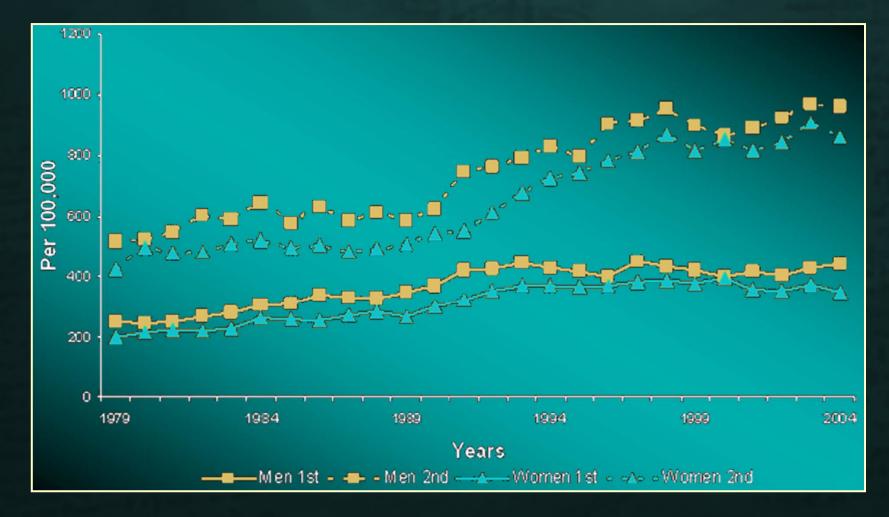


Echo based Management of Heart Failure

Jin-Oh Choi Sungkyunkwan University Samsung Medical Center


Recent advance in Heart Failure

Natriuretic Peptide
 Diagnosis and prognosis of HF
 – BNP
 – NT-proBNP

Neurohormonal blockade

- Treatment of HF
 - RAS inhibitor
 - Beta-blocker
 - Aldosterone inhibitor

Age-Adjusted Hospitalization Rates for Heart Failure. National Hospital Discharge Survey, 1979–2004

Fang et al. JACC 2008;52:428-34

ACC/AHA guideline for the diagnosis and management of HF 2008

"Comprehensive 2-D and Doppler EchoCG is the single most useful diagnostic test in the evaluation of HF..."

Accurate and noninvasive measurement of ventricular function and structural abnormality

Echo role in HF

Make a correct diagnosis of HF

Find reversible or treatable cause

Prognostic evaluation

Guidance in therapeutic decision

Diagnosis of HF

HF is a clinical syndrome in which patients have the followings

• Symptoms typical of heart failure Breathlessness at rest or on exercise, fatigue, tiredness, ankle swelling

and

• Signs typical of heart failure

Tachycardia, tachypnea, pulmonary rales, pleural effusion, raised jugular venous pressure, peripheral edema, hepatomegaly

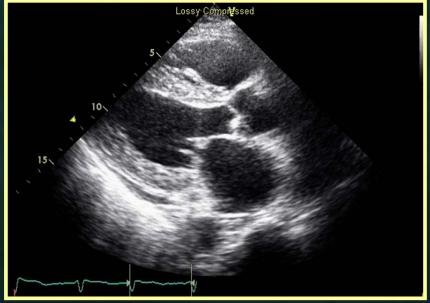
and

 Objective evidence of a structural or functional abnormality of the heart at rest
 Cardiomegaly, third heart sound, cardiac murmurs, abnormality on the echocardiogram, raised natriuretic peptide concentration

Common echocardiographic abnormalities in HF

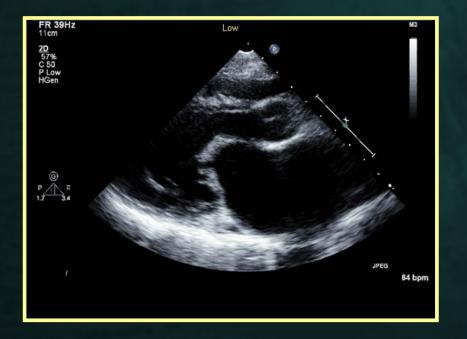
Samsung Medical Cente

Measurement	Abnormality	Clinical implications	
LV EF	Reduced (<45–50%)	Systolic dysfunction	
LV function, Global and regional	Akinesis, hypokinesis, dyskinesis	Myocardial infarction/ischaemia Cardiomyopathy, myocarditis	
LV FS	Reduced (<25%)	Systolic dysfunction	
LV EDD	Increased (>55–60 mm)	Volume overload, HF likely	
LV ESD	Increased (>45 mm)	Volume overload, HF likely	
LA size	Increased (>40 mm)	Increased filling pressures Mitral valve dysfunction, Atrial fibrillation	
LV thickness	Hypertrophy (>11–12 mm)	Hypertension, aortic stenosis, HCM	
Valve structure and function	Valvular stenosis or regurgitation (especially aortic stenosis and mitral insufficiency)	May be primary cause of HF or complicating factor Assess gradients and regurgitant fraction Assess haemodynamic consequences Consider surgery	
Mitral inflow profile	Abnormalities of the early and late diastolic filling patterns	Indicates diastolic dysfunction and suggests mechanism	
TR peak velocity	Increased (>3 m/s)	Increased RVSP, Suspect pulmonary hypertension	
Pericardium	Effusion, haemopericardium, thickening	Consider tamponade, uremia, malignancy, systemic disease, acute or chronic pericarditis, constrictive pericarditis	
Aortic outflow TVI	Reduced (<15 cm)	Reduced low stroke volume	
Inferior vena cava	Dilated Retrograde flow	Increased RA pressures, RV dysfunction Hepatic congestion	

