Edema in Heart Failure
: Pathophysiology & Management

Kim Kyu Hoon

Chonnam National University Hospital
Body Fluid Compartments

70 Kg: 40L

- 24 L Extracellular fluid = 20% of body weight
- 16 L Intracellular fluid = 40% of body weight
- 12 L Interstitial fluid
- 1 L Lymph fluid
- 1 L Fluid surrounding brain
- 3 L Fluid in stomach and intestines
- 1 L Joint fluid
- 24 L Solid matter = 40% of body weight

I wonder what I'm made of?
Water Exchange or Balance: Starling’s Law

- Plasma
- Hydraulic pressure
- Oncotic pressure
- Interstitium
Net filtration = \(LpS \times (\Delta \text{ hydraulic pressure} - \Delta \text{ oncotic pressure}) \)

\[= LpS \times [(P_{\text{cap}} - P_{\text{if}}) - s(n_{\text{cap}} - n_{\text{if}})] \]

\(Lp = \) unit permeability of the capillary wall
\(S = \) surface area for fluid movement
\(P_{\text{cap}} \) & \(P_{\text{if}} = \) capillary & interstitial fluid hydraulic pressure
\(n_{\text{cap}} \) & \(n_{\text{if}} = \) capillary & interstitial fluid oncotic pressures
\(S = \) reflection coefficient of proteins across the capillary wall (0~1)
Water Exchange or Balance: Starling’s Law

Key to pressure values:

- H_{PC} at arterial end = 35 mm Hg
- H_{PC} at venous end = 17 mm Hg
- H_{Pf} = 0 mm Hg
- OP_{if} = 1 mm Hg
- OP_{c} = 26 mm Hg

Net pressure out:

- NFP = 10 mm

Net pressure in:

- NFP = 8 mm
Water Exchange or Balance: Capillary Permeability

- **Continuous capillaries**
 - Endothelial cell
 - Basement membrane
 - Muscle, skin, lungs, adipose tissues
 - Permeable to substances < 10 nm

- **Fenestrated capillaries**
 - Fenestration
 - Kidneys, intestine
 - Permeable to substances < 100 nm

- **Discontinuous capillaries**
 - Liver, spleen
 - Permeable to substances < 600-3000 nm
Definition: What is Edema?

- A palpable swelling from fluid accumulation in body tissues (interstitial space or cavities of the body) produced by the expansion of the interstitial fluid volume.
- Does not include fluid within the bladder or in the gastrointestinal tract (gut).
- May be generalized or localized.
Peripheral edema

Edema in 3rd spaces
 - Pleural effusion, pericardial effusion, ascites

Pulmonary edema
 - Accumulation of fluid in the interstitial air spaces (alveoli)

Anasarca
 - Severe, widespread accumulation of fluid in the all of the tissues and cavities of the body at the same time
Types of Edema

- Pitting edema
 - Swelling of a body part where an indentation will persist after pressure is applied.
 - Indentation will slowly disappear over time.

- Non-pitting edema
 - Swelling of a body part with no indentation upon pressure.
 - Lymphedema, pre-tibial myxedema
 - Diuretics are generally not effective
Etiologic Mechanisms of Edema Formation

- Heart failure
- Cirrhosis
- Nephrotic syndrome
- Capillary leak syndrome
- Venous obstruction
- Lymphatic obstruction

Generalized edema

Localized edema
Evaluation of the Patients with Edema

Edema of arms and legs

- Enlarged liver
 - Ascites
 - Abnormal LFTs
 - Cirrhosis (liver may be small)
 - Echocardiogram
 - Constrictive pericarditis
 - Congestive heart failure
 - Abnormal urinary sediment
 - Nephrotic syndrome, glomerulonephritis, acute tubular necrosis, preeclampsia
 - Drugs
 - Elevated TSH
 - Myxedema
 - Aldosteronism, Cushing's disease, malnutrition, beriberi, malabsorption, hypoproteinemias, angioedema, idiopathic edema, inflammatory bowel disease, serum sickness

