2012 대한춘계심장학회

Perioperative Cardiology Consultations for Noncardiac Surgery *Ischemic Heart Disease*

울산의대 울산대학병원 심장내과 이상곤

ECG CLASS IIb

1. Preoperative resting 12-lead ECG may be reasonable in patients with at least 1 clinical risk factor who are undergoing intermediate-risk operative procedures. (*Level of Evidence: B*)

CLASS III

1. Preoperative and postoperative resting 12-lead ECGs are not indicated in asymptomatic persons undergoing low-risk surgical procedures. (*Level of Evidence: B*)

Evaluation of Resting LV function

CLASS IIa

1. It is reasonable for patients with dyspnea of unknown origin to undergo preoperative evaluation of LV function. (*Level of Evidence: C*)

2. It is reasonable for patients with current or prior HF with worsening dyspnea or other change in clinical status to undergo preoperative evaluation of LV function if not performed within 12 months. (*Level of Evidence: C*)

CLASS IIb

1. Reassessment of LV function in clinically stable patients with previously documented cardiomyopathy is not well established. (*Level of Evidence: C*)

CLASS III

1. Routine perioperative evaluation of LV function in patients is not recommended. (*Level of Evidence: B*)

- Asymptomatic
- Osteoarthritis : plan to operation
- Medical history :
 Hypertension;7yr DM; 5yr

The Consultant, ...

 The goal of the consultation is the optimal care of the patient.

 A critical role of the consultant is to determine the stability of the patient's CV status and whether the patient is in optimal medical condition within the context of the surgical illness.

 No test should be performed unless it is likely to influence patients treatment.

Preoperative Cardiac Assessment

- Stepwise Approach:
 - Urgency of Surgery
 - Clinical Assessment
 - Surgical Risk
 - Functional Capacity
 - risk factor

Disease Specific Issues

Active Cardiac Conditions

Unstable coronary syndromes

 unstable angina (CCS III/IV)
 acute (~1 wk)/recent (1 wk-1 mo) MI

• Decompensated HF (NYHA IV, worsening/new-onset HF)

Significant arrhythmia

Severe valvular diseases
 - AS (PG>40mmHg, AVA<1.0cm²)
 - symptomatic MS

Surgery-Related Risk

High (>5%)

Aortic and other major vascular surgery Peripheral vascular surgery

Intermediate (1–5%)

Carotid endarterectomy Head and neck surgery Intraperitoneal and intrathoracic surgery Orthopedic surgery Prostate surgery

Low (<1%)

Endoscopic procedures Superficial procedures Cataract surgery Breast surgery Ambulatory surgery

Cardiac risk=death/nonfatal MI

2007 ACC/AHA Guidelines

STEP 4

Good functional capacity (MET level greater than or Equal to 4: Light work around the house) without Sx

Functional Capacity

Correlates with maximum oxygen uptake on treadmill testing

Demonstrated predictor of future cardiac events

In highly functional asymptomatic pts, management will rarely be changed based on the results of any further cardiovascular testing.

Value of Myocardial Perfusion Imaging for Preoperative Assessment of Cardiac Risk

Study, n		Ischemia : Positive predictive value(%)	Normal: Negative predictive value(%)	Events(%)
Boucher et al,	48	19	100	6
Cutler et al.	116	20	100	10
Eagle et al.	200	16	98	8
Baron et al.	457	4	96	5
Koutelou et al.	106	6	100	3
Van Damme et al.	142	na	na	2
Huang et al.	106	13	100	5
Cohen et al.	153	4	100	4
Harafuji et al.	302	2	100	1.3

Value of Dobutamine Stress Echocardiography for Preoperative Assessment of Cardiac Risk

Study, n	Ischemia : Positive predictive value(%)	Normal: Negative predictive value(%)	Events(%)
Lalka et al, 60	23	93	15
Polderman et al. 131	14	100	4
Ballal et al. 233	0	96	3
Bossone et al. 46	25	100	2
Das et al. 530	15	100	6
Boersma et al. 1097	14	98	4
Morgan et al. 78	0	100	0
Tores et al. 105	18	98	10
Labib et al. 429	9	98	2

Utility of Cardiac Testing in Intermediate Risk Patients receiving adequate betablocker therapy(DECREASE-II)

Randomly assigned to cardiac testing(n=386) or no testing(n=384)

Cardiac testing can be safely omitted in intermediate- risk pts, provided that beta blockers are prescribed

•Perioperative cardiac risk appears to be directly proportional to the amount of myocardium at risk as reflected in the extent of reversible defects found on imaging.

•Because of the overall low positive predictive value of stress imaging, it is best used selectively in patients with a high clinical risk of perioperative cardiac events.