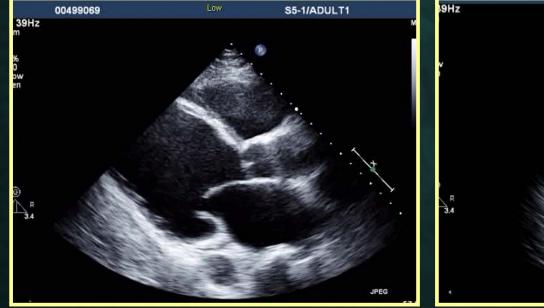

Three fundamental questions must be addressed at evaluation of HF

 Is LV EF preserved or reduced?
 Is LV structure normal or abnormal?
 Are there other structural abnormalities such as valvular, pericardial, or RV abnormalities that could account for the clinical presentation?

HCM


Infiltration

Valve disease


Constriction

Reduced LVEF

Preserved LVEF

Classification of HF

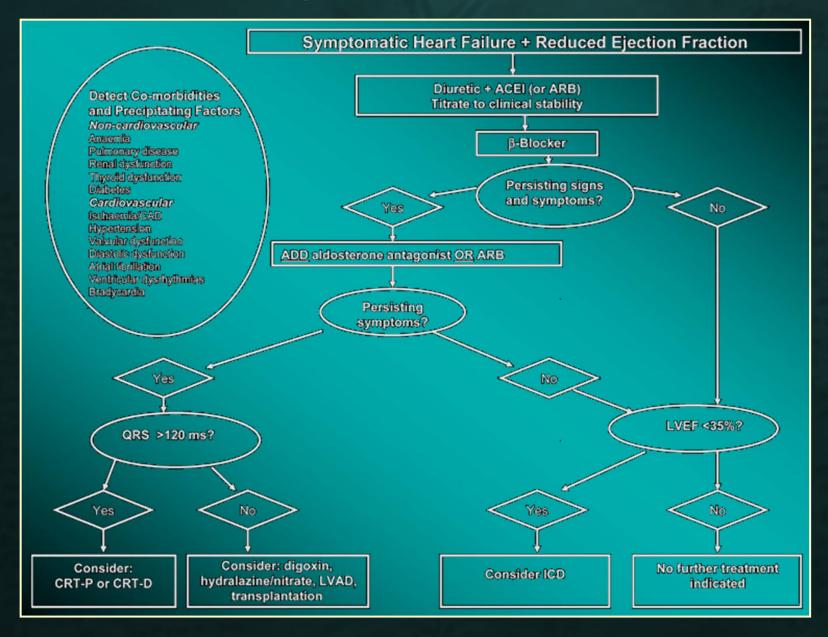
Systolic HF vs Diastolic HF
 HF with reduced EF
 LVEF < 40-45%
 HF with preserved EF
 LVEF > 45-50%

Classification of HF

Systolic HF vs Diastolic HF
 HF with reduced EF

 LVEF < 40-45%

 HF with preserved EF


 LVEF > 45-50%

Common echocardiographic abnormalities in HF

Samsung Medical

Measurement	Abnormality	Clinical implications	
LV EF	Reduced (<45–50%)	Systolic dysfunction	
LV function, Global and regional	Akinesis, hypokinesis, dyskinesis	Myocardial infarction/ischaemia Cardiomyopathy, myocarditis	
LV EDD	Increased (>55–60 mm)	Volume overload, HF likely	
LV ESD	Increased (>45 mm)	Volume overload, HF likely	
LV FS	Reduced (<25%)	Systolic dysfunction	
LA size	Increased (>40 mm)	Increased filling pressures Mitral valve dysfunction, Atrial fibrillation	
LV thickness	Hypertrophy (>11–12 mm)	Hypertension, aortic stenosis, HCM	
Valve structure and function	Valvular stenosis or regurgitation (especially aortic stenosis and mitral insufficiency)	May be primary cause of HF or complicating factor Assess gradients and regurgitant fraction Assess haemodynamic consequences Consider surgery	
Mitral inflow profile	Abnormalities of the early and late diastolic filling patterns	Indicates diastolic dysfunction and suggests mechanism	
TR peak velocity	Increased (>3 m/s)	Increased RVSP, Suspect pulmonary hypertension	
Pericardium	Effusion, haemopericardium, thickening	Consider tamponade, uremia, malignancy, systemic disease, acute or chronic pericarditis, constrictive pericarditis	
Aortic outflow TVI	Reduced (<15 cm)	Reduced low stroke volume	
Inferior vena cava	Dilated Retrograde flow	Increased RA pressures, RV dysfunction Hepatic congestion	