See Table 2
Pathophysiology of Edema: Two Basic Steps

Alteration in capillary haemodynamics

- Movement of fluid from intravascular space into interstitium

Retention of dietary or intravenously administered sodium and water by the kidneys
Neurohormonal Activation in CHF and Edema

Decreased CO in HF

Unloading of high pressure baroreceptors
Pathophysiologic Mechanism of Edema in CHF

- **↓ Extracellular fluid volume**
- **Low output cardiac failure, Pericardial tamponade, Constrictive pericarditis**
- **↓ Oncotic pressure and/or ↑ Capillary permeability**

↓ CARDIAC OUTPUT

- Activation of ventricular and arterial receptors
- Stimulation of sympathetic nervous system

- Non-osmotic vasopression stimulation

RENAL WATER RETENTION

- **↑ SYSTEMIC AND RENAL ARTERIAL VASCULAR RESISTANCE**

MAINTENANCE OF ARTERIAL CIRCULATORY INTEGRITY

RENAL SODIUM RETENTION

- Activation of the Renin-angiotensin-aldosterone system
Cadiac output is reduced, kidney attempts to restore the effective circulating volume by Na and water retaining.
Site and Nature of Edema in Cardiac Diseases

Heart failure

- Left heart failure: Pulmonary edema
- Left and right heart failure: Pulmonary and peripheral
- Right heart failure: Peripheral edema

- Coronary artery disease
- Hypertensive heart disease
- Cardiomyopathy
- Cor pulmonale
Edema in Chronic Heart failure

- **Forward hypothesis**
 - Plasma expansion

 - Cardiac output ↓
 - Activation of sympathetic and RAAS system
 - ↑LVEDP: sufficient level to produce pulmonary edema
Increments in plasma volume and LVEDP will augment cardiac output in cardiac dysfunction.
Edema in Chronic Heart Failure

Mild to moderate heart failure

- Well preserved cardiac output with mild renal impairment of sodium excretory ability
- No edema with dietary sodium restriction!
Edema in Chronic Heart failure

- Severe heart failure

 - Increasing in LVEDP cannot normalize the stroke volume

 - Small increase in plasma volume → Large elevation in LVEDP → Little change in cardiac output
Edema in Acute Heart Failure

- Backward hypothesis
 : Obstructive effect

- Myocardial infarction or ischemia
 \[\uparrow \text{LVEDP \& LAP} \]

- Pulmonary edema if PCWP > 18~20 mmHg
 (Normal: 5~12 mmHg)
Treatment of edema

- General principles of therapy
 - Reversal of heart disease if possible
 - Dietary sodium restriction (to minimize fluid retention)
 - Diuretic therapy

- Important consideration before diuretic therapy
 - When must edema be treated?
 - What are the consequences of the removal of edema fluid?
 - How rapidly should edema fluid be removed?
When must edema be treated?

- **Pulmonary edema**
 - Life threatening
 - Immediate treatment

- **Other form of edema**
 - No danger to patients
 - More slowly treated
Consequences of the Removal of Edema Fluid?

Adverse effects
- Tissue perfusion↓
- CO↓(20%)

Advantage
- Relief of fatigue and bloating
- Relieve symptom of pulmonary congestion
- Exercise tolerance↑

- Despite reduction in the effective circulating volume, most patients benefit from the appropriate use of diuretics
Estimate Adequacy of Tissue Perfusion

- Monitor the blood urea nitrogen and serum creatinine

 : Unexplained elevation in the BUN and Cr indicate further fluid removal should be avoided and that other therapeutic measures should be attempted such as vasodilators, inotropic therapy

- Other symptoms of decline in tissue perfusion

 : Weakness, fatigue, postural dizziness, and lethargy and confusion due to decreased cerebral blood flow
How Rapidly Should Edema Fluid Be Removed?

How diuretics effect?

