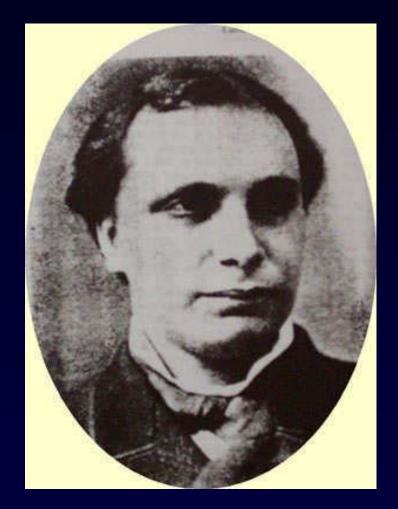
The significance of uric acid in hypertensive treatment

Seok-Min Kang, MD, Ph D.


Division of Cardiology, Severance Cardiovascular hospital, Yonsei University College of Medicine, Seoul, Korea

Uric Acid

History

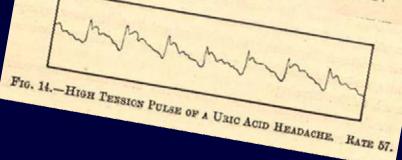
Mahomed FA

Prealbuminuric chronic Bright's disease

" *Uric acid* was first associated with primary hypertension "

Mahomed FA. Med Chir Trans, 1874
Mahomed FA. Lancet, 1879

URIC ACID


A FACTOR IN THE CAUSATION OF DISEASE.

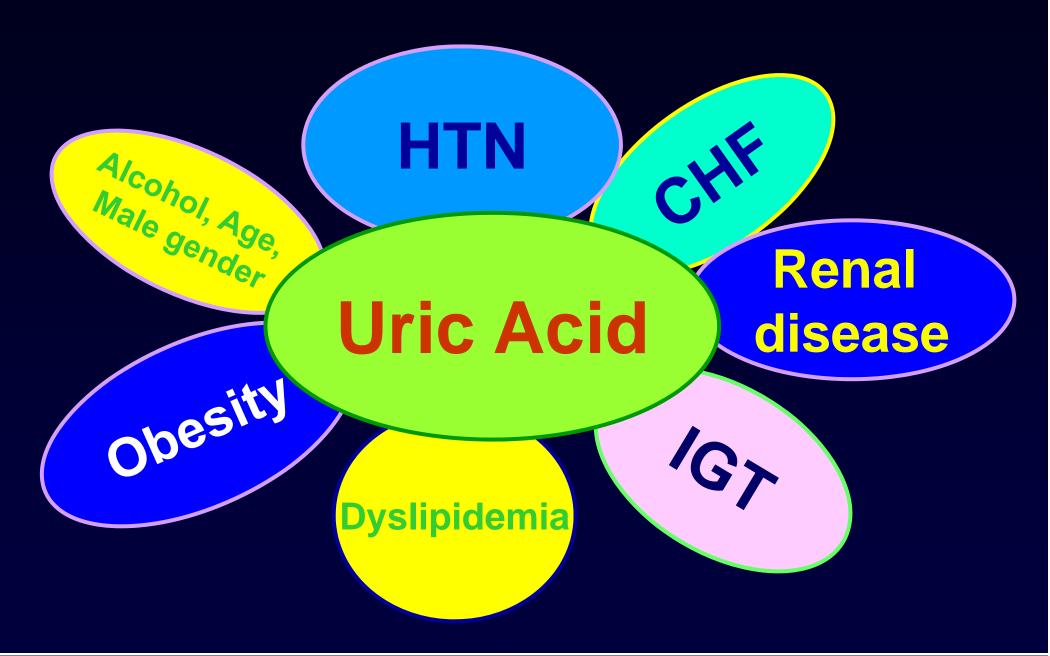
A CONTRIBUTION TO THE

PATHOLOGY OF HIGH ARTERIAL TENSION, HEADACHE, EPILEPSY, MENTAL DEPRESSION, GOUT, RHEUMATISM, DIABETES, BRIGHT'S DISEASE,

AND OTHER DISORDERS.

ALEXANDER HAIG, M.A., M.D.Oxon., F.R.C.P.

High-tension pulse a uric acid headache


Haig A ,1892

Urodonal

:A treatment for <u>lowering serum UA</u>, treatment for <u>arteriosclerosis</u> and <u>obesity</u>

From French newspaper advertisement, Dec. 20th, 1919

The Role of Uric Acid in HTN : Chicken or Egg?

Uric acid is commonly elevated in patients with hypertension

Hyperuricemia in Primary and Renal Hypertension

Paul J. Cannon, M.D., William B. Stason, M.D., Felix E. Demartini, M.D., Sheldon C. Sommers, M.D., and John H. Laragh, M.D.

N Engl J Med 1966; 275:457-464 | September 1, 1966

This article has no abstract; the first 100 words appear below.

AN increased incidence of hyperuricemia in patients with primary hypertension has been cited in several reports. *2.3 The present investigation of the population of the Hypertension-Nephritis Clinic of the Presbyterian Hospital in New York City confirms this observation among patients with either primary or renal hypertension, treated and untreated. The data from a related series of studies suggest that the hyperuricemia in both types of hypertension results from diminished renal excretion of urate. Altered lactic acid metabolism in hypertensive disease may account in part for the altered renal transport of uric acid. + The results also raise the possibility that elevations of

SOURCE INFORMATION

NEW YORK CITY

†Assistant professor of medicine Columbia University College of Physicians and Surgeons; assistant visiting physician Columbia Presbyterian Medical Center.

‡Teaching fellow, Harvard Medical School; research and clinical fellow in cardiology, Massachusetts General Hospital, Boston, Massachusetts.

§Associate professor of clinical medicine, Columbia University College of Physicians and Surgeons; associate attending physician, Presbyterian Hospital.

