Anticoagulation & New Generation Tissue Valve

Sak Lee Yonsei University Health System Yonsei Cardiovascular Center Dept. of Thoracic & Cardiovascular Surgery

Why Bioprosthetic?

- Less incidence of thrombus formation
- Anticoagulation not usually required
- Stented Bioprostheses easy to implant

Why Not Bioprosthetic?

 A bioprosthetic valve provides its peak performance the day it is implanted

Tissue deteriorates over time

 Younger patients who receive bioprosthetic valves risk having another operation when the tissue valve degrades to a point where intervention is required (Structural Valve Deterioration – SVD)

Comparison of mechanical and biological valve prosthesis

Mechanical	Biological
Durable–valves lasting 20-30 years	Limited life span-10% of
	homografts and 30% of
	heterografts fail within
	10-15 years
Thrombogenic-patients require	Low thrombogenic
lifelong anticoagulant therapy	potential—lifelong
	anticoagulation is not required
Preferred in younger patients with	Preferred in older patients with
>10-15 years life expectancy	<10-15 years life expectancy
Preferred in patients who require	Preferred in those who cannot
lifelong anticoagulant therapy	(or will not) take lifelong
	anticoagulant therapy

Bioprosthetic Valve Types

- Xenografts Tissue from different species
 - Porcine valve
 - Bovine pericardium
 - Composite valves
- Homograft / Allograft Tissue from same species
 - Human valve LifeNet Health
- Autograft Tissue from same individual
 - Pulmonary valve to the aortic position Ross Procedure

Types of Tissue Valves

Stented Tissue Valves

- Intact porcine valves
 - Medtronic's tissue valves
 - Reduction of muscle shelf bar

- Composite porcine valves
 - St. Jude Medical's stented tissue valves
 - Three separate leaflets either the left or the non-coronary cusps – triple composite
- Pericardial valves
 - Edwards' valves
 - Pericardial tissue

Types of Tissue Valves

Stentless Tissue Valves

- -Subcoronary
 - Medtronic
 - St. Jude Medical
- -Full Root
 - Edwards
 - Medtronic
 - St. Jude Medical
 - Currently in Europe
 - US and other geographies RELEASE CANCELED

Evolution of tissue valves

Tissue Valve History

- Early generation tissue valves
 - Intact porcine valves
 - Septal muscle bar may reduce blood flow
 - High pressure tissue fixation
 - Flattened tissue structure
 - No anti-calcification treatments
 - May have led to early degeneration of tissue

Tissue Valve History

- Next generation tissue valves
 - Intact porcine valves
 - Reduction of muscle shelf bar
 - Composite valves
 - Porcine tissue
 - Three separate leaflets
 - Pericardial tissue
 - Low pressure tissue fixation
 - Maintained tissue structure
 - Introduction of anti-calcification treatments
 - May prolong life of tissue valve

Four Predictors of Bioprosthetic Performance

- 1. Durability
- 2. Hemodynamics
- 3. Implantability
- 4. Thromboresistance

Four Predictors of Performance: Durability

1. Durability

- Debatably the most important consideration
- Current guidelines recommend bioprosthetic valve:
 - Patients ≥65 years of age for the aortic position (US)
 - Patients ≥65 years of age for the mitral position (US)
- Stented have 20 years of reported clinical experience
- Stentless have 10 years of reported clinical experience

Four Predictors of Performance: Hemodynamics

2. Hemodynamics

- Stented tissue valves (aortic and mitral)
 - Typically inferior hemodynamics than stentless tissue valves or mechanical valves (e.g., Regent)
 - Inferiority due to bulk of design within the annulus
- Stentless tissue valves (aortic only)
 - Superior hemodynamics due to lack of stent, or bulk occluding the annulus

Four Predictors of Performance: Implantability

3. Implantability

- Stented tissue valves
 - Stent provides support and ease of implantability
 - Other factors affect implantability
 - Stent material (polymer versus metal)
 - Cuff (material, thickness)
 - Post height (obstruction)
- Stentless tissue valves
 - Lack of artificial support can make implant more timeconsuming
 - Takes practice, but can be mastered