Treatment algorithm for HF with REF

15

Cardiac & Vascular Center

Indication of medical Tx for HF

>ACE inhibitors

LV dysfunction (EF ≤ 40%) with or without Sx

➢Beta blockers
■ Compensated HF with LV dysfunction (EF ≤ 40%)

➤ Aldosterone inhibitors
 ■ Fc III-IV HF with EF ≤ 35% or post MI EF ≤ 40%

Indication of Device Tx for HF

ICD indication

- LV EF ≤ 35%, after 40 days AMI or optimal HF medical therapy
- Fc II-III Sx
- For sudden death prevention

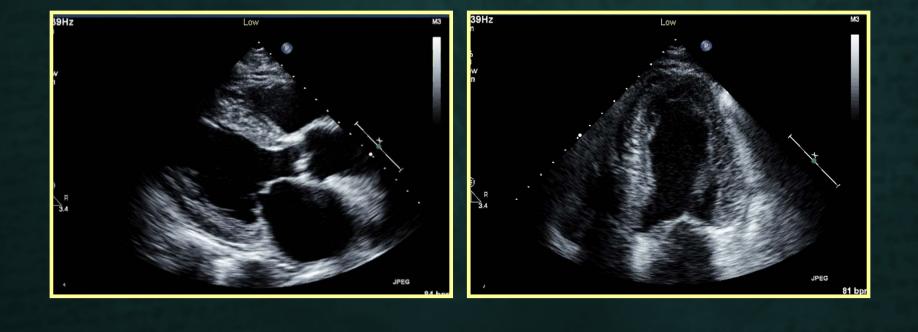
CRT indication

- LVEF ≤ 35%
- Fc III-IV Sx on optimal Tx
- Cardiac dyssynchrony (QRS duration ≥ 120msec)

Classification of HF

Systolic HF vs Diastolic HF
 HF with reduced EF

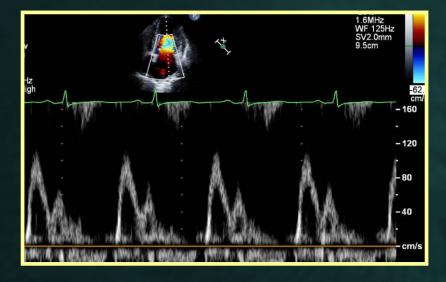
 LVEF < 40-45%


 HF with preserved EF

 LVEF > 45-50%

Normal LVEF but...

Common echocardiographic abnormalities in HF

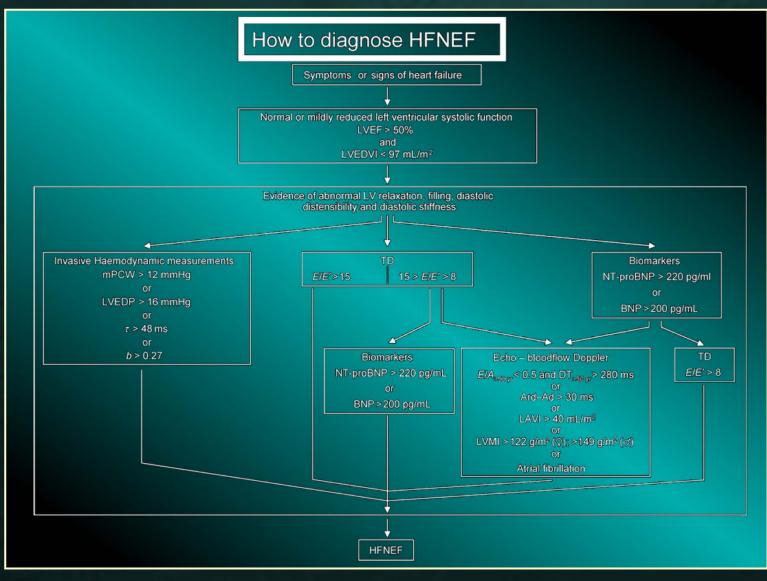

Measurement	Abnormality	Clinical implications		
LV EF	Reduced (<45–50%)	Systolic dysfunction		
LV function,	Akinesis, hypokinesis, dyskinesis	Myocardial infarction/ischaemia		
Global and regional		Cardiomyopathy, myocarditis		
LV EDD	Increased (>55–60 mm)	Volume overload, HF likely		
LV ESD	Increased (>45 mm)	Volume overload, HF likely		
LV FS	Reduced (<25%)	Systolic dysfunction		
LA size	Increased (>40 mm)	Increased filling pressures Mitral valve dysfunction, Atrial fibrillation		
LV thickness	Hypertrophy (>11–12 mm)	Hypertension, aortic stenosis, HCM		
Valve structure and function	Valvular stenosis or regurgitation (especially aortic stenosis and mitral insufficiency)	May be primary cause of HF or complicating factor Assess gradients and regurgitant fraction Assess haemodynamic consequences Consider surgery		
Mitral inflow profile	Abnormalities of the early and late diastolic filling patterns	Indicates diastolic dysfunction and suggests mechanism		
TR peak velocity	Increased (>3 m/s)	Increased RVSP, Suspect pulmonary hypertension		
Pericardium	Effusion, haemopericardium, thickening	Consider tamponade, uremia, malignancy, systemic disease, acute or chronic pericarditis, constrictive pericarditis		
Aortic outflow TVI	Reduced (<15 cm)	Reduced low stroke volume		
Inferior vena cava	Dilated Retrograde flow	Increased RA pressures, RV dysfunction Hepatic congestion 20		