Preoperative Non-invasive Stress Testing

3 CRFs, FC <4 METs and vascular surgery (class IIa/LOE B) 1-2 CRFs, FC <4 METs & intermediate-risk or vascular surgery (IIb/B)

Most ambulatory patients

Treadmill Stress Test

Prophylactic Revascularization

• Eagle et al : 3368 patients in the CASS database (*higher-risk surgical procedures*)

patients who had undergone prior CABG had a lower risk of death (1.7% versus 3.3%, P0.03) and nonfatal MI (0.8% versus 2.7%, P0.002) than patients without prior CABG

most benefit among patients with *multivessel CAD and those* with *more severe angina*.

•Rihal and colleagues : 2000 patients enrolled in the CASS Study

Compared with coronary bypass surgery in patients with *both* CHD and peripheral vascular disease, surgically treated patients with 3-vessel disease had significantly better long-term survival than those treated medically after adjustment for all covariates, including clinical measures of *disease stability, stress test results, and LV function*

Coronary Artery Revascularization Prophylaxis before Elective Major Vascular Surgery(CARP)

Randomly assigned 510 patients (74% intermediate risk, 80% beta blocker) with significant coronary stenosis among 5859 pts scheduled for vascular operations to either coronary artery revascularization(n=225) or no revascularization(n=237)

59% PCI and 41% CABG

Coronary revascularization before elective vascular surgery among pts with stable cardiac symptoms cannot be recommended.

McFalls et al. NEJM 2004;351:2796

Randomized Trial to Evaluate the Safety of a Noninvasive Approach in pts with >3 risk factors with Extensive Stress Induced Ischemia(DECREASE-V Pilot study)

Prophylactic coronary revascularization in high risk pts with preop extensive stress induced ischemia was not associated with an improved outcome.

Poldermans et al. JACC 2007;49:1763

Indications for Revascularization Class I (A)

- Significant left main disease
- Multi-vessel CAD with LV dysfunction
 - 3 vessels disease
 - 2 vessels disease with proximal LAD
- Acute coronary syndrome:
 - High-risk unstable angina
 - NSTEMI
 - STEMI

PCI before Anticipated Surgery

Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial)

Benefits & Risks

→MI, revascularization, Af
↑death, stroke, hypotension, bradycardia

8,351 patients with, or at risk of, atherosclerotic disease who were undergoing non-cardiac surgery to receive extendedrelease metoprolol succinate (n=4174) or placebo (n=4177).

Study treatment (extendedrelease metoprolol 200mg/d) was started 2–4 h before surgery & continued for 30days.

Lancet 2008;371:1839

Perioperative β-Blocker: Metaanalysis

	βblocker	Control		Relative risk (99% Cl)
Total mortality				
Pre-POISE	33/1080	36/1070		0.89 (0.49–1.64)
POISE	129/4174	97/4177	∔∎∽	1.33 (0.95–1.87)
Total	162/5254	133/5247	-	1.21 (0.90–1.63)
				p=0·10, l²=37%
Non-fatal myocardia	alinfarction			
Pre-POISE	25/958	42/919		0.58 (0.32–1.06)
POISE	152/4174	215/4177		0.71 (0.54-0.92)
Total	177/5132	257/5096	- -	0.69 (0.54–0.87)
				p<0∙0001, l²=31%
Non-fatal stroke				
Pre-POISE	12/972	3/967		2.98 (0.74–12.0)
POISE	27/4174	14/4177		1.93 (0.83–4.50)
Total	39/5146	17/5144	 	2.19 (1.06–4.50)
				p=0∙005, l²=0%
		0.10	1 2 4 8 16	
			Relative risk (99% CI)	

Class III: Routine administration of high-fixed dose beta blockers in the absence of dose titration is not useful and may be harmful to patients not currently taking beta blockers who are undergoing noncardiac surgery.(*Level of Evidence: B*)

Perioperative β-Blocker Therapy

	No CRFs	≥1 CRFs	CHD or High Cardiac Risk	Taking BB
Vascular	IIb/B	IIb/B	 Myocardial ischemia on pre-op testing (IIa/B) CHD on pre-op assessment (IIa/B) 	I/B
Intermediate risk			IIa/B	I/C
Low risk			•••	I/C

Beta blockers titrated to heart rate and blood pressure

Conclusions (I)

 Extensive testing is rarely needed to determine risk

• Evaluation/testing NOT needed if :

- low risk surgery
- good functional capacity & no cardiac sxs
- no clinical risk factors

Conclusions (II)

Revascularization (CABG/PCI) should be considered only if standard indications are present.

If PCI to be done, delay before non-cardiac surgery should be:

- POBA: 14 days
- BMS: 30-45 days -DES: > 365 days

Outcomes in high risk patients optimized with:

- β blockers

How to best serve the patients?

Careful teamwork & communication are the key!

경청해주저저감사합니다