Four Predictors of Performance:Thromboresistance

4. Thromboresistance

- Tissue valves are naturally thromboresistant unless they degenerate
- Long-term use of anti-coagulation is not usually required
- Immediate 3 months post-op regimen currently recommends warfarin, although studies are underway to evaluate aspirin other anti-platelet drugs only

Types of prosthetic valves and thrombogenicity

Type of valve	Model	Thrombogenicity
Mechanical		
Caged ball	Starr-Edwards	+ + + +
Single tilting disc	Bjork-Shiley,	+ + +
	Medtronic Hall	
Bileaflet	St Jude Medical,	+ +
	Sorin Bicarbon,	
	Carbomedics	
Bioprosthetic		
Heterografts	Carpentier-Edwards,	+ to + +
, in the second s	Tissue Med (Aspire), Hancock II	[
Homografts		+

Goldsmith et al, BMJ, 2002

Reasons for thromboembolism early after prosthetic valve implantation

- The pathologic sequelae of the patients' inherent to valvular disease (atrial fibrillation, dilated LA, dilated LV) may predispose to areas of stasis and thrombus formation
- Incomplete endothelial proliferation on the raw intracardiac surfaces, sewing ring and suture knots in the initial postoperative period.

Thromboembolism with bioprosthetic valves after the first 3 months

	Patient Years	THROM, %/yr	TE, %/yr	Reference
Porcine aortic valve	3,361	0	1.5	Glower et al ⁴⁶
	2,689	0	1.9	David et al ⁵²
	1,673	0	2.3	Khan et al ⁴⁷
Pericardial aortic valve	2,556	0	1.8	Banbury et al ⁴³
	581	0	1.0	Nakajima et al ⁴²
	3,624	0	1.0	Neville et al ⁴⁸
	408	0	0.2	Borowiec et al ⁵¹
Porcine mitral valves	3,128	0	1.7	Glower et al ⁴⁶
	1,168	0.1	1.5	David et al ⁵²
	1,781	0	2.6	Khan et al ⁴⁷
Pericardial mitral valve	969	0	0.6	Neville et al ⁴⁸
Porcine aortic, mitral, or > 1	10,405	0	1.7	Jamieson et al ⁴⁹
	17,471	0	2.4	Jamieson et al ⁴⁵
	5,464	0	2.1	Jamieson et al ⁵⁰
Pericardial a ortic, mitral, or > 1	3,000	0.1	1.7	Poirier et al ⁴⁴

*THROM = valve thrombosis; TE = thromboemboli.

Long-term risk for 0.2 – 2.6%/yr

Chest, 2001

High Risk of Thromboemboli Early After Bioprosthetic Cardiac Valve Replacement

MAGDA HERAS, MD,*†JAMES H. CHESEBRO, MD, FACC,‡ VALENTIN FUSTER, MD, PHD, FACC,‡ WILLIAM J. PENNY,§ MD, DIANE E. GRILL, MS,† KENT R. BAILEY, PHD,† GORDON K. DANIELSON, MD,† THOMAS A. ORSZULAK, MD,† JAMES R. PLUTH, MD,† FRANCISCO J. PUGA, MD,† HARTZELL V. SCHAFF, MD,† JEFFREY J. LARSONKELLER, BS†

Rochester, Minnesota; New York, New York; and Cardiff, Wales, United Kingdom

Objectives. We studied the rate of thromboembolism in patients undergoing bioprosthetic replacement of the aortic or mitral valve, or both, at serial intervals after operation and the effects of anticoagulant or antiplatelet treatment and risk factors.

Background. Thromboembolism appears to occur early after operation, but the incidence, timing and risk factors for thromboembolism and the role, timing, adequacy, effectiveness, duration and risk of anticoagulation and antiplatelet agents are uncertain.

Methods. The rate of thromboembolism was studied at three time intervals after operation (1 to 10, 11 to 90 and >90 days) in 816 patients who underwent bioprosthetic replacement of the aortic or mitral valve, or both, at the Mayo Clinic from January 1975 to December 1982. The effect of antithrombotic therapy (warfarin, aspirin or dipyridamole, alone or in combination) was evaluated.