Doppler-echocardiographic indices and ventricular filling

Doppler indices	Pattern	Consequence	
	Restrictive (>2, short DT<115 to 150 ms)	High filling pressures Volume overload	
E/A waves ratio	Slowed relaxation (<1)	Normal filling pressures Poor compliance	
	Normal (>1)	Inconclusive as may be pseudo-normal	
Increased (>15)		High filling pressures	
E/Ea	Reduced (<8)	Low filling pressures	
	Intermediate (8–15)	Inconclusive	
	>30 ms	Normal filling pressures	
A _{dur} mit – pul	<30 ms	High filling pressures	
>D wave		Low filling pressures	
PV S wave	<d td="" wave<=""><td>High filling pressures</td></d>	High filling pressures	
Vp	<45 cm/s	Slow relaxation	
F 0 /	>2.5	High filling pressures	
E/Vp	<2	Low filling pressures	
Valsalva maneuver	Change of the pseudonormal to abnormal filling pattern	Unmasks high filling pressure in the setting of systolic and diastolic dysfunction	

Samsung Medical Center

Normal LVEF but...

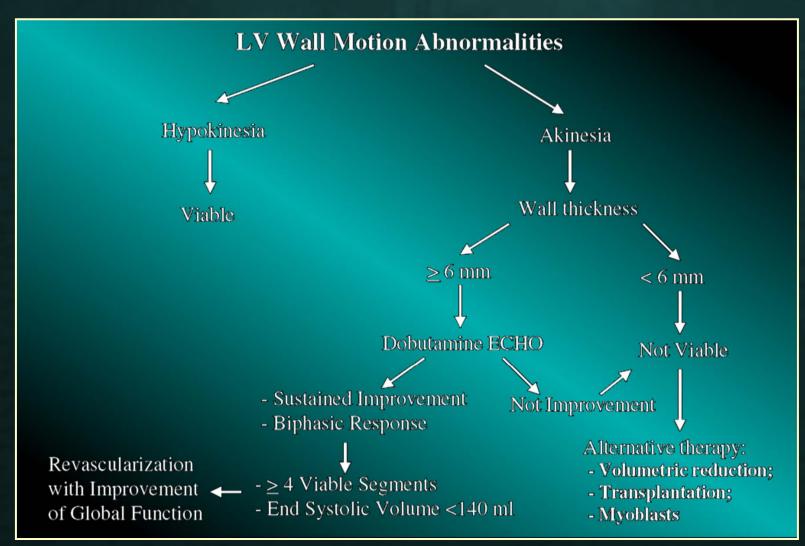


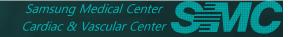
E/A>1.5 E/E'=22 PVd » PVs

How to diagnose diastolic HF

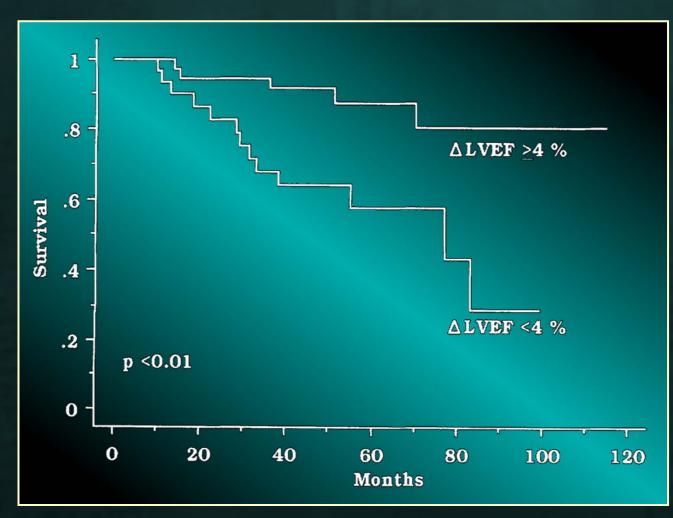
EHJ(2007) 28, 2539–2550

23


Stress echocardiography in HF

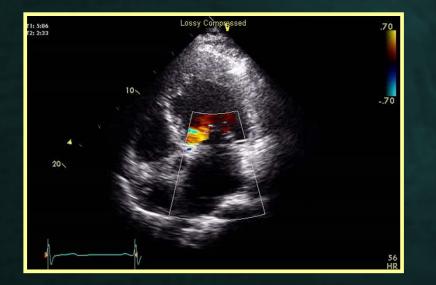

Potential parameters obtainable during stress echocardiography

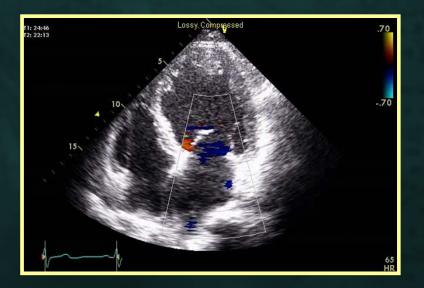
Myocardial viability in ischemic cardiomyopathy
Functional capacity