¶Professor of pathology, Columbia University College of Physicians and Surgeons,

MEDIA IN THIS ARTICLE

FIGURE 1

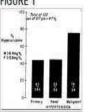


FIGURE 1. INCIDENCE OF HYPERURICEMIA IN A HYPERTENSIVE POPULATION (TOTAL OF 47 PER CENT).

Forty-three per cent of patients with primary, 44 per cent with renal, and 75 per cent with malignant hypertension had elevations of serum unic acid.

FIGURE 2

FIGURE 2. PROGRESSIVE INCREASE IN THE INCIDENCE OF HYPERURICEMIA IN 119 UNTREATED HYPERTENSIVE PATIENTS AS THE LEVEL OF THE BLOOD UREA NITROGEN ROSE TO VALUES EXCEEDING 41 MG. PER 100 ML.

Strong relationship between UA and HTN

- 25-50% of untreated primary hypertension
- 75% of pts. if the hypertension was malignant or if there was coexistent renal disease

Cannon PJ, et al. NEJM, 1966

- Frequency of HTN in adult pts. with asymptomatic hyperuricemia is <u>about 50 %.</u>
- About 60% 65% of pts. with gout have HTN.
- Western diet with increased frequency of HTN.

Saggaiani F, et al. Metabolism, 1996 Johnson RJ, et al. Hypertension, 2003 Johnson RJ, et al. Semin Nephrol 2005

Uric acid elevation is increased secondary to hypertension

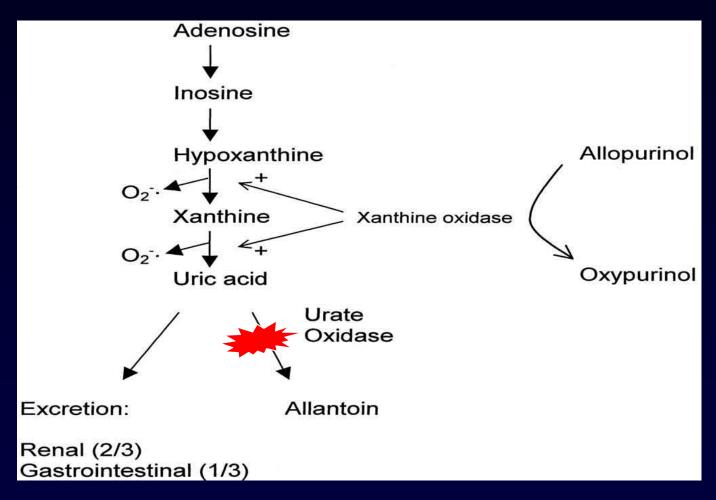
Causes of Hyperuricemia in HTN

Possible mechanisms

1) Increased net reabsorption of UA

- Diuretics use
- Insulin resistance
- Reduced renal blood flow

2) Decreased renal excretion


- Decreased renal excretion of UA d/t renal dysfunction
- Lactate competes with UA excretion

3) Increased production

- Increased activity of XO (endothelium)
- Increased conversion of XDH to XO
- Increased XO substrate resulting from increased adenosine and hypoxanthine

Pathophysiological Role of XO pathways in HTN

Hare, J. M. et al. Circulation 2003;107:1951-1953

Elevated uric acid predicts the development of hypertension

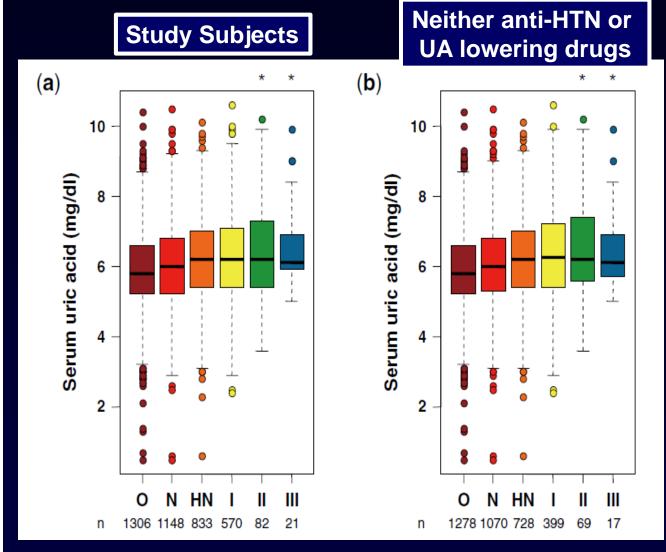
Table 3. Hyperuricemia and the Development of Hypertension.*						
Study	No. of Patients	Relative Risk of Hypertension	95% CI			
Kaiser Permanente, 1990 ⁵³	2062 adults	2.1 times greater at 6 yr (high vs. low quintile)	1.20-3.98			
University of Utah, 199144	1482 adults	1.44 times greater per SD increment at 7 yr	1.03-2.01			
Olivetti Heart, 1994 ⁴⁶	619 men	1.23 times greater per 1 mg/dl increase at 12 yr	1.07-1.39			
CARDIA, 1999 ⁴²	5115 men	1.21 times greater per SD increment at 10 yr	1.03-1.41			
Osaka Health Survey, 2001 ⁵⁶	6356 men	2 times greater at 10 yr (high vs. low quintile)	1.56-2.60			
Hawaii–Los Angeles–Hiroshima, 2001 ⁴⁵	140 men	2.0 times greater at 15 yr (high vs. low quartile)	1.02-3.9			
Osaka Factory, 200348	433 men	1.0 mg/dl, increased 27 mm Hg SBP at 5 yr	Not calculated			
Osaka Health Survey, 2003 ⁵¹	2310 men	1.13 times greater per SD increment at 6 yr	1.06-1.21			
Okinawa, 2004 ⁵⁰	4489 adults	1.46 times greater for men (uric acid ≥7 mg/dl) and 1.94 for women (uric acid ≥6 mg/dl) at 13yr	1.09-2.03 1.05-3.57			
Bogalusa Heart, 2005 ⁴¹	679 children	Increased risk for diastolic hypertension at 11 yr	Not calculated			
Framingham Heart, 2005 ⁵⁵	3329 adults	1.17 times greater per SD increment at 4 yr	1.02-1.33			
Normative Aging, 2006 ⁵²	2062 men	125 times greater at 21 yr (uric acid >6.5 mg/dl)	1.08-1.34			
ARIC, 2006 ⁴⁹	9104 adults	1.1 times greater per SD increment at 9 yr	1.02-1.14			
Beaver Dam Health Survey, 2006 ⁵⁴	2520 adults	1.65 times greater at 10 yr (high vs. low quintile)	1.41-1.93			
Health Professionals' Follow-up, 2006 ⁴³	750 men	1.02 times greater per SD increment at 8 yr	0.92-1.13			
MRFIT, 2007 ⁴⁷	3073 men	1.1 times greater per SD increment at 6 yr	1.02-1.19			

