APCDE 2011

Non-compaction & Other Unusual Cardiomyopathies

Dae-Hee Kim, MD, PhD College of Medicine University of Ulsan Asan Medical Center

Historical context

1957 : the term " Cardiomyopathy" for the first time ; primary myocardial disease

1968 (WHO): "Diseases of different and often unknown etiology in which the dominant feature is cardiomegaly and heart failure"

1980 (WHO) : "Heart muscle diseases of unknown cause"

Classification (1)

1995 WHO/ISFC definition & classification

 Diseases of the myocardium associated with cardiac dysfunction
 Dilated cardiomyopathy
 Hypertrophic cardiomyopathy

- Restrictive cardiomyopathy
- Arrhythmogenic right ventricular cardiomyopathy
- Unclassified cardiomyopathies

Classification (2)

Cardiomyopathies

HCM

DCM

ARVC

RCM

Unclassified

Familial

Sacomere protein mutation
Storage disease
Disorders of fatty acid metabolism
Carnitine deficiency
Phosphorylase B kinase deficiency
Mitochondrial cytopathies
Syndromic HCM
Ohters

Non-familial

•Obesity •Infants of diabetic mothers •Athletic training •Amyloid (AL/prealbumin)

Familial •Sacomere protein mutation •Z-band •Cytoskeletal gener

•Cytoskeletal genes •Nuclear membrane •Mildly dilated CM •Intercalated disc protein mutations (see ARVC) •Mitochondrial cytopathy

Non-familial

•Myocarditis
•Kawasaki disease
•Eosinophilic (Churg Strauss syndrome)
•Viral persistence
•Drugs
•Pregnancy
•Endocrine
•Nutritional
•Alcohol
•Tachycardio myopathy Familial

 Intercalated disc protein mutations
 Cardiac ryanodine receptor (RyR2)
 Transforming growth factor-β3 (TGFβ3)
 Non-familial

•Inflammation

Familial

Sarcomeric protein mutations
Familial amyloidosis
Desminopathy
Pseuxanthoma elasticum
Haemochromatosis
Anderson-Fabry disease
Glycogen storage disease

Non-familial

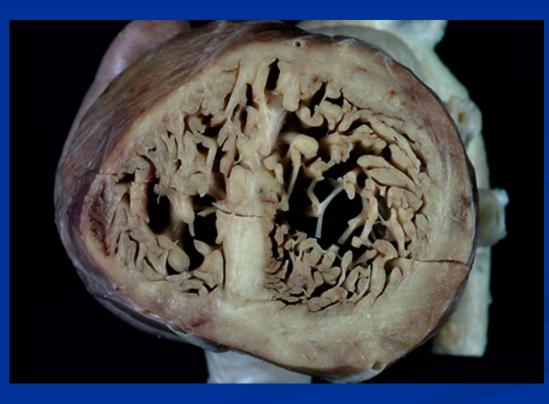
•Amyloid (AL/prealbumin) •Scleroderma •Endomyocardial fibrosis •Carcinoid heart disease •Metastatic cancers •Radiation •Drugs (anthracyclines)

•Left ventricular non-compaction

rt Ventricular non-compacti •Barth syndrome •Lamin A/C •ZASP •α-dystrobrevin

Non-familial •Tako Tsubo cardiomyopathy

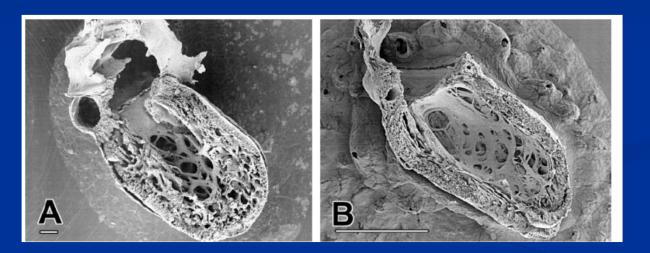
2008 ESC recommendation

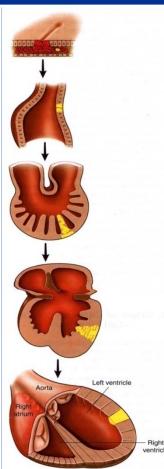


Agenda

 LV non-compaction cardiomyopathy
 Arrhythmogenic RV cardiomyopathy
 Stress-induced cardiomyopathy

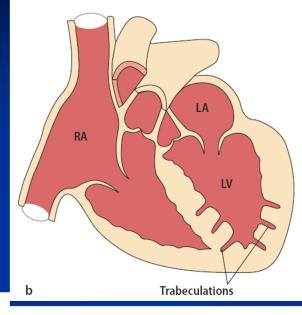
Non-Compaction Cardiomyopathy



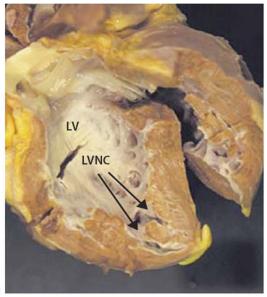


Noncompaction cardiomyopathy

Compaction of the ventricular myocardium normally progresses from epicardium to endocardium and from the base of the heart toward the apex : 5-8 weeks of fetal development



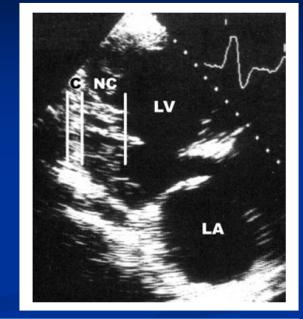
Arrest of compaction, non-compaction of normal myocardium: result in persistence of the deep recesses and sinusoids

