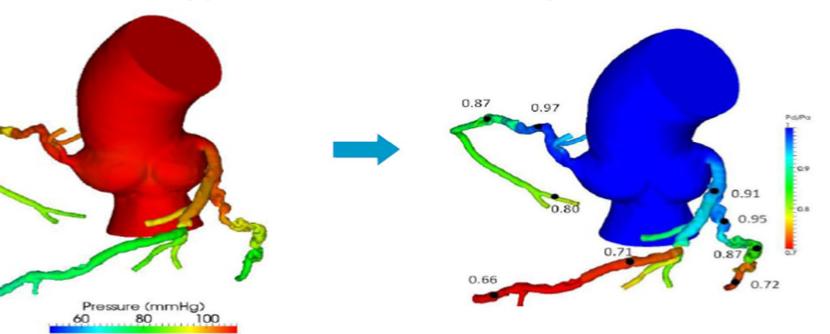


100 Plaques, CT vs. IVUS Schepis et al, r = 0.9


Plaque Characterization by CCTA

47 patients with CCTA and MPS within 6 months without coronary intervention and with % Diameter stenosis = 70-89%

Plaque Characterization by CCTA



revTPD: reversible total perfusion defect APC: Adverse plaque characteristics

Beyond anatomic imaging through anatomic imaging Computational Flow Dynamics

lean coronary pressure is divided by aortic ressure in hyperemic state to compute FFR

ase#1: LAD (Equivocal CCTA, Positive cFFR)

The DeFACTO Trial

<u>e</u>termination of <u>F</u>ractional Flow Reserve by tomic <u>Computed TomographicAngiOgraphy</u>)

ne DeFACTO study will be a prospective, 20-center and of 238 patients to evaluate the diagnostic erformance of CCTA plus CT-FLOW for detection and eclusion of HD-significant coronary artery disease CAD), as defined by invasive FFR as the reference candard prollment began in 11/10

Summary

Functional test has limitations:

- High rate of invasive angiography with insignificant CAD
- Accuracy of stress testing in appropriate population is lower than literature summaries

Anatomic test with CCTA

- High diagnostic performance for detection and exclusion of angiographically-obstructive CAD
- Significant improvements in CT technology enhance diagnostic performance and prediction of prognosis.