Results. Median follow-up of surviving patients was 8.6 years. The rate of thromboembolism (%/year) decreased significantly (p < 0.01) at each time interval after operation (1 to 10, 11 to 90 and >90 days) for mitral valve replacement (55%, 10% and 2.4%/year, respectively) and over the first time interval for aortic valve replacement (41%, 3.6% and 1.9%/year, respectively). During the first 10 days, 52% to 70% of prothrombin time ratios were low (<1.5 × control). Patients with mitral valve replacement who received anticoagulation had a lower rate of thromboembolism for the entire follow-up period (2.5%/year with vs. 3.9%/year without anticoagulation, p = 0.05). Of 112 patients with a first thromboembolic episode, permanent disability occurred in 38% and death in 4%. Risk factors for emboli were lack of anticoagulation, mitral valve location, history of thromboembolism and increasing age. Only 10% of aortic, 44% of mitral and 17% of double valve recipients had anticoagulation at the time of an event. Patients with bleeding episodes (2.3%/year) were older and usually underwent anticoagulation. Blood transfusions were required in 60 of 111 patients (1.2%/year), and 13 patients (0.3%/year) died.

Conclusions. Thromboembolic risk was especially high for aortic and mitral valve replacement for 90 days after operation, and overall was increased with lack of anticoagulation, mitral valve location, previous thromboembolism and increasing age. Anticoagulation reduced thromboemboli and appears to be indicated in all patients as early as possible for 3 months and thereafter in those with risk factors, but needs prospective testing. (J Am Coll Cardiol 1995;25:1111–9)

High Risk of Thromboemboli Early After Bioprosthetic Cardiac Valve Replacement

	Valve Replacement			
	Aortic $(n = 424)$	Mitral (n = 326)	Aortic and Mitral (n = 66)	
Thromboembolism				
First	51 (12%)	55 (17%)	6 (9%)	
Second	10 (2%)	13 (4%)	1 (2%)	
Bleeding events				
First	59 (14%)	41 (13%)	11 (17%)	
Second	13 (3%)	6 (2%)	2 (3%)	
Total deaths	184 (43%)	165 (51%)	36 (55%)	
Cardiac*	87 (21%)	92 (28%)	19 (29%)	
Noncardiac	71 (17%)	41 (13%)	11 (17%)	
Operative†	9 (2%)	11 (3%)	4 (6%)	
Cerebral infarction	5 (1%)	4 (1%)	1 (2%)	
Cerebral hemorrhage	4 (1%)	6 (2%)	1 (2%)	
Systemic emboli	2 (0.5%)	4 (1%)	0	
Hemorrhage	6(1%)	6 (2%)	0	
Unknown	0	1 (0.2%)	0	
Reoperation	68 (16%)	54 (17%)	17 (26%)	

Table 2. Postoperative Events

*38% arrhythmic, 17% ischemic, 43% heart failure, 2% endocarditis. †Within 30 days of operation. Data presented are number (%) of patients.

Heras M, et al. JACC, 1995

High Risk of Thromboemboli Early After Bioprosthetic Cardiac Valve Replacement

Is early anticoagulation with warfarin necessary after bioprosthetic aortic valve replacement?

T. M. Sundt, MD, K. J. Zehr, MD, J. A. Dearani, MD, R. C. Daly, MD, C. J. Mullany, MBMS, C. G. A. McGregor, MD, F. J. Puga, MD, T. A. Orszulak, MD, and H. V. Schaff, MD

Objectives: Freedom from anticoagulation is the principal advantage of bioprosthesis; however, the American Heart Association/American College of Cardiology and the American College of Chest Physicians guidelines recommend early anticoagulation with heparin, followed by warfarin for 3 months after bioprosthetic aortic valve replacement. We examined <u>neurologic events within 90 days of bioprosthetic</u> aortic valve replacement at our institution.

