

In vivo optical and radionuclide imaging for biological application

Hwang do won

Department of Nuclear Medicine, Seoul National University

Molecular Imaging

Molecular imaging provides a visualization of a variety of biological phenomenon at a cellular or molecular level in living subjects.

- 1. Optical image
 - in vitro cells, small animal
 - (Luciferase, Fluorescence Protein)
- 2. Nuclear image
 - in vitro cells, animal, human
 - (Sodium Iodide Symporter HSV1-TK, D2R)
- 3. Magnetic Resonance image
 - large animal, human

The advantages of molecular imaging

Optical and radiotracer methods

Immunostaining method

- Invasive manner carrying out tissue biopsy
- Lack of repetitive experimentation
- Complicated technique methods

Noninvasive imaging

- Repetitive imaging in individual animal
- Quantitative information
- Tomographic imaging
- Long-term validation

Noninvasive molecular imaging

Bioluminescence eGFP Fluorescence

e [¹⁸F]FEAU PET

Steps of Molecular Imaging Development

1. Optical image 2. Radionuclide image

3. MR image

Luciferase, **Fluorescence protein**

QD565

QD655

QD800

QD525

QD605

QD705

-10

I-125, Tc-99m

Iron oxide, Gd-DTPA

Fluorescence ImagingBioluminescence ImagingMR Imaging빛의 투과력이 약하기 때문에해상도 뛰어남작은 실험동물 등에서는 사용민감도 약함

Radionuclide imaging 고민감도 대사적 영상 가능 사람 적용

Biological application

Optical, MR, or radionuclide imaging

therapeutic response to drug physiologic activity metabolism hypoxia proliferation apoptosis angiogenesis multidrug resistance cancer migration developmental process protein-protein interaction

Reporter gene-based application

1. 치료 약물의 효과 판정 (drug response)

1. Monitoring of evaluating therapeutic effect regarding cancer therapy

Visualization of therapeutic effect

Jeon et al. Molecular imaging (2007)

Priority Report

MicroRNA-21 Knockdown Disrupts Glioma Growth *In vivo* and Displays Synergistic Cytotoxicity with Neural Precursor Cell–Delivered S-TRAIL in Human Gliomas

Maarten F. Corsten,¹ Rafael Miranda,¹ Randa Kasmieh,¹ Anna M. Krichevsky,² Ralph Weissleder,¹ and Khalid Shah¹

Evaluation of therapeutic effect using radiolabeled probe

hNIS expressing cancer

Kim et al, Cancer Biol Ther. (2007)

FDG-PET tumor scans

2. 세포 추적 영상(Imaging cell trafficking)

Molecular imaging of cell transplantation in living animals

cardiomyoblasts or MSC expressing HSV1-sr39tk reporter gene

=> the locations, magnitude, and survival duration

FIGURE 2. PET/CT images of 65-y-old man with history of anterior wall infarction. After percutaneous intervention, ¹⁸F-FDG-labeled stem cells were injected via intracoronary catheter. PET/CT images were obtained 2 h after injection. Stem cell accumulation at myocardium is well visualized (arrow). Total amount of stem cells at myocardium was 2.1% of injected dose (case 1 of Table 1).

PET image of MSCs in porcine heart

PET/optical dual imaging in heart

Monitoring of implanted stem cell migration pattern in vivo

Bioluminescence image of stem cell migration

Couillard-Despres, et al. moleular imagnig (2008)

Stem cell migration into tumor region

Shah et al. Ann neurol (2005)

10

15

0

Cancer metastasis imaging in vivo

Noninvasive Visualization of Retinoblastoma Growth and Metastasis via Bioluminescence Imaging

3. 리포터유전자 기반 신경줄기세포 분화과정 영상화

Neuronal differentiation imaging using reporter gene

Bioluminescence image

4. 마이크로RNA 생체광학영상

Reporter based microRNA imaging for cancer imaging

In vivo microRNA imaging during neurogenesis

te et al, hat i reted, 2000

MicroRNA1 influences cardiac differentiation in *Drosophila* and regulates Notch signaling

Chulan Kwon***, Zhe Han*5, Eric N. Olson5, and Deepak Srivastava***

MicroRNAs as a therapeutic target for cardiovascular diseases

Paras Kumar Mishra, Neetu Tyagi, Munish Kumar, Suresh C. Tyagi*

5. Monitoring transgene expression in embryonic stage

postnatal

Pregnant mouse

6. Transgenic mouse research for imaging

Transgenic mouse for molecular imaging

Conditional Promoter

NIS-transgenic Mice Under cardiomyocyte-Specific Gene Promoters

Confirmation of specific promoter

the MHC promoter was confirmed to be active only in cardiomyocytes

Small-animal PET image

Transgenic mouse showed higher uptake of ¹²⁴I in heart (H) than in thyroid (T) or stomach (S).

J Nucl Med. 2005;46:479-483.

7. In vivo monitoring of endogenous gene expression using reporter system

Scintigraphic Image (Tc-99m)

No treatment

24 hrs after treatment of Adriamycin (2mg/kg i.p.)

8. 방사성핵종을 이용한 내인성 신경줄기세포의 생체 영상화

Neural stem cell

is potential cell source for recovery of lost nerve tissue

MCCa in vive

F-18-L-thymidine (FLT)

F-18 FLT PET

Figure 1. [¹¹FJF.Tlabels proliferating NSCs in vitro. **A**, Fetal rat cortical NSCs grown in monolayer cultures expressed the transcription factor SOL2, verifying their undifferentiated state. **B**, Rat hippocampal neurons expressed the neuron-specific cytoskeletal protein MAP2. **C**, Leh, Proliferating NSCs incorporated the thymidine analog BrdU, whereas nonproliferating neurons did not. Right, The radiolabeled thymidine [¹¹FJFLT was significantly better incorporated into proliferating NSCs than into nonproliferating neurons (all values displayed as means ± SEM).

Stroke-induced expansion of the NSC niches can be distinguished with PET

Noninvasive real-time imaging of apoptosis

DEVD

DEVD

Noninvasive imaging of protein–protein interactions from live cells and living subjects using bioluminescence resonance energy transfer

Enhanced stem cell viability using PLLA scaffold in myocardial infarction rat model

Applications of molecular imaging

- Disease characterization and localization
- Selection & monitoring therapeutic efficacy
- ✓ Gene therapy with targeted gene expression
- ✓ Monitoring endogeneous gene expression
- Visualizing biological phenomenon (differentiation, development, infection and anti-viral/microbial effect, etc)
- ✓ Monitoring disease progression
- ✓ Cell trafficking
- ✓ Cell therapy
- ✓ Drug development
- ✓ Transgenic animals evaluation

Molecular Imaging is... to

visualize and quantify

characterization of biological mechanisms at the <u>cellular and molecular level</u> with non-invasive method

It is a very <u>powerful technology</u> that allows to study biological phenomenon

Molecular Imaging is... Non invasive, Repeatable, Quantitative