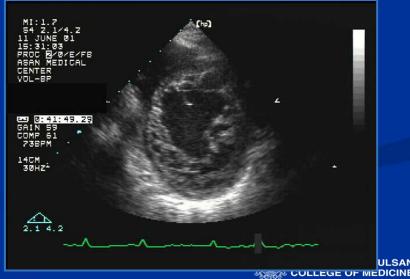


Noncompaction cardiomyopathy

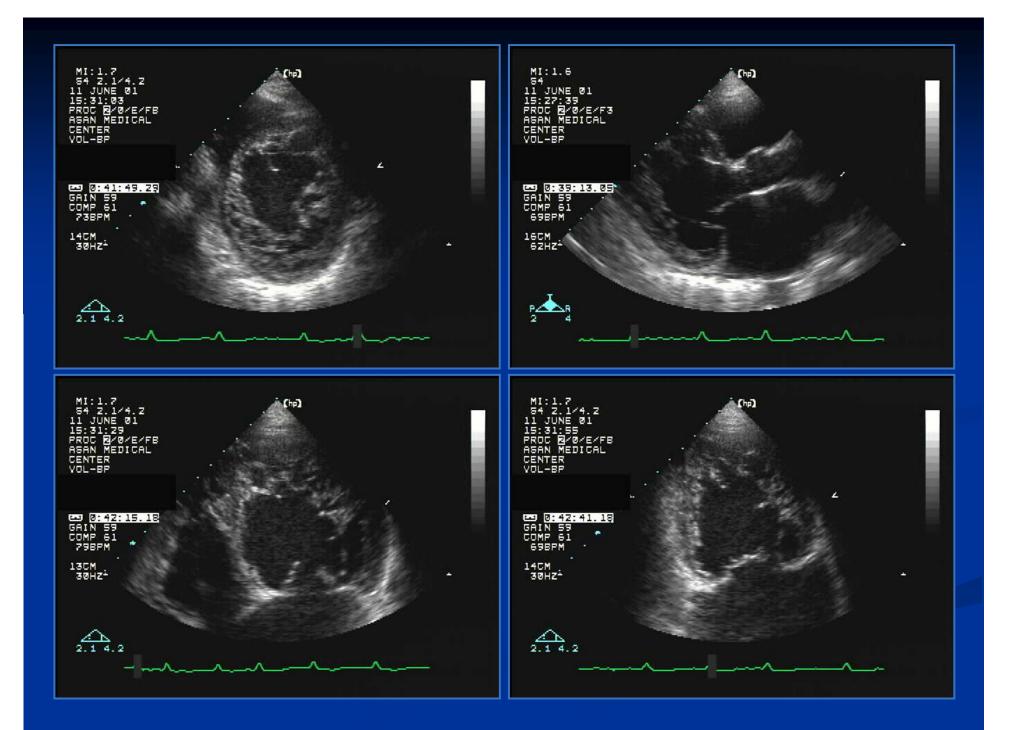
Segments of noncompacted myocardium mainly involve the apex and the inferior mid and lateral mid of the left ventricular wall

	Pediatric patients	Adult patients		
	Ichida [21]	Oechslin [31]	Sengupta [36]	
LV apex	100%	94%	100%	
LV inferior wall	70%	94%	95%	
LV lateral wall	41%	100%	100%	
Basal segments of the LV wall	2	< 20%	<27%	

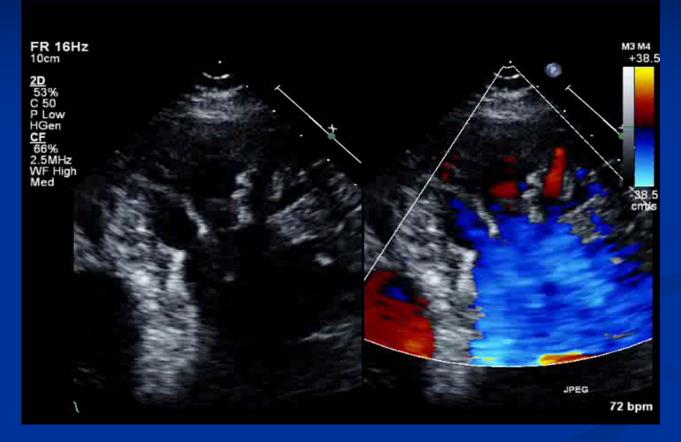



Diagnostic Criteria of LV Non-compaction

- Appearance of at least four prominent trabeculations and deep intertrabecular recesses
- Endsystolic


noncompaction/compactio n ratio (maximal thickness site) ≥ 2

 Deep recesses filled with blood from the ventricular cavity visualized by color Doppler imaging



Fireworks in the Left Ventricle: Doppler Manifestation of Left Ventricular Noncompaction

Deep recesses filled with blood from the ventricular cavity visualized by color Doppler imaging

Kim et al. JACC 2009

Prevalence of Left Ventricular Noncompaction

- True prevalence : unclear, selection bias
- A review from Switzerland identified 34 cases in 15 years
- Prevalence: 0.014% of patients referred to Echo lab *Oechslin et al. JACC 2000*
- Male predominance
- 3.7% prevalence for LVEF <45%</p>

Sandhu et al. Echocardiography 2007

Association with facial dysmorphism & NMD

Left Ventricular Noncompaction

- LVNC is associated with Neuromuscular diseases : as many as 82% of patients
- 62 patients with LVNC underwent neurological evaluation
 - Metabolic myopathy
 - Myotonic, Becker, Duchenne : (43%)
 - NMD of unknown etiology (39%)
 - Neurologically normal (18%)

