Triage of Acute Chest Pain in ED 서울아산병원

강준원

Risk stratification of acute chest pain using clinical parameters

RISK STRATIFICA	TION						
Stable	Typical	Atypical	non-Anginal				
JACC 2006	Very low	Low	Intermediate	High			
AJM 1997		Low	Intermediate	High			
Unstable AHA Likeli		Low	Intermediate	High			
AHA Risk		Low	Intermediate	High			
ТІМІ							
GRACE		Total Risk score			Mortality Risk		
PURSUIT		Mortality only score			30-day		
		Mortality or infarction			30-day		
Tatum		Very Low	Low	Intermediate	High	Very high	

Table A. Pretest Probability of CAD by Age, Sex, and Symptoms

		Typical/Definite	Atypical/Probable	Nonanginal	
Age	Sex	Angina Pectoris	Angina Pectoris	Chest Pain	Asymptomatic
<39	Men	Intermediate	Intermediate	Low	Very low
	Women	Intermediate	Very low	Very low	Very low
40–49	Men	High	Intermediate	Intermediate	Low
	Women	Intermediate	Low	Very low	Very low
50–59	Men	High	Intermediate	Intermediate	Low
	Women	Intermediate	Intermediate	Low	Very low
>60	Men	High	Intermediate	Intermediate	Low
	Women	High	Intermediate	Intermediate	Low

TABLE 45-2 Likelihood that Signs and Symptoms Represent an Acute Coronary Syndrome					
Feature	High Likelihood (any of the following)	Intermediate Likelihood (absence of high-likelihood features and presence of any of the following)	Low Likelihood (absence of high- or intermediate-likelihood features but may have any of the following)		
History	 Chest or left arm pain or discomfort as chief symptom reproducing prior documented angina Known history of coronary artery disease, including myocardial infarction 	 Chest or left arm pain or discomfort as chief symptom Age >70 years Male sex Diabetes mellitus 	 Probable ischemic symptoms in absence of any of the intermediate likelihood characteristics Recent cocaine use 		
Examination	 Transient mitral regurgitation, hypotension, diaphoresis, pulmonary edema, or rales 	Extracardiac vascular disease	 Chest discomfort reproduced by palpation 		
Electrocardiogram	 New, or presumably new, transient ST-segment deviation (≥0.05 mV) or T-wave inversion (≥0.2 mV) with symptoms 	 Fixed Q waves Abnormal ST segments or T waves not documented to be new 	 T-wave flattening or inversion in leads with dominant R waves Normal ECG 		
Cardiac markers	Elevated cardiac TnI, TnT, or CK-MB	Normal	Normal		

From Fleet RP, Dupuis G, Marchand A, et al: ACC/AHA 2002 guideline update for the management of patients with unstable angina and non–ST-segment elevation myocardial infarction: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation 106:1893, 2002.

Copyright © 2005 by Elsevier Inc.

Recommended triage flow using clinical parameters

Real world vs. guideline Observed prevalence Expected (Guideline Probabilities)

Circulation. 2011;124:2423-2432.

Limitations of clinical triage

Missed diagnoses and inappropriate discharge still ranged up to 8%.
Time-consuming and expensive.

CT in acute chest pain

- CTA can rapidly and definitely exclude CAD as the cause of acute chest pain.
- Immediate CTA reduces length of stay and cost of care without increasing risk.

JACC 2007:49:863-871

- MDCT as a first diagnostic approach to acute chest pain:
 - can reduce the unnecessary admission

- possibly reduces the length of hospital stay in patients with clinically low and intermediate risk of *Am Heart J* 2008;156:375-83