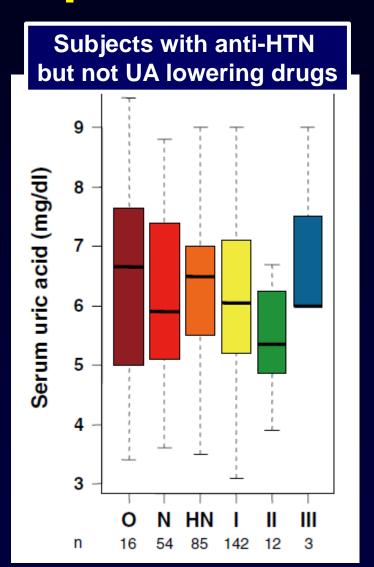
Feig D et al, NEJM, 2008

Prevalence of Hyperuricemia

- 2~35% in general population
- 25~50% of untreated primary hypertension
- 50% of hypertension on diuretics
- 70~100% of malignant hypertension
- ~ 50% in CKD at the onset of renal replacement therapy

According to Meta-analysis (N=55,607)


Risk of hypertension: 42 %


- Increase of 1 mg/dl of UA → risk of hypertension 13 % 1
 - Primary > Secondary HTN
 - Shorter duration of HTN > Longer duration
 - Younger > Older
 - Female > Male

Grayson PC, et al. Arthritis Care Res 2011:63:102-10

UA and Blood Pressure in Japanese Men

Kansui Y. et al. Circ J 2011;75:2827-2832

UA may play a role in the development of TOD in hypertension

Relationship between UA and PWV, IMT, albuminuria

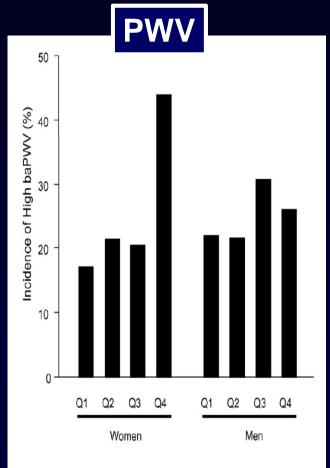
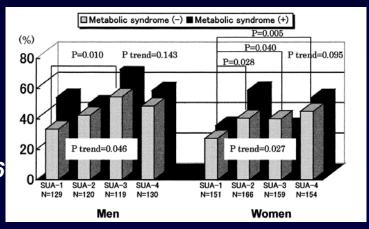


Fig. 1. Incidence of high baPWV according to the UA quartile and gender.

Table 3
Independent determinants of logarithm of urinary albumin excretion


	β	P
Duration of diabetes	.253	<.0001
HbA _{1c}	.166	.0034
Triglyceride	.125	.0472
Systolic blood pressure	.275	.0013
Uric acid	.281	<.0001

 $R^2 = 0.252 \ (P < .0001).$

Fukui M, et al. Metabolism, 2008

Kawamoto R, et al. Internal Medicine, 2006

Albuminuria

Ishizaka N, et al. Atheroscleroiss, 2007

Relationship between UA and LVH

Table 2. Association Between UA Tertile and Prevalence of LVH by Multivariate Logistic Regression Analysis (n=3,305)

UA tertile No. of LVH (%)	Crude		Model 1*		Model 2†		
	OR (95%CI)	P value	OR (95%CI)	P value	OR (95%CI)	P value	
Lowest	155/1,109 (14.0)	1 (reference)	_	1 (reference)	_	1 (reference)	_
Middle	188/1,123 (16.7)	1.24 (0.98-1.56)	0.071	1.29 (1.02-1.64)	0.035	1.28 (1.01-1.63)	0.043
Highest	211/1,073 (19.7)	1.51 (1.20–1.89)	< 0.001	1.61 (1.26-2.06)	< 0.001	1.58 (1.23-2.02)	< 0.001

^{*}Adjusted for institute, age, BMI, HTN and log-transformed Creat.

OR, odds ratio. Other abbreviations see in Table 1.

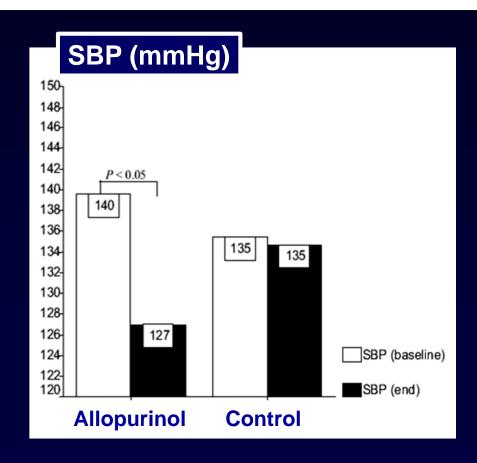
Table 3. Association Between UA Tertile and the Prevalence of LVH in the Sample Stratified by Presence of HTN (n=3,305)