- Contractile reserve
- Mitral valve function
- Pulmonary systolic pressure
- RV function
- Diastolic function

Flow chart for searching segmental and global systolic function in chronic Ischemic CMP

Myocardial Contractile Reserve as Prognostic Determinant in Patients With Idiopathic DCM

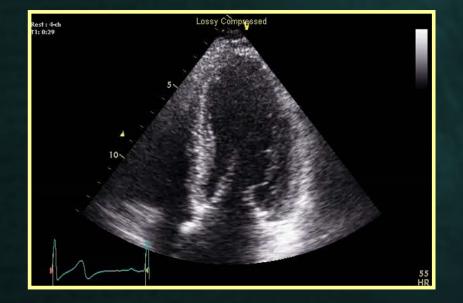


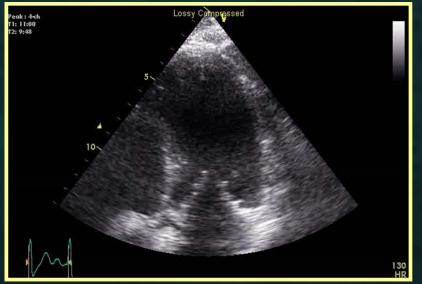

CHEST 1997; 111:344-50

Aggravated MR after exercise Ischemic MR

Before exercise

After exercise

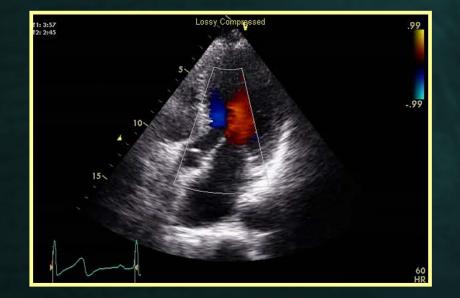


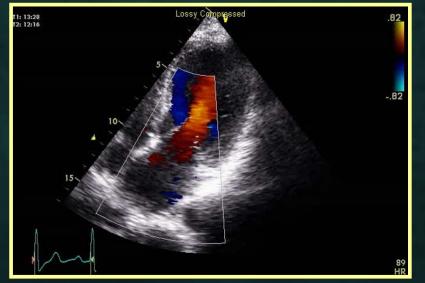


Aggravated MR after exercise HCM with SAM

Before exercise

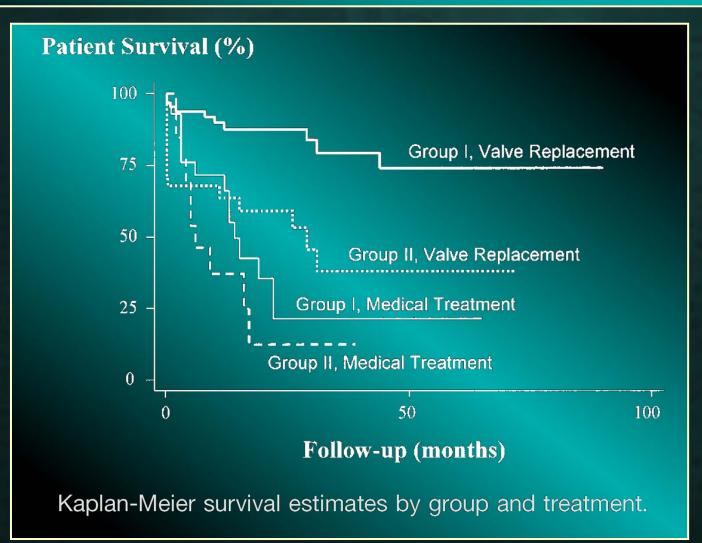
After exercise

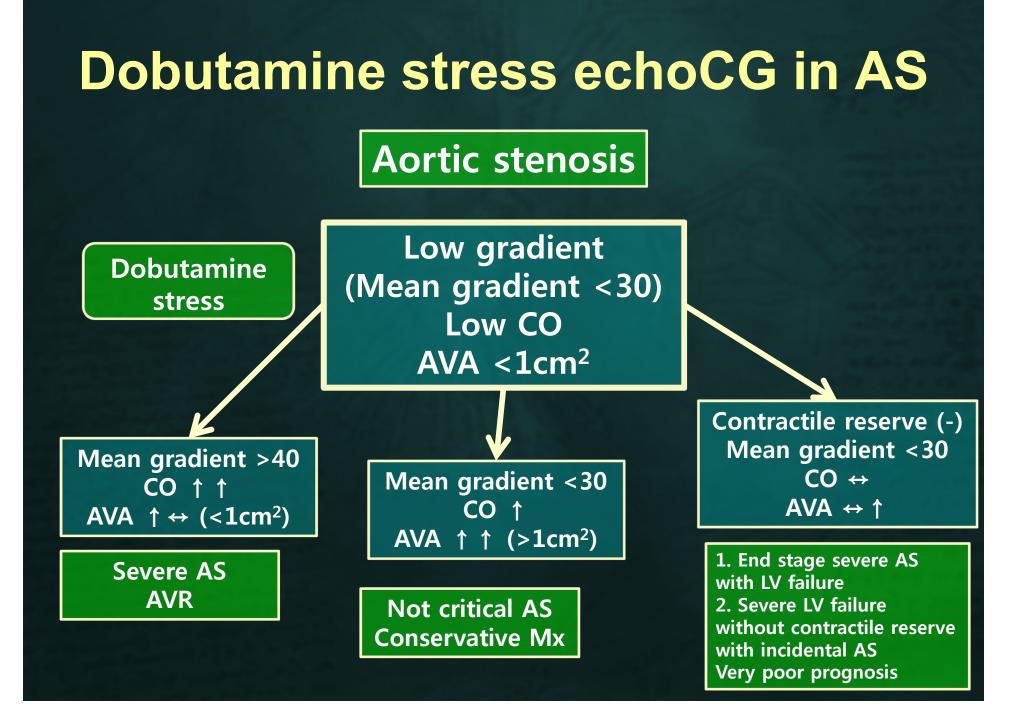




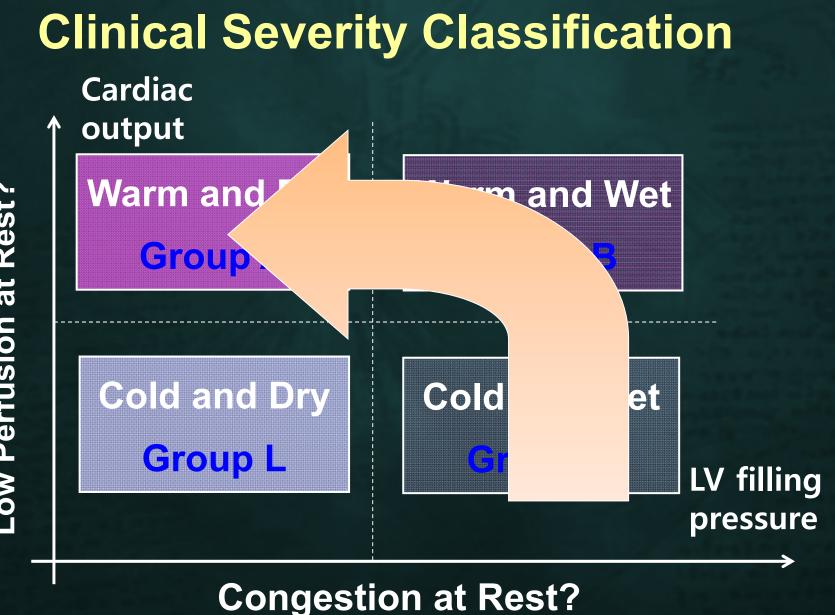
Aggravated MR after exercise HCM with SAM

Before exercise

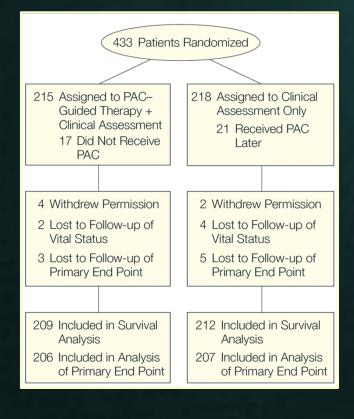

After exercise



Low-Gradient Aortic Stenosis