Intravascular volume ↓ → Capillary hydraulic pressure ↓ → Mobilization of edema fluid into vascular space

<table>
<thead>
<tr>
<th>LC & acites</th>
<th>HF, Nephrotic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid can only mobilize via peritoneal capillaries</td>
<td>Fluid can mobilize by most capillary bed</td>
</tr>
<tr>
<td>→ 300~500 ml/day</td>
<td>→ 2~3 L/day</td>
</tr>
</tbody>
</table>
Management: Diuretics

- Proximal Tubule
- Carbonic Anhydrase Inhibitors
- Osmotic Diuretics
- HCO$_3^-$ / H$^+$ / Na$^+$
- Thiazide Diuretics
- Thiazide diuretics
- Na/K K$^+$ Sparing Diuretics
- Cortical Collecting Duct
- Inner Medullary Duct
- Thick Ascending Limb
- Loop diuretics
Management: Diuretics

- Generally start diuretic therapy with furosemide
 - Can be switched to torsemide or bumetanide

- Patients with acute decompacted heart failure
 - Administer without delay
 - IV therapy is preferred
 - Diuresis within 30min and peak diuresis at 1~2 hours in loop acting diuretics
Dosing of Loop Diuretic

- **IV bolus furosemide**
 - 20 to 40 mg or 2.5 X chronic oral dose (initially)
 - Doubled at 2hr interval (little or no response)
 - Maximal dose 40 to 80mg in normal, 160 to 200mg in renal failure

- **IV continuous furosemide**
 - 5mg/hr with relative intact renal function (GFR > 75ml/min)
 - Rate up to 20 mg/hr (GFR < 30 ml/min)
Dosing of Loop Diuretic: Chronic Therapy

<table>
<thead>
<tr>
<th>Patients who do not received prior loop diuretic therapy</th>
<th>Patients who received prior loop diuretic therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Usual starting dose</td>
<td>• Oral dose is usually twice the intravenous dose</td>
</tr>
<tr>
<td>• Furosemide: 2040mg once or twice a day (maximum 4080mg)</td>
<td></td>
</tr>
<tr>
<td>• Torsemide : 5~10mg (maximum 100mg)</td>
<td></td>
</tr>
<tr>
<td>• Bumetanide : 0.5~1mg (maximum : 10mg)</td>
<td></td>
</tr>
</tbody>
</table>
Management: Diuretics

- Electrolyte imbalance should be monitored
 - Particularly Hypokalemia, Hypomagnesemia

- If hypotension or worsening renal function develops before adequate diuresis
 - Diuresis may be slowed but diuresis should be maintained until fluid retension is eliminated

ACC/AHA guideline (2009 updated)
Management: Diuretics

Diuretics: Treatment Failure

- Noncompliance
- Non-adherence to drug regimen
- Non-adherence to sodium restriction
- True diuretic resistance
- Altered intestinal absorption of loop diuretics
- Decreased renal perfusion caused by low volume, arterial ds, or drug use (e.g., ACE inhibitors, NSAIDs)
- Pharmacokinetic causes related to diuretic half-life
- Reduced tubular secretion caused by low volume, kidney ds, or drug use
Diuretics: Aldosterone Antagonist

- Recommendation
 - NYHA class II HF and LVEF <30%
 - NYHA class III to IV HF and LVEF <35%
 - Post-myocardial infarction with an LVEF <40% with either symptomatic heart failure or DM

- Aldosterone antagonist (spiractone or eplerenone)
 - Hyperaldosteronism (contribute to cardiovascular disease, diuretics resistance)
Vasopressin V2 receptor Antagonist
Results Median (interquartile range) body weight at 24 hours after randomization decreased by -1.80 (-3.85 to -0.50), -2.10 (-3.10 to -0.85), -2.05 (-2.80 to -0.60), and -0.60 (-1.60 to 0.00) kg in the groups receiving tolvaptan 30, 60, and 90 mg/d, and placebo, respectively ($P \leq 0.008$ for all tolvaptan groups vs placebo). The decrease in body weight with tolvaptan was not associated with changes in heart rate or blood pressure, nor did it result in hypokalemia or worsening renal function. There were no differences in worsening heart failure at 60 days between the tolvaptan and placebo groups ($P = .88$ for trend). In post hoc analysis, 60-day mortality was lower in tolvaptan–treated patients with renal dysfunction or severe systemic congestion.