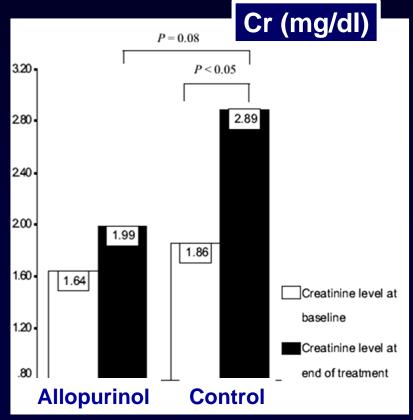
UA tertile No. of LVH (%)	Normotensive group (n=2,652)		No. of LVH (%)	Hypertensiv	Hypertensive group (n=653)			
UA tertile	No. of LVH (%)	OR* (95%CI)	OR* (95%CI) P value Trend P	OR* (95%CI)	P value	Trend P		
Lowest	99/845 (11.7)	1 (reference)	_		54/212 (25.5)	1 (reference)	_	
Middle	134/899 (14.9)	1.35 (1.01-1.80)	0.04	0.022	54/226 (23.9)	0.93 (0.59-1.45)	0.74	0.021
Highest	135/908 (14.9)	1.43 (1.06–1.92)	0.020		78/215 (36.3)	1.68 (1.07-2.64)	0.025	

Normotensive defined as SBP<140 mmHg and DBP<90 mmHg; Hypertensive defined as SBP≥140 mmHg and/or DBP≥90 mmHg.

Abbreviations see in Tables 1,2.

Tsioufis C. et al. J Human Hypertension, 2005




[†]Adjusted for institute, age, BMI, HTN, DM, HL and log-transformed Creat.

^{*}Adjusted for institute, age, BMI, SBP, DM, HL and log-transformed Creat.

Use of Allopurinol in Slowing the Progression of Renal Disease Through Its Ability to Lower Serum Uric Acid Level

Yui-Pong Siu, MRCP, Kay-Tai Leung, MRCP, Matthew Ka-Hang Tong, MRCP, and Tze-Hoi Kwan, FRCP

Am J Kidney Dis 47:51, 2006

UA is also related with CV diseases in hypertensive patients

Hyperuricemia predicts CV events: Studies of the Hypertensive Population

Study	Length of Follow-Up, y	Univariate Correlation with Events	Independent Predictor in Multivariate Analyses
Hypertension Detection Follow-Up Program Cooperative Research Group			
1985 ³⁶	5	Yes	Yes
1987 ³⁷	5†	Yes	Only women
Work site			
1999 ³⁸	6.6	Yes	Yes
PIUMA (Progetto Ipertensione Umbria Monitoraggio Ambulatoriale)			
2000 ³⁹	4	Yes	Yes
European Working Party on High BP in the Elderly			
1991 ⁴⁰	3	Yes	No
SHEP (Systolic Hypertension in the Elderly Program)*			
200141	5	Yes	Yes
Syst-China*			
200142	3	Yes	Yes
Syst-Eur*			
200243	2	No	No

^{*}Patients with isolated systolic hypertension; †subanalysis of patients on thiazides.

Johnson RJ. et al. Hypertension 2003;41:1183-1190

Serum Uric Acid and Risk for Cardiovascular Disease and Death: The Framingham Heart Study

Bruce F. Culleton, MD; Martin G. Larson, ScD; William B. Kannel, MD; and Daniel Levy, MD

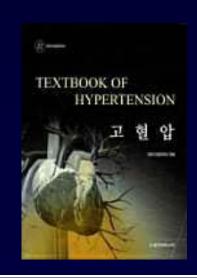
Background: Hyperuricemia is associated with risk for cardiovascular disease and death. However, the role of uric acid independent of established risk factors is uncertain.

Objective: To examine the relation of serum uric acid level to incident coronary heart disease, death from cardiovascular disease, and death from all causes.

Design: Community-based, prospective observational study.

Setting: Framingham, Massachusetts.

The association of serum uric acid with cardiovascular disease has been appreciated for nearly half a century (1). Several prospective studies have shown an association between baseline hyperuricemia and incident coronary heart disease, cardiovascular disease, and death (2–10). Despite the strength of these associations, uric acid has not been established as a causal risk factor for cardiovascular disease. Instead, uric acid seems inextricably linked to hypertension, dyslipidemia, and disordered glucose


UA does <u>not</u> have causal role in the development of CHD, CV mortality and all-cause mortality

deaths, and 1460 deaths from all causes occurred. In men, after adjustment for age, elevated serum uric acid level was not associated with increased risk for an adverse outcome. In women, after adjustment for age, uric acid level was predictive of coronary heart disease (P=0.002), death from cardiovascular disease (P=0.009), and death from all causes (P=0.03). After additional adjustment for cardiovascular disease risk factors, uric acid level was no longer associated with coronary heart disease, death from cardiovascular disease, or death from all causes. In a stepwise Cox model, diuretic use was identified as the covariate responsible for rendering serum uric acid a statistically nonsignificant predictor of outcomes.

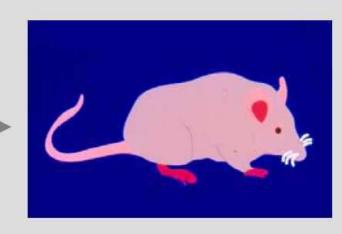
Conclusions: These findings indicate that uric acid does not have a causal role in the development of coronary heart disease, death from cardiovascular disease, or death from all causes. Any apparent association with these outcomes is probably due to the association of uric acid level with other risk factors.

tion Study (NHANES I), Freedman and colleagues (3) demonstrated that each 60-\(\mu\text{mol/L}\) increment in uric acid level was associated with a 48% increase in risk for incident ischemic heart disease among women. Furthermore, a growing body of laboratory and clinical evidence suggests that uric acid plays a role in platelet adhesiveness (15-17), formation of free radicals (18), and oxidative stress (19, 20).