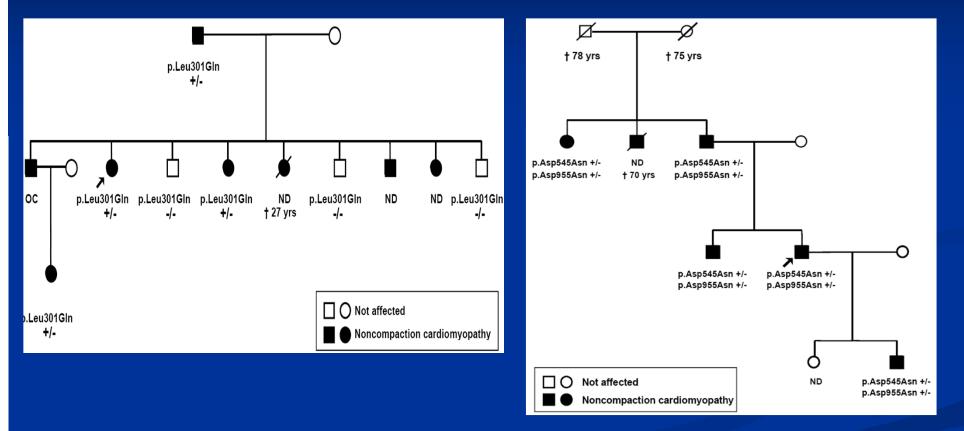
Stollberger et al. AJC 2002

Clinical presentation

Heart failure

Thromboembolic event

Arrythmias : VT, AF


Characteristics	Pediatric patients		Adult patients			
	Chin [9]	Ichida [21]	Oechslin [31] S	engupta [36]	Murphy [30]	Stollberger [39]
Number of patients	8	27	34	32	45	62
Age at diagnosis (median)) 7 yrs	5 yrs	40 yrs	49 yrs	37 yrs (mean)	50 yrs (mean)
Male	63%	56%	74%	53%	62%	79%
Familial occurrence	50%	44%	18%			
Follow-up	up to 5 yrs	up to 17 yrs	up to 11 yrs		up to 15 yrs	up to 6 yrs
ECG						
Bundle branch block	25%	15%	56%		29 %	23%
WPW-syndrome	13%	15%	0%			3%
Ventricular tachycardia	38%	0%	41%		20% a	18%
Clinical symptoms						
Heart failure symptoms	63%	30%	68%	62.50%	62%	73%
Systemic embolic events	38%	0%	21%		4%	
Pulmonary embolism	0%	7%	9 %			
Ventricular thrombi	25%	0%	9%	6%		
Facial dysmorphism	38%	33%	0%			
Neuromuscular disorders						82%
Deaths	38%	7%	35%		2%	
Heart transplantation	0%	4%	12%			
ASAN					Ke	UNIVERSITY OF ULSAN

COLLEGE OF MEDICINE

MYH7 mutations in familial NCCM

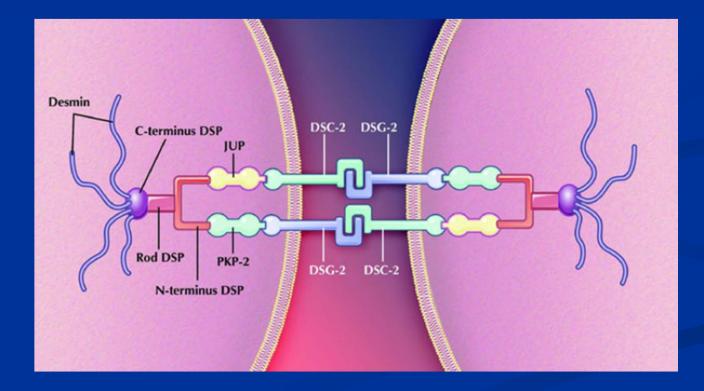
Hoedemaekers et al., EHJ, 2007

Could other known cardiomyopathy genes be involved in NCCM ????

Gene mutations in LVNC

Gene	Disease	Location	Child/adult
α-Dystrobrevin (DTNA)	LVNC with CHD, muscular dystrophy in human	18q12	Child
G4.5 (TAZ)	Barth syndrome, LVNC, DCM, EFE	Xq28	Child
LIM domain binding protein (LDB3, Cypher/ZASP)	LVNC, DCM	10q22-q23.2	Child/adult
Lamin A/C	LVNC, DCM, muscular dystrophy in human	1q22	Child/adult
Sarcomere proteins			
β-myosin heavy chain (MYH7)	HCM, DCM, LVNC	14q11.2-q13	Adult
α-cardiac actin (ACTC)	HCM, DCM, LVNC	15q11-q14	Adult
Cardiac troponin T (TNNT2)	HCM, DCM, LVNC	1q32	Adult

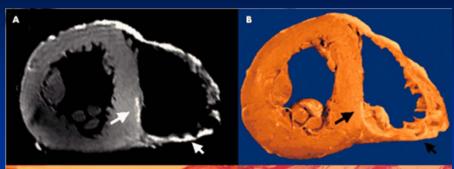
LVNC, left ventricular noncompaction; CHD, congenital heart disease; DCM, dilated cardiomyopathy; EFE, endocardial fibroelastosis; HCM, hypertrophic cardiomyopathy

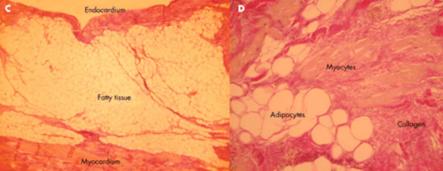

Prognosis

In a series of 34 adults with LVNC, 47% either died or underwent cardiac transplantation during the follow-up period of 44±39 months

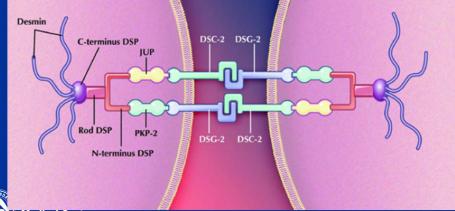
 Nearly 60% of patients described in one large series had either died or undergone cardiac transplantation within 6 years of diagnosis
 Ritter et al. Mayo Clin Proc. 1997

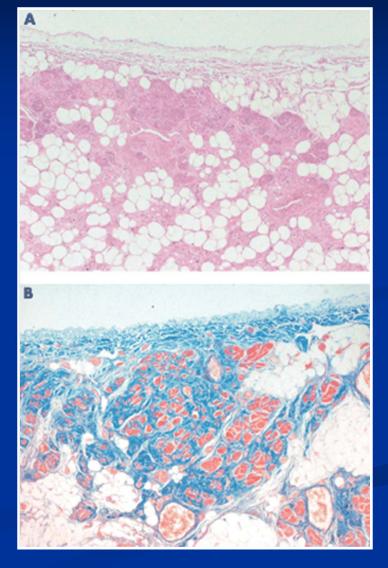
Arrhythmogenic RV Cardiomyopathy





Arrhythmogenic RV dysplasia


- Pathologic hallmark of ARVD is RV myocyte loss with fibrofatty replacement
- Over the past decade, mutations in several desmosomal proteins have been identified as the genetic basis
- Defective desmosomal proteins may lead to impaired mechanical coupling between individual cells, leading to myocyte detachment and degeneration
- RV cavity dilation, ventricular wall thinning with aneurysms, and systolic dysfunction.