Methods: Between 1993 and 2000, 1151 patients underwent bioprosthetic aortic valve replacement with (641) or without (510) associated coronary artery bypass. By surgeon preference, 624 had early postoperative anticoagulation (AC+) and 527 did not (AC-). In the AC- group, 410 patients (78%) received antiplatelet therapy. Groups were similar with respect to gender (female, 36% AC+ vs 40% AC-, P = .21), hypertension (64% AC+ vs 61%, P = .27), and prior stroke (7.6% AC+ vs 8.5% AC-, P = .54). The AC+ group was slightly younger than the AC- group (median, 76 years vs 78 years, P = .006).

Results: Operative mortality was 4.1% with 43 (3.7%) cerebrovascular events within 90 days. Excluding 18 deficits apparent upon emergence from anesthesia, we found that postoperative cerebrovascular accident occurred in 2.4% of AC+ and 1.9% AC- patients. By multivariable analysis, the only predictor of operative mortality was hypertension (P < .0001). Postoperative cerebrovascular accident was unrelated to warfarin use (P = .32). The incidence of mediastinal bleeding requiring reexploration was similar (5.0% vs 7.4%), as were other bleeding complications in the first 90 days (1.1% vs 0.8%). No variables were predictive of bleeding by multivariate analysis.

Conclusions: Although these data do not address the role of antiplatelet agents, early anticoagulation with warfarin after bioprosthetic aortic valve replacement did not appear to protect against neurologic events.

TABLE 4. Primary end points of stroke and bleeding			
	All patients (n = 1151)	Anticoag + (n = 624)	Anticoag — (n = 527)
CVA			
Intraop	18	9	9
<30 days	19	11	8
30-90 days	6	5	1
In-hospital reexploration	74	32	42
Out-of-hospital bleeding event	11	7	4
Anticoag +, Receiving hepa heparin and warfarin; intraoperative.	arin and warfar CVA, cerebrov	in; <i>Anticoag</i> — vascular acci	, not receiving dent; <i>intraop,</i>

Sundt et al, JTCS, 2005

Is early antithrombotic therapy necessary in patients with bioprosthetic aortic valves in normal sinus rhythm?

FIGURE 2. Cumulative incidence analysis (composite of stroke, TIA, and peripheral thromboemboli). TE, Thromboembolism.

TABLE 4. Mitigation of postoperative thromooembolus in high-risk patient groups				
	AC+(vs AC-)	P value	ASA+(vs ASA-)	P value
Age	0.99 (0.99-1.00)	.14	1.005 (0.998-1.013)	.18
Female gender	0.75 (0.58-0.97)	.03	0.66 (0.46-0.93)	.02
Height (cm)	1.002 (0.99-1.006)	.22	0.99 (0.996-1.002)	.62
Smoking history	0.79 (0.61-1.03)	.08	1.27 (0.92-1.77)	.15
NYHA IIVIV	0.73 (0.55-0.98)	.04	0.34 (0.10-1.07)	.06
19-mm BAV prosthesis	0.65 (0.45-0.93)	.02	0.36 (0.16-0.81)	.01

IABLE 4. Mitigation of postoperative thromboembolus in high-	 risk patien 	groups
--	---------------------------------	--------

Conclusion: Early anticoagulation after isolated bioprosthetic aortic valve replacement in patients in normal sinus rhythm does not seem to reduce the risk of thromboembolism except in high-risk groups. Current recommendations should be revisited, because the only patients who may benefit from anticoagulation are female, those who are highly symptomatic, and those with a small aortic prosthesis. (J Thorac Cardiovasc Surg 2010;139:1137-45)

ElBardissi et al, JTCS, 2010

Antiplatelet therapy in patients receiving aortic bioprostheses: A report of clinical and instrumental safety

1.0

Objective: The main advantage of bioprostheses, avoidance of anticoagulant therapy, is compromised during the early postoperative period; in fact, warfarin is often administered during the first 3 postoperative months.