Correlation with clinical triage

RISK						
STRATIFICATION	CLASSIFICATION		ቶ		Ť	1_
	HIGH		7	26.9%	19	73.1%
AHA LIKE	INTEMEDIATE		8	17.8%	37	82.2%
	LOW		0	0.0%	2	100.0%
	0		0	0.0%	2	100.0%
	HIGH		8	27.6%	21	72.4%
	INTEMEDIATE		5	15.6%	27	84.4%
	LOW		2	20.0%	8	80.0%
	HIGH		1	100.0%	0	0.0%
	INTERMEDIATE		7	25.9%	20	74.1%
	LOW		6	14.3%	36	85.7%
	VERY LOW		1	33.3%	2	66.7%
		4	0	0.0%	1	100.0%
	and all	3	4	66.7%	2	33.3%
TIMI	and the second	2	4	28.6%	10	71.4%
		1	6	19.4%	25	80.6%
		0	1	4.8%	20	95.2%
		1%	11	19.0%	47	81.0%
GRACE	1	0%	0	0.0%	1	100.0%
		5%	15	20.8%	57	79.2%
PURSUIT		5%	0	0.0%	1	100.0%
MORTALITY		3%	4	28.6%	10	71.4%
	2	5%	0	0.0%	1	100.0%
	2	0%	1	100.0%	0	0.0%
	1	7%	0	0.0%	2	100.0%
PURSUIT	1	3%	1	25.0%	3	75.0%
HARD CHD	1	0%	1	33.3%	2	66.7%
MORTALITY		9%	5	22.7%	17	77.3%
		8%	1	8.3%	11	91.7%
		6%	6	35.3%	11	64.7%
		5%	0	0.0%	11	100.0%

(N=73)

AMC data (Unpublished)

Accuracy of CT as a diagnostic triage tool with chest pain to ER

Table 4.	Test performance	characteristics	of CTA in	the included studies
----------	------------------	-----------------	-----------	----------------------

Year	Authors	N	CTA <u>sensitivity</u>	CTA specificity	CTA positive predictive value	CTA negative predictive value
2005	Sato et al ²⁴	31	21/22 (96%)	8/9 (89%)	21/22 (96%)	8/9 (89%)
2006	Hoffmann et al ²⁹	40	5/5 (100%)	26/35 (74%)	5/14 (36%)	26/26 (100%)
2007	Rubinshtein et al ⁹	58	20/20 (100%)	35/38 (92%)	20/23 (87%)	35/35 (100%)
2007	Goldstein et al ²²	99	8/8 (100%)	67/91 (74%)	8/32 (25%)	67/67 (100%)
2007	Gallagher et al ²⁵	85	6/7 (86%)	72/78 (92%)	6/12 (50%)	72/73 (99%)
2007	Hollander et al ²³	54	2/2 (100%)	48/52 (92%)	2/6 (33%)	48/48 (100%)
2009	Hoffmann et al ²⁷	368	24/31 (77%)	293/337 (87%)	24/68 (35%)	293/300 (98%)
2009	Hollander et al ³⁰	562	7/7 (100%)	508/555 (91%)	7/54 (13%)	508/508 (100%)
2009	Ueno et al ²⁶	36	11/12 (92%)	20/24 (83%)	11/15 (73%)	20/21 (95%)

95% (95% CI 88-

87% (95% CI 83-92)

100)

Conclusions—Noninvasive assessment of coronary artery disease by MDCT has good performance characteristics for ruling out ACS in subjects presenting with possible myocardial ischemia to the emergency department and may be useful for improving early triage. (*Circulation*. 2006;114:2251-2260.)

Figure 4. Forest plot of negative likelihood ratios. The summary estimate for the negative likelihood ratio was derived from the bivariate estimates of sensitivity and specificity.

Figure 5. Forest plot of positive likelihood ratios. The summary estimate for the positive likelihood ratio was derived from the bivariate estimates of sensitivity and specificity.

J Nucl Cardiol 2012 Feb 10. [Epub ahead of print]

Cost-effectiveness of CT

CT-STAT trial: 699 pts with low-risk acute chest pain randomized to coronary CTA or nuclear stress imaging as initial screen.

6-Month Follow-up	CTA (n = 361)	Stress Imaging (n = 338)	<i>P</i> Value
Time to Diagnosis, hrs	2.9	6.2	< 0.0001
Emergency Dept Costs	\$2,137	\$3,458	< 0.0001
MACE	0.8%	0.4%	0.29

CTA also resulted in similar negative prediction values for significant CAD, referrals for invasive angiography, and subsequent revascularizations.

Conclusion: Using coronary CTA as a screening tool for low-risk pts with chest pain in the ED achieves lower costs and quicker diagnoses without sacrificing safety or accuracy.