Operative Risk Stratification and Predictors for Long-Term Outcome: A Multicenter Study Using Dobutamine Stress Hemodynamics

Circ. 2003;108:319-324.



32

Cardiac & Vascular Center

PAC guided HF treatment - ESCAPE trial -

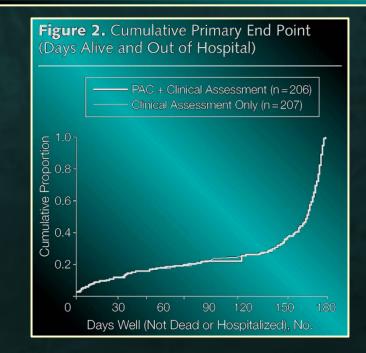

JAMA. 2005;294(13):1625-1633

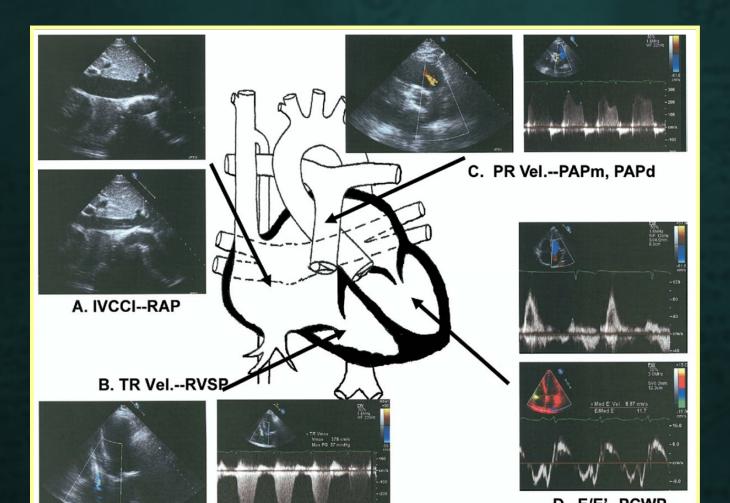
 Table 2. Impact of Therapy Guided by Pulmonary Artery Catheterization During the Course of Hospitalization*

Hemodynamic Measurement	Baseline	Final†
Right atrial pressure, mm Hg	14 (10)	10 (7)
Pulmonary capillary wedge pressure, mm Hg	25 (9)	17 (7)
Cardiac index, L/min/m ²	1.9 (0.6)	2.4 (0.7)
Cardiac output, L/min	3.8 (1.2)	4.8 (2.1)
Systemic vascular resistance, dynes $ imes$ sec/cm ⁵	1500 (800)	1100 (500)

*Data are expressed as mean (S

P<.001 for all variables. The final hemodynamics are those measured just before removal of the pulmonary artery catheter, which occurred at a median of 1.9 days after insertion.