Arrhythmogenic RV Dysplasia

cadherins, desmoglein ,desmocollin

Medical Center

Genetic factors

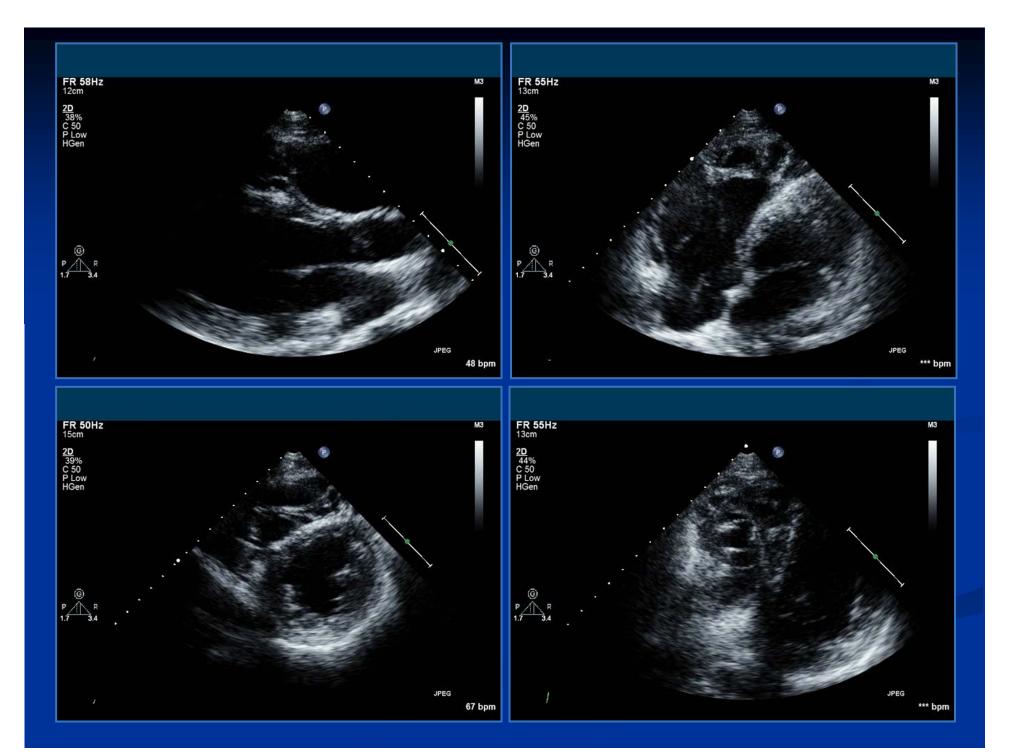
- Comprehensive mutation screening of all known and candidate genes is liable to yield a success rate of at least 40% in ARVD/C
- Lack of an identifiable mutation does not rule out disease
- Mutations were subsequently identified in desmoplakin, desmoglein-2, desmocollin-2, and plakophilin-2 genes
- Several extra-desmosomal genes, such as those encoding TGF-β3, cardiac ryanodine receptor (RyR2), and transmembrane protein 43 (TMEM43), have also been implicated in specific types

Desmosomal Genes Implicated in AVRD/C

Gene (Symbol), Locus	Exons (n), Transcript Size (kb)	Mode of Inheritanc e	Number of Reported Mutations	Type of Reported Mutations	Associated Phenotype
Plakoglobin (JUP) 17q21	14, 2.4	AR	1	Deletion	Naxos disease
Desmoplakin (DSP) 6p24	24, 8.9	AD AR	>10 3	Various Missense Nonsense Deletion	ARVC ARVC, skin disorder, woolly hair ARVC, skin disorder, woolly hair Carvajal syndrome
Plakophilin (PKP)-2 12p11	14, 2.6	AD AR	>50 1	Various Cryptic splice site	ARVC ARVC
Desmoglein (DSG)-2 18q12	15, 3.4	AD	>20	Various	ARVC
Desmocollin (DSC)-2 18q12	17, 3.1	AD	3	Deletion, insertion, splice site	ARVC

Revised task force criteria for diagnosing arrhythmogenic right ventricular dysplasia

Diagnostic feature	Major criteria	Minor criteria		
Global or regional ventricular dysfunction and structural alterations	By 2D echo: •Regional RV akinesia, dyskinesia, or aneurys m and 1 of the following (end diastole): -PLAX RVOT ≥32 mm (corrected for body size [PLAX/BSA] ≥19 mm/m2) -PSAX RVOT ≥36 mm (corrected for body size [PSAX/BSA] ≥21 mm/m2) or fractional area change ≤33% By MRI: •Regional RV akinesia or dyskinesia or dys- synchronous RV contraction •and 1 of the following: -Ratio of RV end-diastolic volume to BSA ≥110 mL/m2 (male) or ≥100 mL/m2 (female) -or RV ejection fraction ≤40% By RV angiography: •Regional RV akinesia, dyskinesia, or aneu- rysm	By 2D echo: •Regional RV akinesia or dyskinesia •and 1 of the following (end diastole): -PLAX RVOT ≥29 to G32 mm (corrected for body size [PLAX/BSA] ≥16 to G19 mm/m2) -PSAX RVOT ≥32 to G36 mm (corrected for body size [PSAX/BSA] ≥18 to G21 mm/m2) -or fractional area change >33% to ≤40% By MRI: •Regional RV akinesia or dyskinesia or dys- synchronous RV contraction •and 1 of the following: -Ratio of RV end-diastolic volume to BSA ≥100 to G110 mL/m2 (male) or ≥90 to G100 mL/m2 (female) -or RV ejection fraction >40% to ≤45%		
Tissue characterization of wall	n \geq 1 sample, with or without fatty replaceme	. Residual myocytes 60% to 75% by morpho- metric analysis (or 50% to 65% if estimated), with fibrous replacement of the RV free wall myocardium in ≥ 1 sample, with or without fatty replacement of tissue		



Revised task force criteria for diagnosing arrhythmogenic right ventricular dysplasia

