FFR-Guided Stenting for Diffuse Coronary Lesions

Young-Hak Kim, MD, PhD

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Diffuse Coronary Lesion

- More diabetic
- Low ejection fraction
- Older
- Small vessel involvement
- Multivessel disease
- Bifurcation involvement

Case 1: Recent Chest Pain

• F / 80

Chest pain and dyspnea for 1 month

- Multiple stenosis including LM by coronary CT in another hospital
- Normal EKG
- Normal echocardiography with 65% of LV EF
- Good exercise performance before symptom
- No coronary risk factor

Coronary Angiogram

Coronary Angiogram

Coronary Angiogram SYNTAX Calculation

How to do ?

- Medical vs. revascularization
- PCI vs. CABG
- Techniques of PCI
 - Ad hoc vs. staged procedure
 - Angiography-guided vs. function-guided
 - FFR vs. SPECT vs. other perfusion studies

ESC 2011 Update Indications of Revascularization

	Subset of CAD by anatomy	Class	Level
For	Left main >50% *	I	Α
prognosis	Any proximal LAD >50% *	I	Α
	2VD or 3VD with impaired LV function *	I	В
	Proven large area of ischemia <u>(> 10%LV)</u>	I	В
	Single remaining patent vessel >50% stenosis *	I	С
	1VD without proximal LAD and without>10% ischemia	Ш	Α
For symptoms	Any stenosis>50% with limiting angina or angina equivalent, unresponsive to OMT	I	Α
	Dyspnea/CHF and>10%LV ischemia/viability supplied by >50% stenotic artery	lla	В
	No limiting symptoms with OMT	Ш	С

* With documented ischemia or FFR < 0.8

ESC 2011 and ACC 2011 Update PCI vs. CABG

	<< CABG		<< PCI	
Subset of CAD by anatomy	ESC	ACC	ESC	ACC
1VD or 2VD – non-proximal LAD	llbC	lla B	IC	llb B
1VD or 2VD – proximal LAD	IA	IA	lla B	lla B
3VD simple lesions, full functional revascularization achievable with PCI,SYNTAX score>22	IA	IB	lla B	llb B
3VD complex lesions, incomplete revascularization achievable with PCI,SYNTAX score>22	IA	-	III A	-
Left main (isolated or 1VD, ostium/shaft)		IB	lla B	lla B
Left main (isolated or 1VD, distal bifurcation)		IB	llb B	llb B
Left main + 2VD or 3VD, SYNTAX score≤32		IB	llb B	llb B
Left main + 2VD or 3VD, SYNTAX score≥33		IB	III B	III B
CardioVarcular Baroards Foundation		INIVI UNIVI	ERSITY OF ULSAN	A A ASAN

Functional SYNTAX Score in FAME

How to do ?

- Medical vs. revascularization
- PCI vs. CABG
- Techniques of PCI
 - Ad hoc vs. staged procedure
 - Angiography-guided vs. function-guided
 - FFR vs. SPECT vs. other perfusion studies

Ad hoc PCI Not recommended in ESC/ACC 2011 !

Ad hoc PCI

Haemodynamically unstable patients (including cardiogenic shock).

Culprit lesion in STEMI and NSTE-ACS.

Stable low-risk patients with 1- or 2- vessel disease (pLAD excluded) and favourable morphology (RCA, non-ostial LCx, mid or distal LAD).

Non-recurrent restenotic lesions.

Revascularization at an interval

Lesions with high-risk morphology.

Chronic heart failure.

Renal failure (eGFR <60 mL/min), if total contrast volume required >4 mL/kg.

Stable patients with MVD including LAD involvement.

Stable patients with ostial or complex pLAD lesion.

Any clinical or angiographic evidence of higher periprocedural risk with ad hoc PCI.

How to do?