As a result of this growing controversy, we revisited this question in the Framingham Heart Study sample. Longer and more contemporary follow-up and more outcome events allowed us to expand on a previous Framingham report (2). In this paper, we describe the relation of baseline serum uric acid level to 1) incident coronary heart disease events (death from coronary heart disease, recognized myocardial infarction, and coronary insufficiency), 2) death from cardiovascular disease, and 3) death from all causes. Because previous studies (2, 3, 7, 21) have



Experimental studies suggest a causal role for uric acid in hypertension

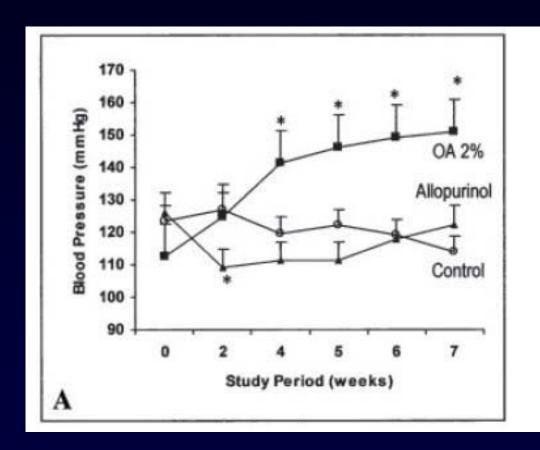


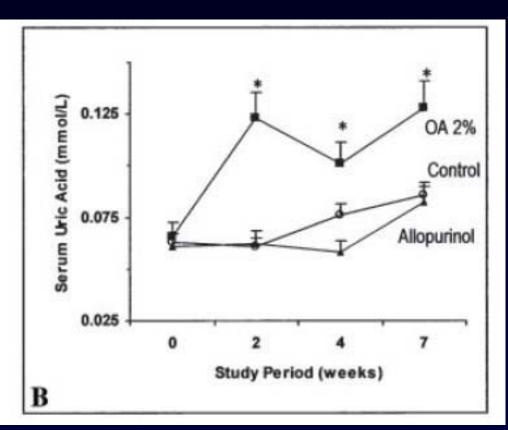
Animal Model of Mild Hyperuricemia

Uricase inhibitor

Oxonic acid (OA)

Normal Rat

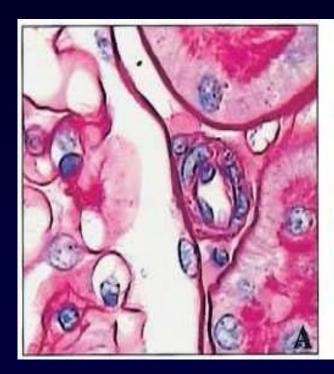

Uric Acid (0.5-1.4 mg/dl)


Hyperuricemic Rat

Uric Acid (1.7-3.0 mg/dl)

Mazzali M, et al. Hypertension, 2001

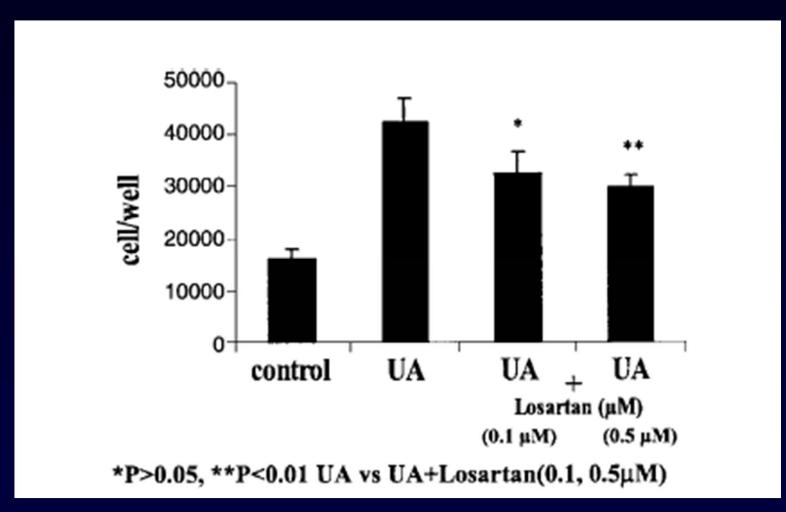
Mazzali M, et al. Hypertension, 2001


Experimental studies- Renal hemodynamics

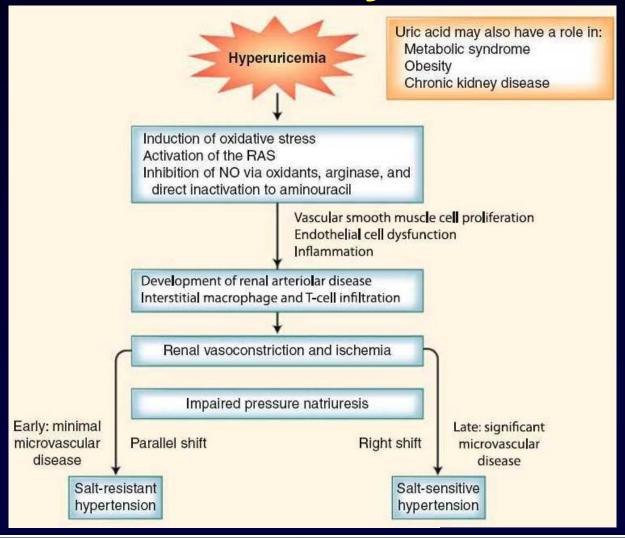
Hyperuricemic rats

- A marked increase in glomerular hydrostatic pressure
- Increase in renal afferent arteriolar resistance
- Decrease in renal blood flow
- Associated with increased oxidative stress, endothelial dysfunction and RAS activation