Methods: We analyzed 250 patients undergoing tissue aortic valve replacement between January 2002 and December 2005. The patients received either aspirin

(group 1) or oral anticoagulation (group 2) during the first 3 mo of these patients, we investigated the possible presence of clin embolization by means of transcranial Doppler for microembol

Conclusions: Aspirin therapy appears to be the appropriate response to both cardiac surgeons' and patients' needs in the early postoperative course after aortic valve replacement with tissue valves, demonstrating adequate antithromboembolic efficacy with no added risk for bleeding as well as ease of administration.

di Marco et al, JTCS, 2007

RANDOMISED COMPARISON OF TWO INTENSITIES OF ORAL ANTICOAGULANT THERAPY AFTER TISSUE HEART VALVE REPLACEMENT

After tissue heart valve replacement 108 Summary patients were randomised to standard anticoagulant control with rabbit brain thromboplastin (Dade C reagent, therapeutic range 18-24 s; international normalised ratio 2.5-40) and 102 to a less intensive regimen controlled with human brain thromboplastin (Manchester Comparative Reagent, therapeutic range 26-30 s; INR $2 \cdot 0 - 2 \cdot 25$). Treatment was continued for three months, outcome measures being major or minor embolism or haemorrhage. 2 patients in each group had major embolic events and 11 in each group had minor embolic events. The 95% confidence intervals on the differences are -3.4% to 3.2% for major embolism and -9.3% to 8.2% for minor embolism. Haemorrhagic complications were significantly more frequent with standard treatment (15 patients) than with the less intensive regimen (6 patients); and of the 5 patients with major haemorrhagic complications, all were in the standard treatment group, again a significant difference. The less intensive regimen is thus no less effective and safer than standard anticoagulant therapy in patients with tissue heart valve replacement.

_	Standard treatment	Less intensive treatment	Total
No of patients	108	102	210
Age (yr)			
Mean	60.8	63.8	62.3
Range	28-87	3081	
Sex			
Male	57	55	112
Female	51	47	98
Valve			
Aortic	58	59	117
Mitral	40	39	79
Tricuspid	1	0	1
Double	9	4	13
Rhythm			
Sinus	81	78	159
AF	26	22	48
Other	1	2	3

Turpie et al, Lancet, 1988

Risk of Thromboembolism With the Aortic Carpentier-Edwards Bioprosthesis

Older age

Low LVEF

Preop. A-fib

Paced rhythm

Porcine bioprostheses provide an excellent alternative to mechanical prostheses for heart valve replacement in patients unable to comply with systemic anticoagulation and in the elderly. Long-term results of this prosthesis, however, demonstrated identical survival and parallel event-free status, albeit at a lower rate than the mechanical valves. Some discrepancy exists as to the need for and duration of systemic anticoagulation in the bioprosthesis, and some evidence exists to contraindicate anticoagulation due to a higher late mortality rate in patients

with an aortic bioprosthesis. Th having the Carpentier-Edwards tic position as an isolated va viewed. The overall rate of bio was low (0.23%/patient year) and \pm 2.4%; 10 year, 52.9 \pm 4.9%) at

year, 67.9 ± 2.6%; 10 year, 42.4 ± 5.1%) were excellent. No

gender difference was present. A vulnerable period for neurologic events was identified by hazard function whereby the incidence of stroke was high; these were increased in the patient variables of compromised ejection fraction (0.54; $p \le 0.003$), older age (≤ 73 years; $p \le$ 0.02), and preoperative atrial fibrillation or paced rhythm ($p \le 0.01$). This pattern was similar for both transient ischemic events and strokes and rapidly decreased over the first few months of the first year and the first few years of the 12-year follow-up. These patients were not

> gulated. Although, in general, patients rosthesis in the aortic position do not lants, a subset of patients have been ould receive short-term anticoagulation reduce the high early incidence of

> > (Ann Thorac Surg 1995;59:462-8)

Orszulak et al, ATS, 1995

Thromboembolic events after aortic valve replacement in elderly patients with a Carpentier-Edwards Perimount pericardial bioprosthesis

Objectives: Thromboembolic events after aortic valve replacement with a bioprosthesis were the most frequently occurring complications in elderly patients. Whether this was valve related or dependent on other factors needed further exploration.