Diagnostic feature	Major criteria	Minor criteria			
	•Inverted T waves in right precordial lea	•Inverted T waves in leads V1 and V2 in indi- viduals 914 years of age (in the absence of			
•The diagnosis of ARVD is based on the presence of two major, one major and two minor, or four minor criteria					
•Due to the significant heterogeneity in the manifestation of disease, there is no single gold standard test to make the diagnosis of ARVD					
•Despite being quite specific, these TF criteria lacked sensitivity for diagnosis, especially in presymptomatic patients					
S	achycardia of LBBB morphology with su perior axis (negative or indeterminate Q RS in leads II, III, and aVF and positive in lead aVL)	•Nonsustained or sustained ventricular tachy-			

Clinical Manifestations

- Palpitations: 67%
- Syncope: 32%
- Atypical chest pain: 27%
- Dyspnea: 11%
- Approximately 50% of patients with ARVD present with ventricular arrhythmias
- Most commonly sustained or nonsustained ventricular tachycardia that originates in the RV, therefore has a LBBB pattern if captured on EKG.
- VT can be exercised induced in patients with ARVD

Treatment

- Major goal is suppression of ventricular tachyarrhythmias (beta blockers)
- Antiarryhthmic medications (sotalol is usually first line agent)
- Avoid competitive sports
- Radiofrequency ablation
- European Society of Cardiology gave ICD placement class I recommendation for secondary prevention, class II a for primary prevention

Stress-Induced Cardiomyopathy

Classification (3)

Cardiomyopathies

HCM

DCM

ARVC

RCM

Unclassified

Familial

Familial

Sacomere protein mutation
Storage disease
Disorders of fatty acid metabolism
Carnitine deficiency
Phosphorylase B kinase deficiency
Mitochondrial cytopathies
Syndromic HCM
Ohters

Non-familial

•Obesity •Infants of diabetic mothers •Athletic training •Amyloid (AL/prealbumin)

Sacomere protein mutation Z-band Cytoskeletal genes Nuclear membrane Mildly dilated CM Intercalated disc protein mutations (see ARVC) Mitochondrial cytopathy

Familial

Non-familial

•Myocarditis
•Kawasaki disease
•Eosinophilic (Churg Strauss syndrome)
•Viral persistence
•Drugs
•Pregnancy
•Endocrine
•Nutritional
•Alcohol
•Tachycardio myopathy Familial

 Intercalated disc protein mutations
 Cardiac ryanodine receptor (RyR2)
 Transforming growth factor-β3 (TGFβ3)
 Non-familial

•Inflammation

Familial

Sarcomeric protein mutations
Familial amyloidosis
Desminopathy
Pseuxanthoma elasticum
Haemochromatosis
Anderson-Fabry disease
Glycogen storage disease

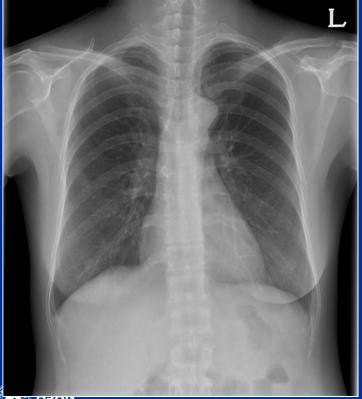
Non-familial

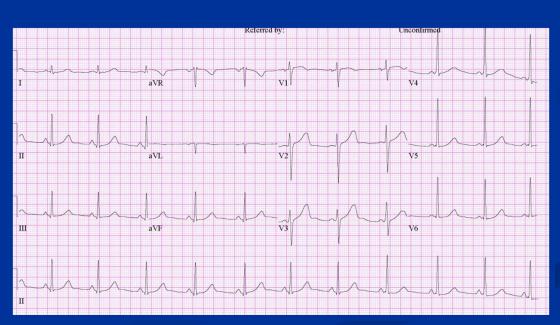
•Amyloid (AL/prealbumin) •Scleroderma •Endomyocardial fibrosis •Carcinoid heart disease •Metastatic cancers •Radiation •Drugs (anthracyclines)

•Left ventricular non-compaction •Barth syndrome •Lamin A/C •ZASP •α-dystrobrevin