Renal arteriolar microvascular disease, mild interstitial inflammation



Mazzali M, et al. Am J Physiol, 2002


Effect of UA on VSMC proliferation

Mazzali M, et al. Am J Physiol, 2002

Proposed mechanism by which UA may cause HTN

Interventional studies have supported a role for UA in hypertension

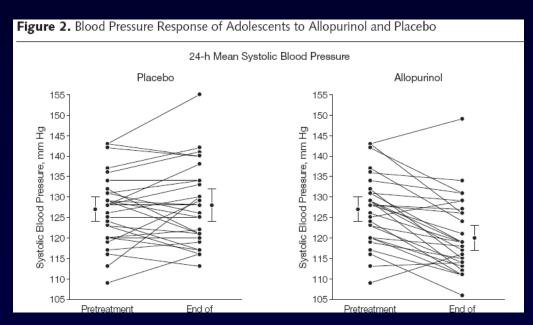
Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions

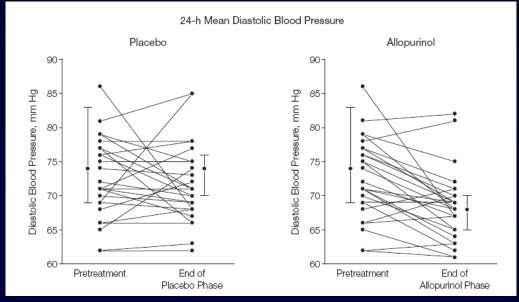
This was one of the first articles to show the potential effect of lowering UA on blood pressure

Table 2 Laboratory parameters and blood pressure measurements of the treatment and control groups

	Allopurinol group		Control group		
	Baseline	After 3 months	Baseline	After 3 months	
Uric acid (mg/dl)	8.0 ± 0.76	5.5 ± 1.2*	5.8 ± 0.2	5.8 ± 0.0	
Creatinine (mg/dl)	1.24 ± 0.36	$1.14 \pm 0.32*$	1.1 ± 0.0	1.09 ± 0.4	
Glomerular filtration rate (ml/min)	79.2 ± 31.9	92.9 ± 36.8*	89.4 ± 3.0	91.0 ± 6.1	
C-reactive protein (mg/l)	2.8 ± 1.4	$2.5 \pm 1.3*$	2.6 ± 1.6	2.4 ± 1.5	
Urine protein (mg/day)	134.5 ± 132.0	131.5 ± 108.1	111.0 ± 17.5	114.6 ± 12.9	
Systolic blood pressure (mmHg)	135.4 ± 4.6	131.5 ± 4.1*	133.2 ± 6.9	132.6 ± 7.9	
Diastolic blood pressure (mmHg)	80.2 ± 6.2	$78.3 \pm 3.1*$	82.1 ± 5.6	80.8 ± 6.4	

^{*}P < 0.05


Kanbay M, et al. Int Urol Nephrol, 2007



Effect of Allopurinol on Blood Pressure of Adolescents With Newly Diagnosed Essential Hypertension

A Randomized Trial

This was the first placebo-controlled trail to show an effect of lowering UA on blood pressure

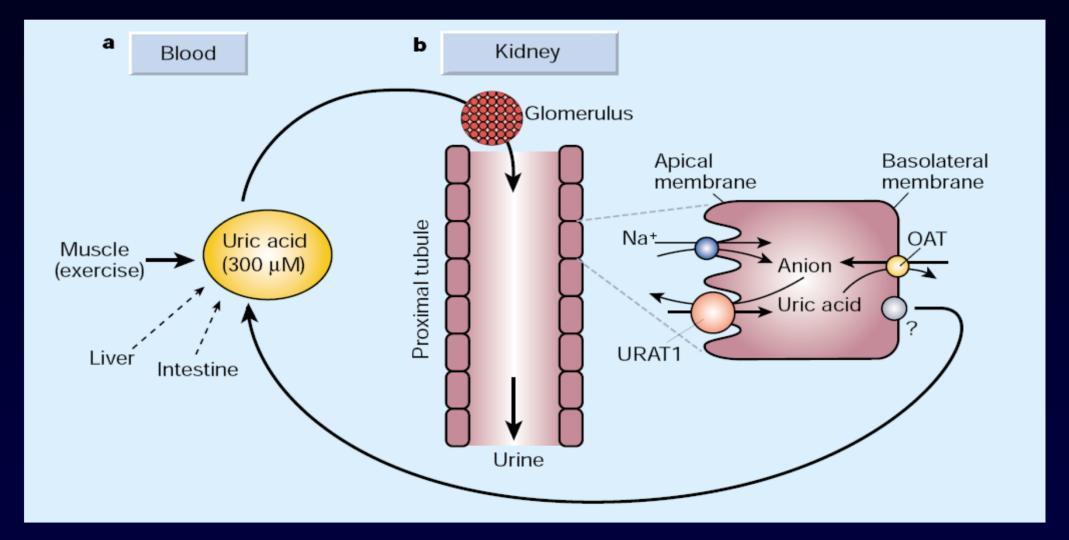
Feig DI, et al. JAMA, 2008

EFFECT OF ALLOPURINOL IN CHRONIC KIDNEY DISEASE (CKD) PROGRESSION AND CARDIOVASCULAR RISK

- 113 CKD patients with eGFR<60 ml/min
- Allopurinol 100 mg/day vs. placebo
- 12 months

		Uric acid (mg/dl)	hsPCR (mg/l)	C cystatin ¹ (mg/l)	albuminuria (mg/day)	fibrinogen (mg/dl)
Control group	Basal	7.3±1.6	3.4(5.2)	2.0±0.7	32(383)	384±104
	6 months	7.0±1.6	3.0(7.6)	2.0±0.8	43(417)	373±112
12 months	12 months	7.4±2.0	3.2(10.8)	1.9±1.0	51(296)	402±98
Allopurinol group	Basal	7.8±2.1	4.4(4.5)	1.9±0.5	36(388)	381±78
	6 months 12 months	6.2±1.5	3.0(4.0)	1.8±0.6	15(103)	367±58
		6.0±1.8	3.0(2.5)	1.4±0.4	16(166)	369±49

^{*} p=0.016 between groups and time periods (two-way ANOVA)