J Am Coll Cardiol 2011;58:1414-22

• 266 patients in ED

Significant decrease in unnecessary admission, total adm. hours

Am Heart J 2008;156:375-83

	Emergency I	Jepartment
Analysis of Workups	Length of Stay (h)	Charges (U.S.\$)
Standard of care	25.4 ± 6.3	7,597 ± 2,216
Coronary CTA with observation	14.3 ± 5.0 ^a	6,153±1,196ª
Coronary CTA without observation	5.0ª	$4,251 \pm 420^{a}$

Note—Data are mean \pm SD. ^ap = < 0.001 when compared to standard of care.

> Significant decrease in Stay and Charges in acute CP with low-risk patients

ORIGINAL ARTICLE

CT Angiography for Safe Discharge of Patients with Possible Acute Coronary Syndromes

New Engl J Med 2012 March 26, DOI 10.1056/NEJMoa1201163

• CCTA group

- Higher rate of discharge from the emergency department (49.6% vs. 22.7%; difference, 26.8 percent-age points; 95% CI, 21.4 to 32.2)
- Shorter length of stay (median, 18.0 hours vs. 24.8 hours; P<0.001)
- Higher rate of detection of coronary disease (9.0% vs. 3.5%; difference, 5.6 percentage points; 95% CI, 0 to 11.2).

• CCTA-based strategy for low-to-intermediate-risk

 Safe, expedited discharge from the emergency department of many patients who would otherwise be admitted.

> New Engl J Med 2012 March 26, DOI 10.1056/NEJMoa1201163

However...

• Limitation in intermediate stenosis on CT

• Longer stay in ER compared with others

Am Heart J 2008;156:375-83

Limitations

Availability of 64-slice CT	Financial
On-site device	Capital purchase
Not already in use	Ongoing staff requirements for 24/7/365 utilization
Availability of personnel	Nondiagnostic examinations
To modify heart rate	Calcification
To supervision contrast administration	Stents
For interpretation	Bypass grafts
Inability to receive β -blocker	lonizing radiation
Bronchoconstrictive lung disease (asthma, chronic obstructive pulmonary disease)	
Allergy	
Heart block	
Arrhythmia	
Atrial fibrillation	
Frequent supraventricular or ventricular ectopy	
Contrast related	
Allergy	
Uncontrolled hyperthyroidism	
Receiving metformin	
Renal insufficiency/failure	

Circ Cardiovasc Imaging 2009;2;264-275

DSCT for "Triple Rule Out"

MDCT: Shows coronary, pulmonary arteries and aorta in one scan (10-15sec scan with one breath hold)

Coronary CT angiography in emergency department patients with acute chest pain: triple rule-out protocol versus dedicated coronary CT angiography

MDCT Protocols	Ĩ	1
Protocol	Dedicated CT angiography	Triple rule-out
Field of view	220	400
Thickness (mm)	0.625-0.9	0.625-0.9
Increment (mm)	Half of slice thickness	Half of slice thickness
Direction	Cephalad-caudal	Caudal-cephalad
Time (s)	9–10	15
Z axis coverage	Aortic root-cardiac base	Aortic arch- adrenal gland

Table 1 Comparison of sample ED chest pain 64-Slice

Conclusion

Coronary CT angiography is useful to evaluate ED patients with atypical chest pain who are at low to intermediate risk. With 64-slice MDCT technology, major life-threatening thoracic diseases (i.e., ACS, PE, and AAS) can be diagnosed using the "triple rule-out" protocol within a single breathhold. However, the increased radiation dose resulting from the extended volume coverage should be fully considered prior to performing this protocol. Therefore, in ED patients who have a low clinical suspicion of PE and AAS, especially younger patients, dedicated coronary CT angiography accompanied by methods to reduce radiation dose is recommended.

Significant stenosis at m-dRCA

Intramural hematoma and no CAD nor dissection

Acute chest pain with noncoronary origin

AMC data (Unpublished).