•Tako Tsubo cardiomyopathy

ASAN Medical Center

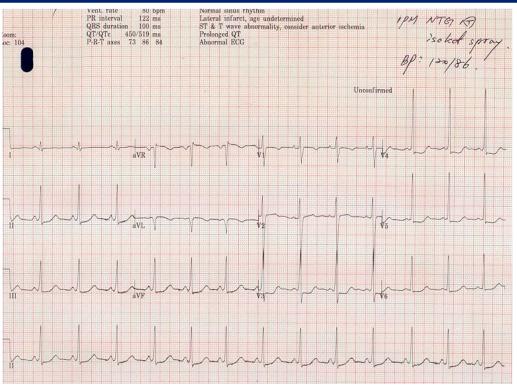

2008 ESC recommendation

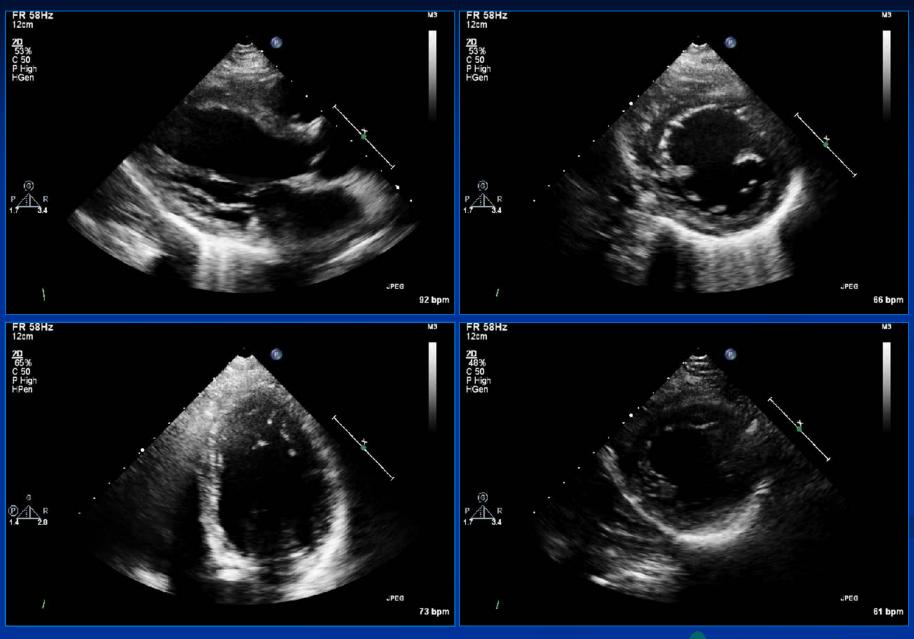


Case

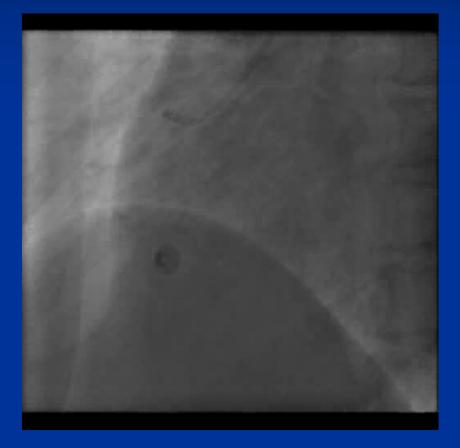
F/49

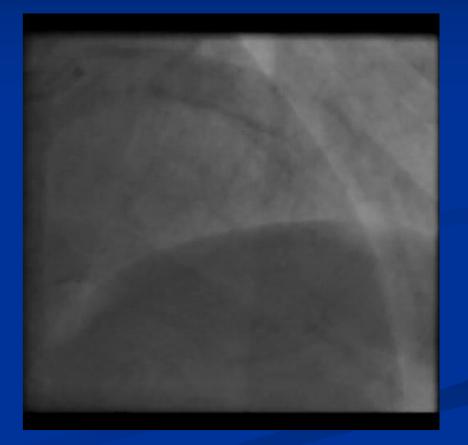
- She underwent diagnostic coronary angiography two times due to chest pain, which showed no significant lesion two years ago.
- Sudden dyspnea was developed during routine annual colonofiberscopy in July 2009