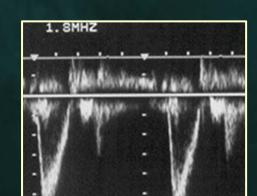
33

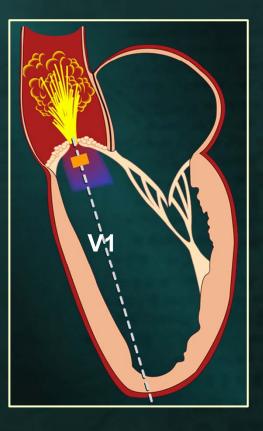

PAC guided HF treatment - ESCAPE trial -

Assessm	d to Clinical hent Only ived PAC		Table 6. A	
Assessm 21 Rece	nent Only eived PAC			
			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			Implantable	
			Cardiogenic	
Withdrew	Permission		Ischemia/an	
4 Lost to Follow-up of Vital Status		4 Lost to Follow-up of		PAC infectio
			Myocardial in	
5 Lost to Follow-up of				Stroke or tra
Primary E			Cardiac arre	
			Infection	
2 Included	d in Survival		Patients with	
,			Abbreviation: I *P values calc	
of Primary End Point				
	Lost to Fo Vital Statu Lost to Fo Primary E 2 Included Analysis 7 Included	Vital Status Lost to Follow-up of Primary End Point 2 Included in Survival Analysis 7 Included in Analysis	Lost to Follow-up of Vital Status Lost to Follow-up of Primary End Point 2 Included in Survival Analysis 7 Included in Analysis	

433 Patients Randomized

	No. (%)		
Adverse Event	PAC Group (n = 215)	Clinical Assessment Group (n = 218)	<i>P</i> Value*
Implantable cardioverter-defibrillator firing	5 (2.3)	1 (0.5)	.08
Cardiogenic shock	6 (0.5)	2 (0.9)	.12
Ischemia/angina	9 (4.2)	4 (1.8)	.13
PAC infection	4 (1.9)	0 (0.0)	.03
Myocardial infarction	0 (0.0)	1 (0.5)	.75
Stroke or transient ischemic attack	1 (0.5)	0 (0.0)	.75
Cardiac arrest	9 (4.2)	5 (2.3)	.23
Infection	27 (12.6)	20 (9.2)	.25
Patients with at least 1 adverse event	47 (21.9)	25 (11.5)	.04
Abbreviation: PAC, pulmonary artery catheter. *P values calculated as Fisher exact mid-P values.			


cho as Right Heart Catheterization



Doppler of LVOT

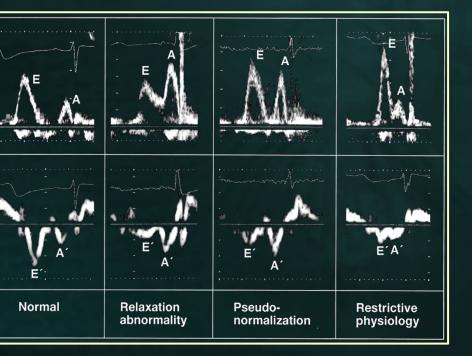
se apical window

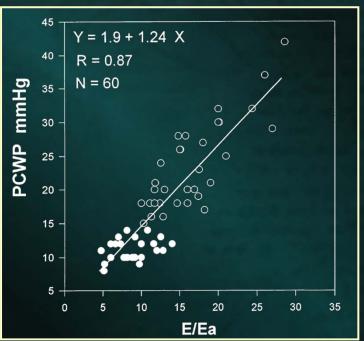
- W Doppler
- lace sample volume in LVOT
- void flow convergence
- ormal LVOT TVI:
- 18-22 cm ⁄elocity ≈ 1 m/s