Conclusion Tolvaptan administered in addition to standard therapy may hold promise for management of systemic congestion in patients hospitalized for heart failure.
Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials.

Gheorghiade M, Konstam MA, Burnett JC Jr, Grinfeld L, Maqquironi AP, Swedberg K, Udelson JE, Zannad F, Cook T, OuYang J, Zimmer C, Orlandi C; Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators

Division of Cardiology, Northwestern University, Feinberg School of Medicine, Chicago, Ill 60611, USA. m-gheorghiade@northwestern.edu

Abstract

CONTEXT: Heart failure causes more than 1 million US hospitalizations yearly, mostly related to congestion. Tolvaptan, an oral, nonpeptide, selective vasopressin V2-receptor antagonist, shows promise in this condition.

OBJECTIVE: To evaluate short-term effects of tolvaptan when added to standard therapy in patients hospitalized with heart failure.

DESIGN, SETTING, AND PATIENTS: Two identical prospective, randomized, double-blind, placebo-controlled trials at 359 sites in North America, South America, and Europe were conducted during the inpatient period of the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) between October 7, 2003, and February 3, 2006. A total of 2048 (trial A) and 2085 (trial B) patients hospitalized with heart failure and congestion were studied.

INTERVENTION: Patients were randomized to receive either tolvaptan (30 mg/d) or matching placebo, within 48 hours of admission.

MAIN OUTCOME MEASURES: Primary end point was a composite of changes in global clinical status based on a visual analog scale and body weight at day 7 or discharge if earlier. Secondary end points included dyspnea (day 1), global clinical status (day 7 or discharge), body weight (days 1 and 7 or discharge), and peripheral edema (day 7 or discharge).

RESULTS: Rank sum analysis of the composite primary end point showed greater improvement with tolvaptan vs placebo (trial A, mean [SD], 1.06 [0.43] vs 0.99 [0.44]; and trial B, 1.07 [0.42] vs 0.97 [0.43]; both trials P<.001). Mean (SD) body weight reduction was greater with tolvaptan on day 1 (trial A, 1.71 [1.80] vs 0.99 [1.83] kg; P<.001; and trial B, 1.82 [2.01] vs 0.95 [1.85] kg; P<.001) and day 7 or discharge (trial A, 3.35 [3.27] vs 2.73 [3.34] kg; P<.001; and trial B, 3.77 [3.59] vs 2.79 [3.46] kg; P<.001), whereas improvements in global clinical status were not different between groups. More patients receiving tolvaptan (684 [76.7%] and 678 [72.1%] for trial A and trial B, respectively) vs patients receiving placebo (646 [70.6%] and 597 [65.3%), respectively) reported improvement in dyspnea at day 1 (both trials P<.001). Edema at day 7 or discharge improved significantly with tolvaptan in trial B (P = .02) but did not reach significance in trial A (P = .07). Serious adverse event frequencies were similar between groups, without excess renal failure or hypotension.

CONCLUSION: In patients hospitalized with heart failure, oral tolvaptan in addition to standard therapy including diuretics improved many, though not all, heart failure signs and symptoms, without serious adverse events.
V2 receptor Antagonist: Patient with Improvement