Goicoechea M et al, CJASN

^{**} p=0.018 between groups and time periods (two-way ANOVA)

¹ p=0.008 between groups (two-way ANOVA)

Pathways for Uric Acid Transport

Hediger, Nature 2002

Uricosuric Action of Losartan via the Inhibition of Urate Transporter 1 (URAT1) in Hypertensive Patients

Toshihiro Hamada¹, Kimiyoshi Ichida², Makoto Hosoyamada³, Einosuke Mizuta¹, Kiyotaka Yanagihara¹, Kazuhiko Sonoyama¹, Shinobu Sugihara¹, Osamu Igawa¹, Tatsuo Hosoya⁴, Akira Ohtahara⁵, Chiaki Shigamasa¹, Yasutaka Yamamoto⁶, Haruaki Ninomiya⁷ and Ichiro Hisatome⁶

BACKGROUND

The angiotensin receptor blocker losartan inhibited urate transporter 1 (URAT1) according to *in vitro* experiments. However, it is still unknown whether the inhibitory effect of losartan on URAT1 contributes to its uricosuric action in humans.

METHODS

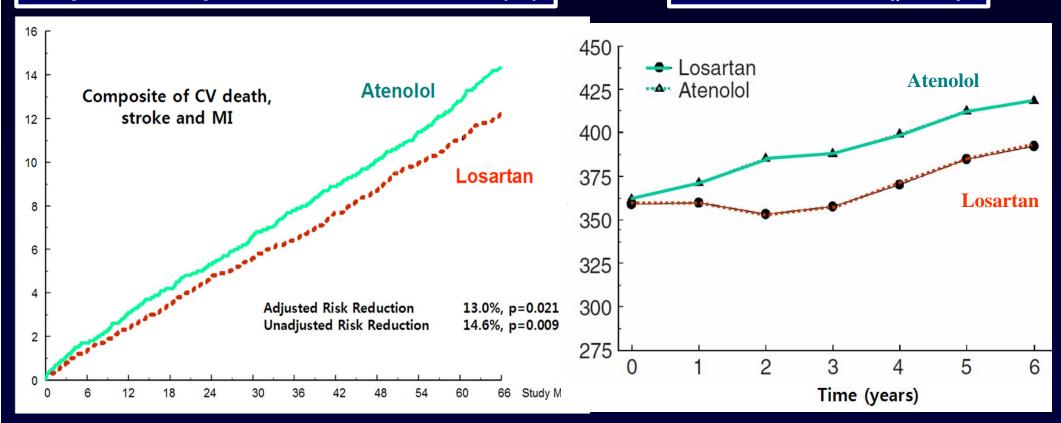
Thirty-two patients with hypertension and nine patients with idiopathic renal hypouricemia (five with and four without hypertension) were enrolled for this study. Hypertensive patients were prescribed oral losartan ($50\,\text{mg/day}, n=16$) or candesartan ($8\,\text{mg/day}, n=16$). Before and after 1-month treatment, the serum concentration of urate (Sur) and creatinine (Scr), and the clearance value of urate (Cur) and creatinine (Ccr) were determined. Clearance studies using the URAT1 inhibitor benzbromarone ($100\,\text{mg/day}$) or losartan ($50\,\text{mg/day}$) loading test were also performed in these patients.

RESULTS

Blood pressure (BP) significantly decreased in the patients treated with either losartan or candesartan. Losartan significantly reduced Sur, which was associated with a concomitant increase in the Cur/Ccr ratio, whereas candesartan did not alter these parameters. In hypertensive patients with loss-of-function mutation of URAT1, losartan did not alter either Sur or Cur/Ccr, nor did benzbromarone. The lack of effect of URAT1 inhibitors on renal excretion of urate was independent of the renal function of hypouricemic patients. On the other hand, both losartan and benzbromarone increased Cur/Ccr ratio in hypertensive patients harboring the wild *URAT1* gene, regardless of the presence of hypouricemia.

CONCLUSIONS

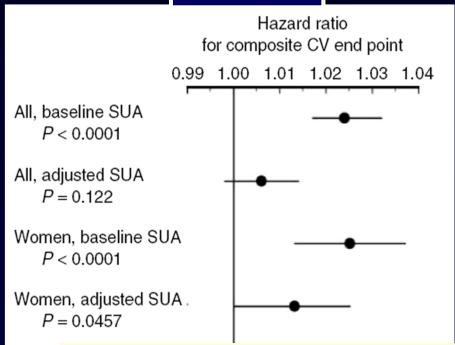
These findings suggested that losartan inhibited URAT1 and thereby it lowered Sur levels in hypertensive patients.


Am J Hypertens 2008; 21:1157-1162 © 2008 American Journal of Hypertension, Ltd.

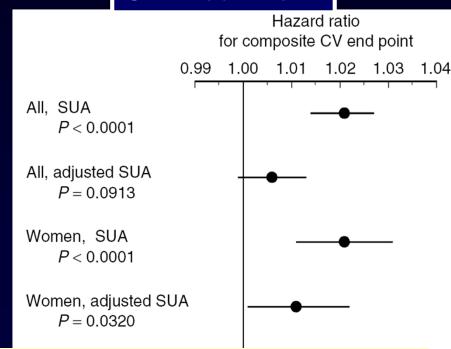
Role of Uric Acid in Cardiovascular Morbidity & Mortality: LIFE Study

Proportion of patients with first event(%)

Serum uric acid (µM/L)