	Prevalence in the Cohort (n = 395) in %	Fraction of New Findings n (%)
Pulmonary Incidental Finding		
Noncalcified pulmonary nodule	94 (23.8%)	86/94 (91.5%)
Calcified pulmonary nodule	16 (4.1%)	14/16 (87.5%)
Pulmonary infiltrate	7 (1.8%)	3/7 (42.9%)
Emphysema	7 (1.8%)	4/7 (57.1%)
Atelectasis	5 (1.3%)	2/5 (40.0%)
Pleural effusion	3 (0.8%)	0/3 (0.0%)
Enlarged hilar or mediastinal lymph node	9 (2.3%)	5/9 (55.6%)
Pneumothorax	1 (0.3%)	1/1 (100.0%)
Abdominal Incidental Finding		
Liver cyst	26 (6.6%)	24/26 (92.3%)
Contrast-enhancing liver lesion	9 (2.3%)	8/9 (88.9%)
Fatty liver	1 (0.3%)	1/1 (100.0%)
Hiatus hernia	14 (3.5%)	12/14 (85.7%)
Contrast-enhancing splenic lesion	1 (0.3%)	1/1 (100.0%)
Gallstones	1 (0.3%)	1/1 (100.0%)
Aortic Incidental Finding		
Aneurysm	3 (0.8%)	3/3 (100.0%)
Dissection	1 (0.3%)	0/1 (0.0%)
Penetrating aortic ulcer	1 (0.3%)	0/1 (0.0%)
Cardiac incidental finding		
Sinus of Valsalva aneurysm	1 (0.3%)	1/1 (100.0%)
Pericardial effusion	1 (0.3%)	1/1 (100.0%)
Other Incidental Finding		
Hemangioma of the spinal column	1 (0.3%)	1/1 (100.0%)
Thyroid mass	1 (0.3%)	1/1 (100.0%)
Chest wall mass	1 (0.3%)	1/1 (100.0%)
Hemangioma	1 (0.3%)	1/1 (100.0%)
Overall	215	171/215 (79.5%)

Am J Med 2009;122:543-549

Radiation dose

- Chest radiograph: 0.03-0.05 mSv
- Coronary Calcium Score Scan Male: 1.5-5.2 mSv Female: 1.8-6.2 mSv
- Coronary CT angiography (4-slice MDCT) Male: 6.7-10.9 mSv Female: 8.1-13.0 mSv
- Invasive Coronary angiography Male: 2.1 mSv Female: 2.5 mSv
- Radiation worker dose limits: 20 mSv/year
- Natural background: 2.5-3.0 mSv/year
- 64-slice MDCT coronary angiography : 15.4 mSv
- MIBI scan 11 mSv, Thallium scan 29 mSv

Radiation dose reduction

- ECG-pulsing (retrospective) or prospective gating
- Lowering tube voltage
- → AMC coronary CT angiography : 4.7 ± 1.6 mSv
- Wide detector or fast table speed CT
 - <1.0 mSv possible</p>
 - Scan time less than 1 sec possible

320 detector CT

- 2-slap

- 2.0 – 3.3 mSv

- Diagnostic quality in 96%

Eur Radiol 2011;21:1416-1423

Reduced image noise without loss of detail resolution
 Reduced radiation exposure

IRIS reconstruction

FBP reconstruction

SNR: 26.36, Noise: 22.83, CNR: 21.16

SNR: 17.8, Noise: 49.27, CNR: 9.92

APPROPRIATE USE CRITERIA

ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography

A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance Detection of CAD in Symptomatic Patients Without Known Heart Disease Symptomatic Acute Presentation Using CT

Triage guidelines

• Very high: Typical chest pain with ECG changes consistent with AMI

• High:

Typical chest pain with ECG change of ST depression or Twave inversion or with known CAD

• Intermediate:

Typical chest pain without diagnostic ECG changes and no known CAD

• Low:

Short duration of typical symptoms or prolonged atypical symptoms in patients without history of CAD and no diagnostic ECG changes

• Very low:

Atypical chest pain with an identifiable non-cardiac origin.

*Excluded very high or very low pretest probability of ACS

Conclusions

- Acute chest pain of uncertain cause
 ⇒ prefer cardiac CT
- (D/Dx pulmonary embolism, aortic dissection, and ACS ["triple rule out"])
- Typical angina & male ≥ 40 / female $\ge 60 \Rightarrow$ prefer CAG
- Cardaic CT was felt to be appropriate primarily for situations involving a low or intermediate pretest probability of obstructive CAD