<table>
<thead>
<tr>
<th>Condition, by Day*</th>
<th>No. (%) of Patients</th>
<th>(P) Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tolvaptan</td>
<td>Placebo</td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>933 (51.6)</td>
<td>853 (47.1)</td>
</tr>
<tr>
<td>2</td>
<td>1244 (68.2)</td>
<td>1160 (63.7)</td>
</tr>
<tr>
<td>3</td>
<td>1374 (75.2)</td>
<td>1330 (73.0)</td>
</tr>
<tr>
<td>4</td>
<td>1456 (79.7)</td>
<td>1431 (78.5)</td>
</tr>
<tr>
<td>Orthopnea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>668 (63.1)</td>
<td>631 (59.2)</td>
</tr>
<tr>
<td>2</td>
<td>840 (78.6)</td>
<td>793 (74.1)</td>
</tr>
<tr>
<td>3</td>
<td>893 (83.4)</td>
<td>863 (80.4)</td>
</tr>
<tr>
<td>4</td>
<td>913 (85.3)</td>
<td>915 (85.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>673 (40.7)</td>
<td>644 (38.8)</td>
</tr>
<tr>
<td>2</td>
<td>923 (55.3)</td>
<td>886 (53.1)</td>
</tr>
<tr>
<td>3</td>
<td>1074 (64.3)</td>
<td>1007 (60.2)</td>
</tr>
<tr>
<td>4</td>
<td>1147 (68.6)</td>
<td>1107 (66.1)</td>
</tr>
<tr>
<td>JVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>698 (48.6)</td>
<td>631 (43.8)</td>
</tr>
<tr>
<td>2</td>
<td>923 (63.7)</td>
<td>855 (59.1)</td>
</tr>
<tr>
<td>3</td>
<td>1030 (71.0)</td>
<td>953 (65.6)</td>
</tr>
<tr>
<td>4</td>
<td>1077 (74.3)</td>
<td>1014 (69.8)</td>
</tr>
<tr>
<td>Rales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>744 (45.8)</td>
<td>711 (43.7)</td>
</tr>
<tr>
<td>2</td>
<td>1067 (65.3)</td>
<td>1041 (63.6)</td>
</tr>
<tr>
<td>3</td>
<td>1201 (73.4)</td>
<td>1166 (71.1)</td>
</tr>
<tr>
<td>4</td>
<td>1274 (77.9)</td>
<td>1259 (76.7)</td>
</tr>
<tr>
<td>Edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>913 (57.6)</td>
<td>832 (52.6)</td>
</tr>
<tr>
<td>2</td>
<td>1229 (76.9)</td>
<td>1169 (73.5)</td>
</tr>
<tr>
<td>3</td>
<td>1340 (83.8)</td>
<td>1296 (81.4)</td>
</tr>
<tr>
<td>4</td>
<td>1381 (86.4)</td>
<td>1371 (86.0)</td>
</tr>
</tbody>
</table>
Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial.

Division of Cardiology, Tufts-New England Medical Center, Boston, Mass, USA. mkonstam@tufts-nemc.org

Abstract
CONTEXT: Vasopressin mediates fluid retention in heart failure. Tolvaptan, a vasopressin V2 receptor blocker, shows promise for management of heart failure.

OBJECTIVE: To investigate the effects of tolvaptan initiated in patients hospitalized with heart failure.

DESIGN, SETTING, AND PARTICIPANTS: The Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST), an event-driven, randomized, double-blind, placebo-controlled study. The outcome trial comprised 4133 patients within 2 short-term clinical status studies, who were hospitalized with heart failure, randomized at 359 North American, South American, and European sites between October 7, 2003, and February 3, 2006, and followed up during long-term treatment.

INTERVENTION: Within 48 hours of admission, patients were randomly assigned to receive oral tolvaptan, 30 mg once per day (n = 2072), or placebo (n = 2061) for a minimum of 60 days, in addition to standard therapy.

MAIN OUTCOME MEASURES: Dual primary end points were all-cause mortality (superiority and noninferiority) and cardiovascular death or hospitalization for heart failure (superiority only). Secondary end points included changes in dyspnea, body weight, and edema.