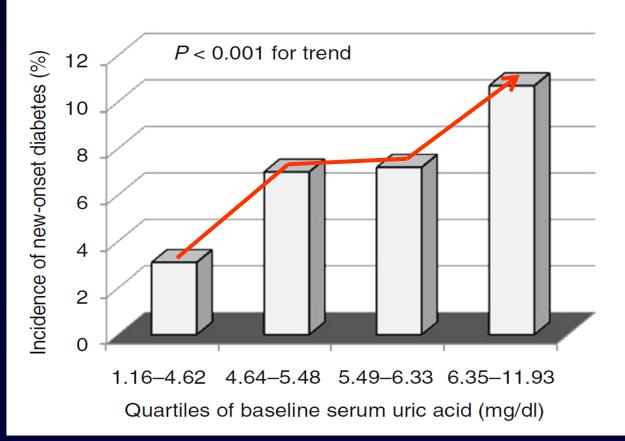

Dahlöf B et al, *Lancet* 359:995, 2002

Hoieggen A et al, Kidney Int 65:1041, 2004



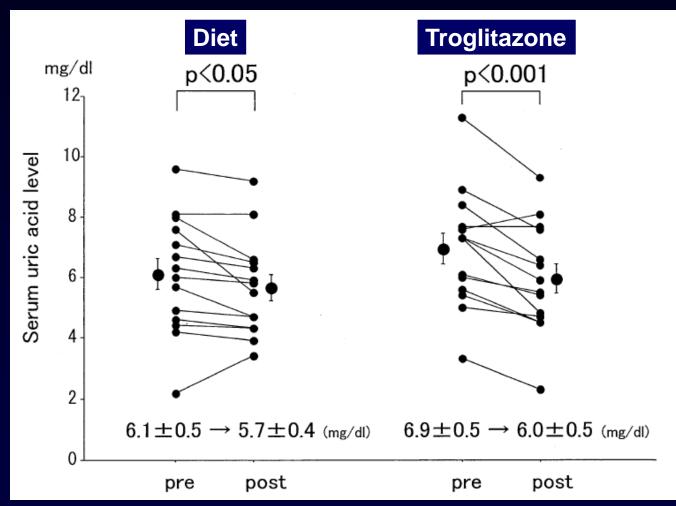
Impact of Serum Uric Acid on CV Outcome : LIFE Study

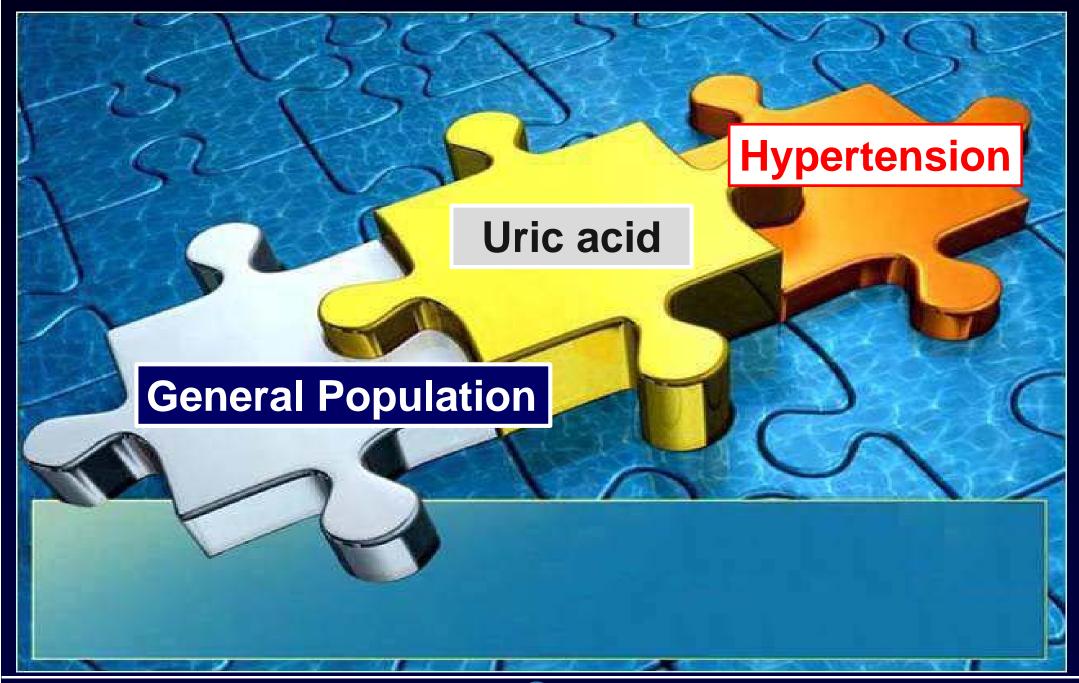
On-treatment


Men, t

Men, a

The estimated contribution of serum uric acid to losartan effect was 29% (p<0.004).


Serum Uric Acid Is Associated With New-Onset Diabetes in Hypertensive Patients With Left Ventricular Hypertrophy: The LIFE Study



Lifestyle modification & Insulin-sensitizing agents

Tsunoda S. et al. Am J Hypertens 2002;15:697-701

Uric acid paradox

UA, as an antioxidant

 This concept is supported by the superior performance of antihypertensive therapy with thiazide diuretics in preventing heart failure

ALLHAT Study, JAMA, 2002

- Possible mechanism
 - Different role between intracellular(pro-oxidant, NADPH oxidase) and extracellular UA(antioxidant)

UA, as an antioxidant

- UA can function as an <u>antioxidant</u>
 - by scavenging various reactive oxygen species, <u>itself</u>
 - by promoting SOD activity
- Systemic UA administration
 - Increase plasma antioxidant capacity at rest
 - Reduce exercise-associated oxidative stress
 - Improve endothelial dysfunction

Still Controversy...

Benefits of lowering UA is due to...

Reduction of UA per se!

XO inhibitors with related reduction of ROS

The bottom line is...

- Increasing evidence indicates that UA may have a causal role in HTN
- However, more studies are needed to dissect out the potential mechanisms
- Need more clinical trials to confirm a benefit of lowering UA on blood pressure

경청해 주셔서 감사합니다

[論語(논어) 雍也篇(오야편)의 '어진 사람은 산을 좋아하고 지혜로운 사람은 물을 좋아한다.'는 知者樂水 仁者樂山(지자요수 인자요산)의 줄임 말이다.