- Ad hoc PCI with FFR
- Staged procedure with SPECT
- Staged procedure with other functional test
- Staged procedure without functional test
- Staged procedure with FFR
- CABG
- Medication

Planning

Pre-FFR

- 1 stent in pLAD
- Post-FFR after stenting
- 1 stent in other LAD if p-FFR \leq 7.5

RCA Intervention Pre-FFR 0.72 in dRCA

IVUS and LCX Stenting without FFR

LAD Intervention with FFR

ASAN Medical Center

Stenting followed by NC

CardioVascular Research Foundation

Post-FFR

Case 2: Stable Angina

• M / 58

Effort chest pain for 9 months

- Hypertension
- Normal EKG
- Treadmill test: stage 3 +
- Normal echo with 64% of LV EF
- Thallium SPECT: medium-seized reversible inferolateral wall

ASAN Medical Center

- Intermediate RCA

- LCX CTO with collateral from RCA
- Diffuse intermediate LAD

ASAN Medical Center

Medical Treatment in RCA and LCX How to Treat LAD?

- Total occlusion in another left-side artery
- Negative thallium
- Unstable morphology
- Diffuse disease
- Bifurcation involvement
- Ostial involvement

Vessel A : 15.85 mm² Lumen A : 3.77 mm²

Vessel A : 16.4 mm² Lumen A : 3.66 mm² Dat : 28.16 / 27.00 mm

CardioVascular Research Foundation

Plan for Diffuse & Bifurcation LAD

 Single-stent technique in LAD if FFR < 0.8

 FFR in D1 if compromised

Stenting through FFR wire in LAD

ASAN Medical Center

FFR wire in D1

Final

Case 3: Stable Angina

• 64 / F

- Hypertension, DM ,Hyperlipidemia
- Normal EKG
- Normal echo
- Abnormal thallium

Thallium SPECT

Reversible medium sized mild-to-moderately decreased perfusion in apical-mid anterior wall

Stage 3

LCX and RCA are normal Diseased LAD

FFR measurement

Repeated FFR Measurement

Hydromechanical Interaction Between Stenoses

Hydromechanical Interaction Between Stenoses

Rule of Big Delta

TighterStenosis (A)Stenosis (B)

Treat Distal lesion First !

 $\Delta FFR(A)$ (Big $\Delta FFR(B)$)

CardioVascular Research Foundation

Courtesy of SJ Park

Rule of Big Delta

TighterStenosis (A)Stenosis (B)

Treat Proximal lesion First !

 $\frac{\text{Big } \Delta FFR(A)}{\Delta FFR(B)}$

CardioVascular Research Foundation

Courtesy of SJ Park

Clinical Characteristics (N=50)

Age (years)	62±9
Male	33 (66%)
Diabetes, N (%)	18 (36%)
Hypertension, N (%)	23 (46%)
Smoking, N (%)	10 (20%)
Hyperlipidemia, N (%)	17 (34%)
Previous PCI, N (%)	122 (12%)
Clinical manifestation	
Stable angina, N (%)	26 (52%)
Unstable angina, N (%)	21 (42%)
Non-ST elevation MI, N (%)	3 (6%)
Mean diameter stenosis, %	57±10
	21 UNIVERSITY OF ULSAN ASAN

Treatment Results

Variables	Singe Lesion (56%, N=28)	Dual Lesion (44%, N=22)	P value
Number of Stented Lesion	28	44	
Total stent length, mm	26.6 ± 9.7	47.3 ± 17.3	<0.001
Total stent number per patient	1.1 ± 0.4	2.0 ± 0.7	<0.001

 In 56% of patients, single lesion was treated only and thus 28% of lesions were deferred

Conclusions

- For diffuse coronary lesions, FFR assessment before PCI has a novel activity to identify ischemia-producing segment.
- Moreover, FFR assessment during the procedure can determine whether the remaining unstented segment in a diffuse lesion requires additional stenting or not.
- Therefore, there is no doubt that FFR plays a crucial role to perform optimal stenting for diffuse coronary lesions.

Therefore, tailored stenting approach based on the separate functional assessment for the individual stenosis would be theoretically and clinically useful for PCI optimization and achieving better outcomes.

Fractional Flow Reserve