RESULTS: During a median follow-up of 9.9 months, 537 patients (25.9%) in the tolvaptan group and 543 (26.3%) in the placebo group died (hazard ratio, 0.98; 95% confidence interval [CI], 0.87-1.11; P = .68). The upper confidence limit for the mortality difference was within the prespecified noninferiority margin of 1.25 (P<.001). The composite of cardiovascular death or hospitalization for heart failure occurred in 871 tolvaptan group patients (42.0%) and 829 placebo group patients (40.2%; hazard ratio, 1.04; 95% CI, 0.95-1.14; P = .55). Secondary end points of cardiovascular mortality, cardiovascular death or hospitalization, and worsening heart failure were also not different. Tolvaptan significantly improved secondary end points of day 1 patient-assessed dyspnea, day 1 body weight, and day 7 edema. In patients with hyponatremia, serum sodium levels significantly increased. The Kansas City Cardiomyopathy Questionnaire overall summary score was not improved at outpatient week 1, but body weight and serum sodium effects persisted long after discharge. Tolvaptan caused increased thirst and dry mouth, but frequencies of major adverse events were similar in the 2 groups.

CONCLUSION: Tolvaptan initiated for acute treatment of patients hospitalized with heart failure had no effect on long-term mortality or heart failure-related morbidity.
A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction.

Division of Cardiology and the CardioVascular Center, Tufts Medical Center, Boston, MA 02111, USA. JUdelson@tuftsmedicalcenter.org

Abstract

BACKGROUND: Increased vasopressin levels may be present in patient with chronic heart failure (HF) and contribute to pathophysiology through effects on the vasopressin V2 receptor. The presence of background diuretic therapy may confound evaluations of vasopressin receptor antagonists (VRA).

METHODS AND RESULTS: Eligible patients had HF (New York Heart Association Class II-III), systolic dysfunction (left ventricular ejection fraction ≤0.40) and signs of congestion (eg, edema, rales). At screening, patients were removed from baseline diuretic therapy and placed on a low-sodium diet (2 g/day). After a 2-day run-in period, 83 patients were randomized to placebo (n = 21), monotherapy with the vasopressin V2 receptor antagonist tolvaptan (TLV) 30 mg (n = 20), monotherapy with furosemide 80 mg (FURO, n = 22) or both TLV 30 mg and FURO 80 mg (n = 20) once daily for 7 days. Patients were on standard background therapy and not fluid-restricted throughout the study. A decrease in body weight of -1.37 ± 1.61, -0.54 ± 1.59, and -1.13 ± 1.49 kg was observed versus baseline for TLV, FURO, and TLV+FURO, respectively, at day 8. At the same point, the placebo group showed a body weight increase of +0.72 ± 2.42 kg versus baseline (P = .0006 for TLV versus placebo). Increases in urine volume from baseline were greater with TLV alone (2646 ± 1503 mL/24 hours) than with FURO (894 ± 853 mL/24 hours, P < .001), or PLC (423 ± 786 mL/24 hours, P < .001), and similar to TLV+FURO (2585 ± 2119 mL/24 hours). An increase in serum sodium within the normal range was also observed in TLV-treated patients (P < .02 versus placebo; P < .01 versus FURO). No changes in serum potassium, other laboratory values, or blood pressure were observed. TLV therapy was well tolerated.

CONCLUSIONS: In patients with HF and signs of volume overload, TLV monotherapy without concomitant loop diuretic therapy reduced body weight when compared to placebo without adverse changes in serum electrolytes, during a sodium restricted diet while on background medications including angiotensin-converting enzyme inhibitors and β-blockers.
Kim O O (34/M): DOE (NYHA 3)
Kim O O (34/M): DOE (NYHA 3)
Kim O O (34/M): DOE (NYHA 3)
Kim O O (35/M): Edema and Fatigue
Kim O O (35/M): Edema and Fatigue
Take Home Messages

▶ Important pathophysiologic concepts in edema formation
 : Effective circulatory volume
 : Neurohormonal activation
▶ Other potential causes of edema should be considered
 : Non-cardiac or cardiac
▶ Keep in mind the potential benefits and risks of diuretic therapy
▶ Newer promising drugs: vaptans