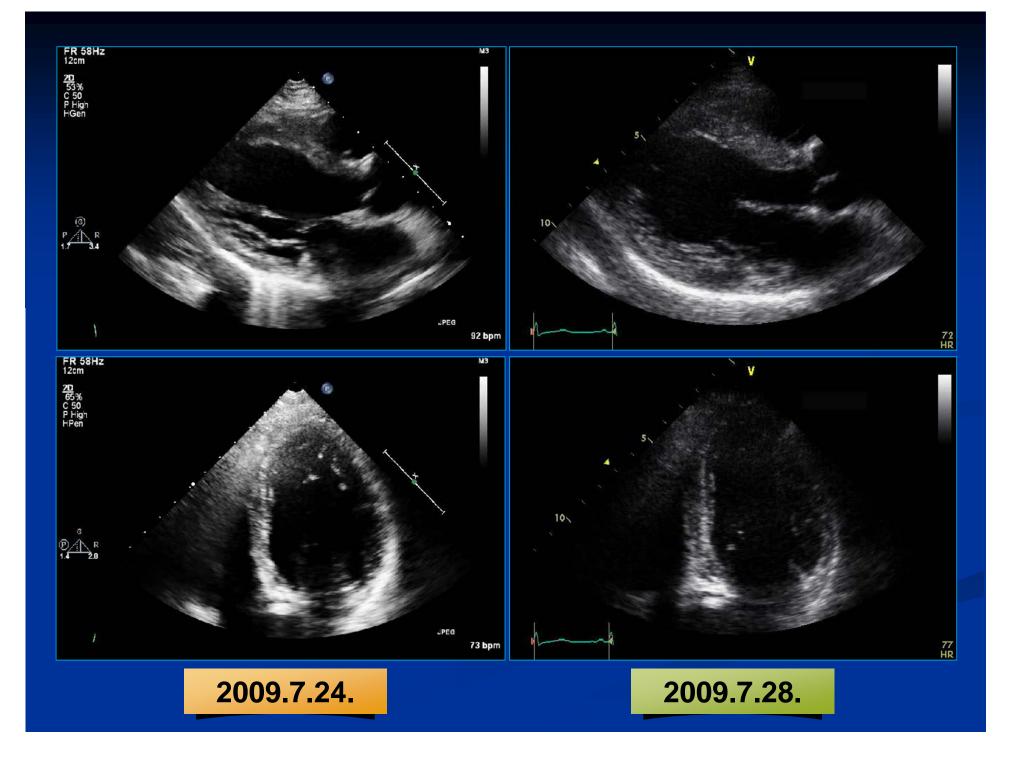




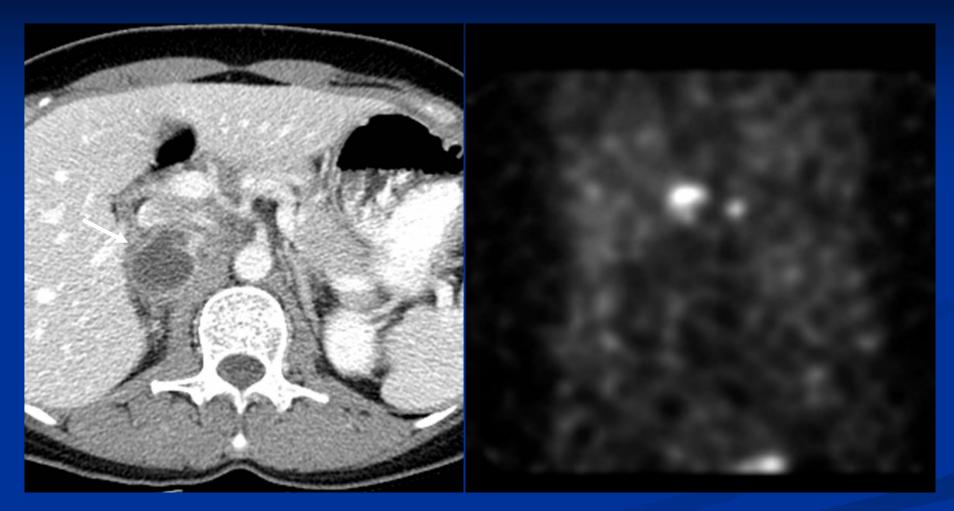
Emergency Department

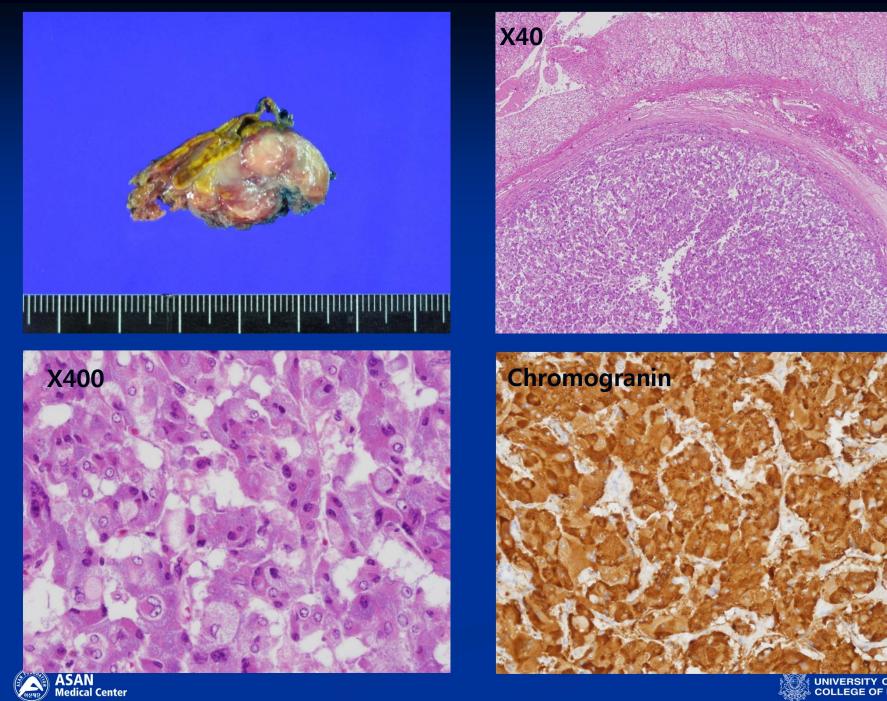



BP 145/84 mmHg, HR 83 bpm Peak CK-MB/troponin- I = 21.3/2.5 ng/mL

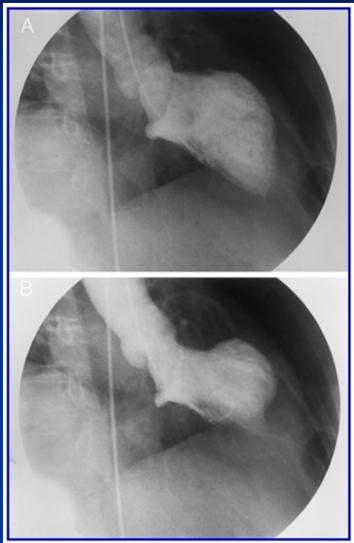


📥 Asan Medical Center


CAG findings



Adrenal Mass



I-123 MIBG scan

UNIVERSITY OF ULSAN COLLEGE OF MEDICINE

A Broken Heart

- A 70 yo female without past medical Hx
 Near collapse and chest pain that occurred when she was informed that her husband of 45 years had died of heart failure and refractory ventricular arrhythmias
- ECG; minor anterior ST segment elevations and inferolateral ST depressions, which resolved after IV NTG
- Normal CAG
- Echo 3 months later was normal

Circulation 1998;98:1349

Stress-Induced Cardiomyopathy

Early investigators

Postmenopausal women, emotional stress Differential diagnosis of ACS or NSTEMI Excellent prognosis

Physical stress as an important precipitant

acute medical illness; sepsis, hypoxemia surgery/procedures; sigmoidoscopy, ERCP, bronchoscpopy, uneventful GI or cardiac surgery

Dyspnea, hypotension, ECG abnormality, O2 desaturation High mortality with sudden cardiac death and

recurrence

Stress-Induced Cardiomyopathy : Mechanism

Coronary micro-circulation

Multi-vessel spasm

Catecholamine mediated cardiotoxicity

a Catecholamine and Neuropeptide Levels.*									
	Patients with Stress Cardiomyopathy (N=13)			Patients with Killip Class III Myocardial Infarction (N=7)			Normal Value		
	Day 1 or 2	Day 3, 4, or 5	Day 7, 8, or 9	Day 1 or 2	Day 3, 4, or 5	Day 7, 8, or 9			
			median (interque	rtile range)					
e precursor (pg/ml)									
mines (pg/ml)									
ne	1264 (916–1374)†	1044 (733–1118)†	348 (180–550)	376 (275–476)	330 (220–385)	275 (220–311)	37‡		
phrine	2284 (1709–2910)†	1573 (1235–2589)†	1142 (525–1252)	1100 (914–1320)	829 (727–914)	541 (516–660)	169 <u>†</u>		
e	111 (106–146)†	77 (63–110)	56 (47–77)	61 (46–77)	61(61-77)	38 (30-61)	15‡		
I Provide A									
nylacetic acid	2758 (2573–3077)	2598 (2354–2892)†	1345 (1194–1682)	1513 (1211–1648)	1228 (1026–1362)	1009 (908–1059)	1497 <u>‡</u>		
metabolites (pg/ml)									
	178 (140–187)	509 (385–789)	659 (590–738)§	106 (89–124)	203 (177–213)	205 (189–243)	59 <u>†</u>		
rine	216 (130–319)	456 (229–569)	661 (551-696)∬	160 (145–170)	196 (181–209)	271 (225–288)	55 <u>‡</u>		
nl)									
Y	186 (162–236)∬	185 (158–214)†	136 (90–182)∬	77 (60–90)	69 (61–71)	60 (40–65)	51¶		
ic peptide	1033 (805–1783)§	450 (205–684)	142 (72–236)	264 (192–483)	268 (249–574)	297 (142–419)	10–93∥		
metabolite (pg/ml)									

SCMP in ICU Patients

Ventricular Apical Ballooning Due evere Physical Stress in Patients nitted to the Medical ICU*