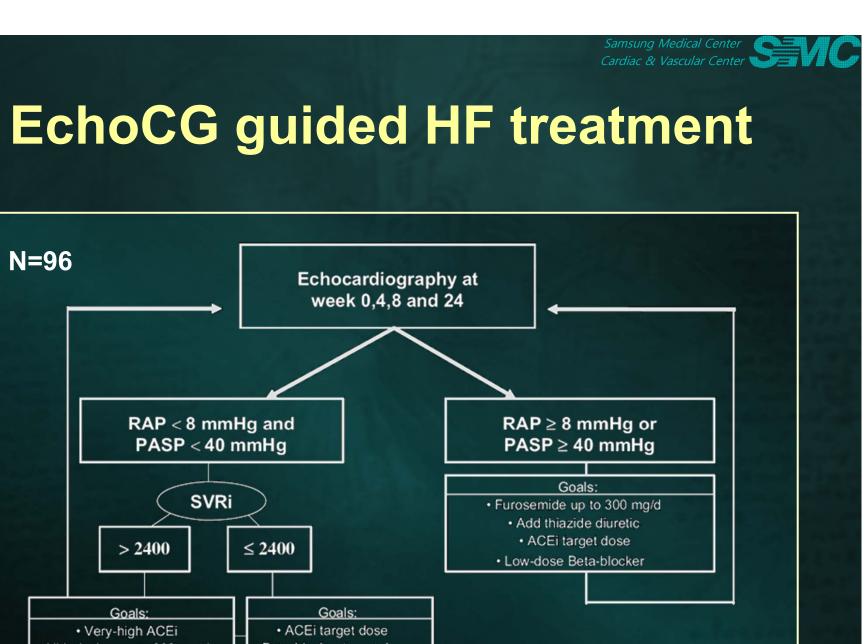
Cardiac Output

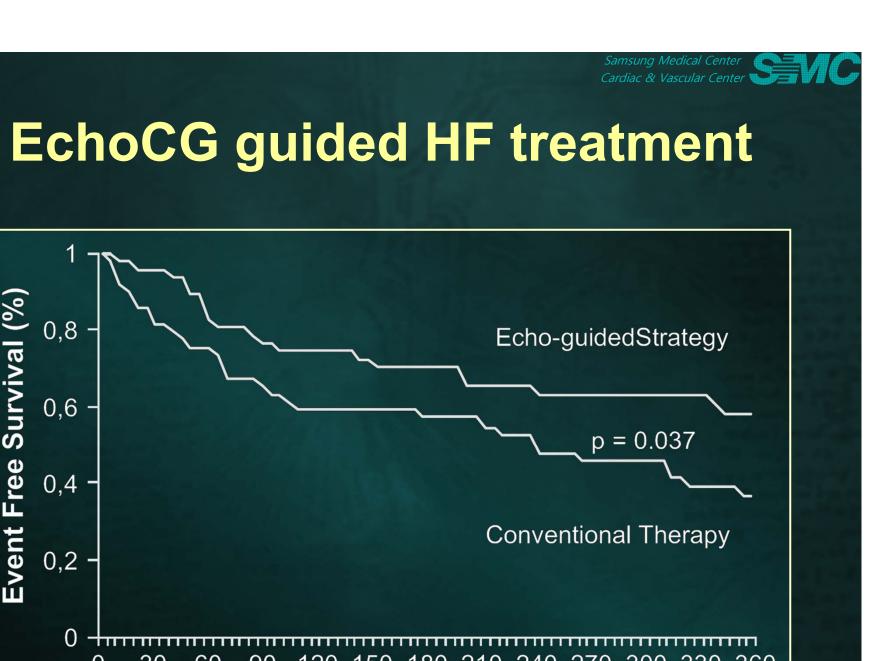
- **CO = SV** × heart rate
- Normal CO = 4-7 L/min
- SVR = (MAP-RAP)/CO

RA pressure estimation

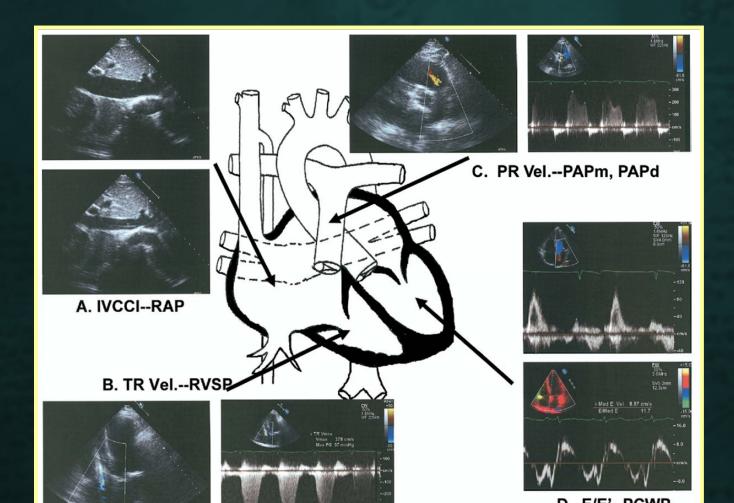

IVC size	Change with respiration (phlethora)	RA pressure (mmHg)
Normal IVC	Decrease by >50%	5-10
Normal IVC	Decrease by <50%	10-15
ted IVC (2.0cm)	Decrease by <50%	15-20
C dilation with atic vein dilation	No change	20-


Estimation of RVSP and/or PAP


RV-RA Pressure gradient = 4 × (TR Vmax)²


 $RVSP = RAP + 4 \times (TR Vmax)^2$

ssue Doppler imaging estimating LV filling pressure



Echo as non-invasive PAC

Echo role in HF

- lake a correct diagnosis of HF
- ind reversible or treatable cause
- **Prognostic evaluation**
- **Suidance in therapeutic decision**

Jsing 2D, Doppler and stress echoCG