Role of Echocardiography for Prognosis of Hypertrophic Cardiomyopathies

Mi-Jeong Kim

Incheon St.Mary`s Hostpial
The Catholic University of Korea

HCM: A Lifelong LV Remodeling Process

Genetic Basis of HCM

MYH7	β-Myosin heavy chain	25-40%
MYH6	α-Myosin heavy chain	Rare
MYBPC3	Cardiac myosin-binding protein C	25-40%
TNNT2	Cardiac troponin T	3-5%
TNNI3	Cardiac troponin I	1-5%
TPM1	α-tropomyosin	1-5%
•••		•••

- Over 400 mutation at >20 genes identified in HCM
- Yield for commercially available genetic test: 50-70% depending on the company
- Myofilament/sarcomeric HCM (thick/thin/giant filament), Z-disc HCM, calcium-handling HCM

Distinct mutation cannot dictate clinical phenotype

Lys183del

HCM is Heterogeneous Disease With Extreme Phenotypic Variations

Phenotype

Variable expression, penetrance

HCM: Profiles in Prognosis

Mode of death in HCM

86 deaths in 744 HCM pt, 8±7 yr f/up (non-referral based cohort, USA/Italy)

No. of HCM deaths per age group (yrs)

Maron et al. Circulation 2000;102:858-64

ACC/AHA/ESC guidelines for ICD in HCM

- Sustained VT and/or VF (Class I, B)
- Primary prophylaxis for ≥1 major clinical risk factor for SCD (Class IIa, C)
- EP testing may be considered for risk assessment for SCD (Class IIb, C)

Conventional Risk Factors for Sudden Death in HCM

Major	Possible in Individual Patients
Cardiac arrest (ventricular fibrillation)	Atrial fibrillation
Spontaneous sustained ventricular tachycardia	Myocardial ischemia
Family history of premature sudden	LV outflow obstruction
death	
Unexplained syncope	High-risk mutation
LV thickness greater than or equal to	Intense (competitive) physical
30 mm	exertion
Abnormal exercise blood pressure	
Nonsustained ventricular tachycardia	
(Holter)	

Conventional Risk Factors

Clinical risk factors for ICD in HCM

- 1 risk factor can be enough for ICD
- Risk factors cannot be summed numerically
- Absence of risk factors does not declare immunity from SCD
- ICD decisions is based on individual considerations

- Dr. Maron -

Substrates for arrhythmia

- Myofiber disarray
- Ischemia- relative, fixed
- Fibrosis
- Marked systolic dysfunction

CE-MRI findings in HCM

Myocardial fibrosis or scar (≈ DE in CE CMR)

- High prevalence, particularly in areas with hypertrophy. (Moon et al. JACC 2003;41:1561-7)
- Associated with the occurrence of NSVT.
 (Adabag et al. JACC 2008;51:1369-74)
- Independent predictor of adverse cardiac events. (Bruder et al. JACC 2010;56:875-87, O`Hanlon et al. JACC 2010;56:867-74)

Myocardial Scar Visualized by CMR Predicts MACE in Patients with HCM

	No SCD (n=209)	SCD (n=22)	P value
Age	57 yr	60 yr	0.77
HCM type, septal	64%	62%	0.69
EF (by CMR)	71%	68%	< 0.05
Max thickness	19 mm	21 mm	<0.05
LVOTO, %	21%	46%	0.33
LGE	66%	91%	0.10
LGE, %LV	1.9	11.2	<0.01
No of SCD RF			
0	76%	73%	NS
1	20%	18%	
2	3%	0	

"Positive HCM genetic test" associated with adverse outcome

Characteristic	Positive	Negative 45±19	P-Value	
Age at Dx (yr)	36±17		<0.001	
MLVWT (mm)	23±7	21±6	0.002	
FH of HCM	68%	59%	<0.001	
ICD	25%	10%	<0.001	
Characteristic	HR	95% CI	P-Value	
Positive Test	4.3	1.5-12.5	0.008	
Age (per yr)	1.03	1.01-1.06	0.017	
LVOTO (≥30mmH	g) 1.33	0.7-2.7	0.43	
Atrial Fibrillation	1.67	0.7-3.8	0.22	

Subtype of HCM

Echocardiography-guided genetic testing in HCM: Septal Morphological Features Predict the Presence of Myofilament Mutations

Diastolic dysfunction

- Early manifestation in ALL patients.
- Subtle changes even in preclinical disease.

Evaluation of LV Filling Pressures by Doppler Echo in Patients With HCM: Correlation With Direct LA pressure Measurement at Cardiac Catheterization

Symptomatic HCM (n=100, NYHA III/IV 82%)

Geske, Nishimura et al. Circulation 2007;116:2702-8

Diastolic dysfunction in HCM: Complex interplay of multiple mechanisms

Reduced LV distensibility

- ventricular hypertrophy
- myocardial disarray
- interstitial fibrosis modulated by GF, cytokines
- LV shape and geometry: small LV systolic volumes, LV cavity obliteration

Increased elastic recoil Reduced preload

LA volumetric remodeling is predictive of functional capacity in non-obstructive HCM

Systolic Dysfunction - Dilated Phase in the Course of HCM

LV Apical Aneurysm

Limitation of Conventional Echocardiography

Apparent Super-normal Function

Functional Impairment Primarily Affects the Longitudinal Myocardial Fibers

Tissue Doppler Imaging Predicts the Development of Hypertrophic Cardiomyopathy in Subjects With Subclinical Disease

Nagueh et al. Circulation 2003;108:395-398

Limitation of Conventional Echocardiography

- Assess changes in late stage results
- Assess global cardiac function by volumebased index
- Exclusive concentration on radial function rather than longitudinal function
- Omit the complex shear deformation in 3D space

Major Components of Normal Cardiac Motion/deformation

- Longitudinal lengthening and shortening
- Radial thinning and thickening
- Circumferential lengthening and shortening
- Base–apex twist
- Epicardial—endocardial
 - Circumferential
 - Longitudinal shear

Major Components of Normal Cardiac Motion/deformation

Longitudinal Strain Curve Profiles

Hypertension vs HCM

Rotational Mechanics Also Reduced

Use of Strain Imaging in Detecting Segmental Dysfunction in Patients With Hypertrophic Cardiomyopathy

Yang H, Garcia MJ et al. J Am Soc Echocardiogr 2003;16:233-9

Characteristic Deformation Pattern in HCM with Fibrosis

Roles of Deformation Imaging in HCM

- Regional vs Global function
- Longitudinal vs Radial function
- Systolic vs Diastolic function
- Early functional change
 vs Late morphology of remodeling
- Localizing abnormal myocardial tissue

Risk Assess in HCM; Role of Imaging

- Conventional echo
 - Clinical diagnosis of HCM (LVH), EF, diastolic dysfunction, etc
 - Clinical risk factors of prognosis of HCM
- New tool for Abnormal tissue-detection (CMR, 2D deformation image)