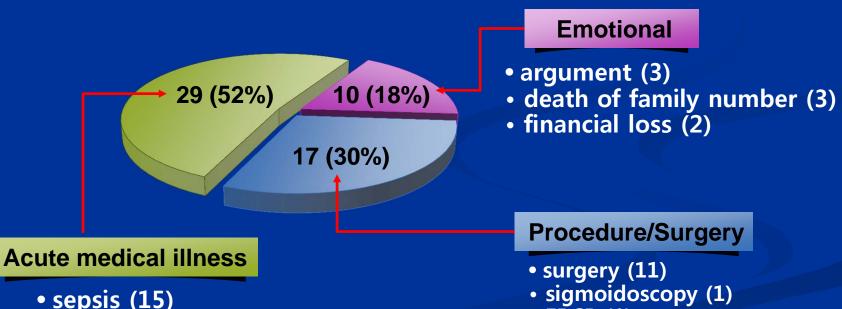
ong Park, MD; Soo-Jin Kang, MD; Jae-Kwan Song, MD; uk Kim, MD; Chae Man Lim, MD; Duk-Hyun Kang, MD; and k Koh, MD

Results: Of the 92 patients, 65 (71%) were men, and they had a mean (\pm SD) age of 63 \pm 11 years. LVAB was observed in 26 patients (28%), with a mean lowest ejection fraction of 33 \pm 8% (range, 19 to 46%). Compared with the 66 patients (72%) without LVAB, those with LVAB had a higher frequency of sepsis (62% vs 14%, respectively; p < 0.001), a higher prevalence of hypotension on ICU admission, more frequent use of inotropic agents, and a higher frequency of cardiomegaly and pulmonary edema (p < 0.005 for each). Sepsis was the only variable associated with the development of LVAB (odds ratio, 9.2; 95% confidence interval, 2.4 to 35.8; p < 0.001). The development of Q-wave or ST-segment displacement was associated with LVAB, but the sensitivities were 12% and 19%, respectively. Serum creatine kinase level was elevated in 12 of 26 patients (46%) with LVAB. The normalization of this condition occurred in 20 of 26 patients (77%) a mean duration of 7.4 \pm 5.6 days later (range, 2 to 25 days). The mean 2-month survival rate was lower in patients with LVAB than in those without (71 \pm 6% vs 52 \pm 10%, respectively;

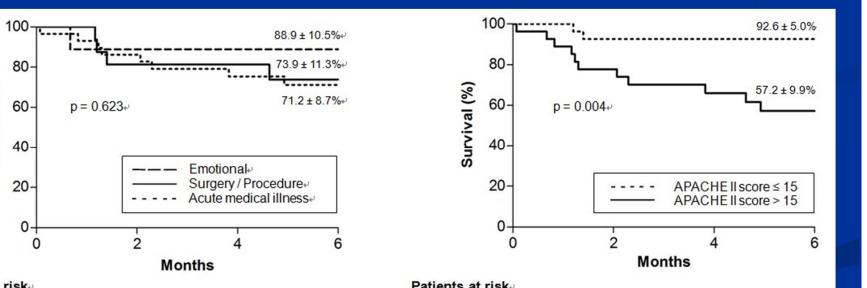
Apical Ballooning in MICU: Results

	AB (-) (n=66)	AB (+) (n=26)	P value
	63.3 ± 12	63.3 ± 10	0.968
sex	48 (73%)	17 (65%)	0.612
factor for atherosclerosis			
pertension	24 (36%)	4 (15%)	0.077
noking	29 (44%)	13 (50%)	0.647
abetes	17 (26%)	9 (35%)	0.445
son for intensive care			<0.001
poxia and respiratory failure	36 (55%)	10 (39%)	
psis	9 (14%)	16 (61%)	
ners	15 (31%)	0 (0%)	
			0.0000

SCMP in a Tertiary Referral Hospital


Outcomes of Patients with Stress-Induced Cardiomyopathy Diagnosed by Echocardiography in a Tertiary Referral Hospital

Hyung Lee, MD, Jae-Kwan Song, MD, Byung Joo Sun, MD, Hyung Oh Choi, MD, Jeong-Sook Seo, MD, Jin Oh Na, MD, Dae-Hee Kim, MD, Jong-Min Song, MD, Duk-Hyun Kang, MD, Jae-Joong Kim, MD, and Seong-Wook Park, MD, *Seoul, South Korea*


Over a 63-month period, 56 consecutive patients (median age and interquartile range = 64 years ears]) were identified. Women comprised 79% (44/56) of all patients. The triggering events were acute illness, including sepsis and hypoxemia in 29 patients (52%, group A), in-hospital surgery/procedure tients (30%, group B), and emotional stress in 10 patients (18%, group C). Chest pain was more freobserved in group C (50%) than in groups A (14%) and B (6%) (P = .021), whereas dyspnea was the ng symptom in groups A and B. Typical takotsubo and inverted takotsubo were observed in 48 and 8, with a median ejection fraction of 33%. Other abnormalities included dynamic LV outflow tract ion (n = 2), LV thrombus (n = 2), and right ventricular dysfunction (n = 12). Nine deaths (16%) occurred ospitalization. The groups did not differ in mortality. The Acute Physiology and Chronic Health Evalscore (odds ratio 1.405; 95% confidence interval, 1.091-1.810; P = .009) and absence of LV function r within 1 week (ejection fraction < 50%) (odds ratio 14.080; 95% confidence interval, 1.184-167.475;) were independent factors associated with mortality. During clinical follow-up up to 6 months, 3 more died, 2 of whom had recurrences of SIC.

SCMP in a Tertiary Referral Hospital

56 consecutive patients in AMC Median age 64 years (52 – 74) Female 44 patients (79%) Three triggering events

SCMP in a Tertiary Referral Hospital 6M mortality 13/56 (23%) Associated factors: RV dysfucntion & APACHE score

Summary

Classification of cardiomyopathy

- 1995 WHO classification
- 2008 ESC classification
- Will be continued.....

Noncompaction cardiomyopathy

- NCCM shares disease genes and pathophysiological mechanisms with DCM and HCM
- Diagnostic criteria of NCCM
- Comorbid conditions

Summary

ARVC

- Diagnostic criteria
- Genetics
- Risk stratification & ICD insertion

SCMP

- Unknown etiology
- Variable clinical situation
- Multiple RWMAs mimicking ACS
- Variable clinical course !!

Thank you for attention !!!