Methods: Five hundred patients with a median age of 73 years were followed retrospectively after aortic valve replacement with a pericardial prosthesis for occurrence of thromboembolism. Of these, 348 also underwent coronary artery

bypass grafting. Twenty-five factors were investigate using univariate and multivariate analysis.

TABLE 3. Simultaneous relationship between the prognostic factors and the risk of thromboembolism obtained with the Cox proportional hazards analysis

	Risk		Р
Factor	ratio	95% Cl	value
Cerebrovascular accident	4.8	1.8-12.6	.0016
Warfarin sodium	3.0	1.5-6.3	.0028
Hospital thromboembolism	6.1	1.4-26.5	.016
Arterial hypertension	2.7	0.9-7.8	.063

Conclusions: Some emboli seemed triggered by the valve prosthesis. A proper anticoagulant protocol but also a treatment of hypertension is important in the prevention of thromboembolism after aortic valve replacement with a bioprosthesis. We did not find a significant role of atrial fibrillation and carotid artery disease.

Mistiaen et al, JTCS, 2004

Optimal antithrombotic prophylaxis for AV bioprosthesis

Guidelines for antithrombotic therapy in patients with aortic bioprosthetic valves in absence of risk factors

Guidelines	Recommended treatment	Class of evidence	Level of evidence
ACC/AHA [17]	ASA	l	C
	VKA for first 3 months (INR 2–3)	lla	C
ESC [18]	VKA for first 3 months (INR 2-3)	1	С
ACCP [19]	ASA	1	C+
	VKA for first 3 months (INR 2–3)	2	C
CCS [20]	ASA	2	C
	VKA for first 3 months (INR 2-3)	2	C
BSH [21]	ASA	Α	lb

Flat Fibrin Thrombus Deposition on Tissue Valve After Aortic Valve Replacement

Motoaki Ohnaka, MD, Kazunobu Nishimura, MD, PhD, and Shunji Kurokawa, MD

Fig 1. (A) Flat fibrin thrombus deposition on aortic prosthetic valve. (B) After removing each thrombi, the tissue valve looked normal.

Ann Thorac Surg, 2010

Acute Myocardial Infarction due to Coronary Artery Embolism in a Patient with a Tissue Aortic Valve Replacement

> Joel T Levis, MD, PhD, FACEP, FAAEM Geoffrey Schultz, MD Philip C Lee, MD, FACC

Panel A

Panel B

Figure 3. Transesophageal echocardiogram from 50-year-old man demonstrating echodensities associated with the aortic valve leaflets consistent with thrombus (panel A, arrows), compared with the same view following six weeks of warfarin anticoagulation, now demonstrating near resolution of the thrombi (panel B, arrows).

The Permanente J, 2011

New generation tissue valves

- Current developments in tissue valve technology includes improved methods of
 - -Fixation
 - -Calcification mitigation treatments
 - -Stentless designs.

...to a new level of design excellence.

Bioprosthetic Valve Durability

Durability & thromboresistance of bioprosthetic valves is influenced by tissue calcification and mechanical stress

Minimized by Valve Design

Examples: stent material, tissue attachment, fabric, sutures, etc.

Minimized by Anticalcification Treatments

Remember, a <u>design</u> that reduces mechanical stresses may play a key role in a valve's ability to resist calcification & platelet activation: Anticalcification treatments <u>may</u> delay tissue calcification.

Current Anti-Calcification Strategies

- Endcapping (aldehyde free ends)
- Removal of phospholipids (detergents)
- Blocking hydroxyapatite deposition (trivalent actions)
 - Calcium hydrozyapatite is the primary mineral of bone and teeth

Requirements of Anticalcification Technology

Efficacy	Safety
Effective and sustained calcific ation inhibition	 No adverse blood-surface interactions (hemolysis, platelet adhesion)
 Adequate valve perfo rmance (hemodynamics, durability) 	Does not enhance local or systemic inflammation
	Does not cause local / systemic toxicity
	Does not potentiate infection

•Schoen, J. Thorac Carciovasc Surg 1992

Changes in design of new generation tissue valves

Competitive Overview

Feature	Epic	Perimount & Magna	Hancock II	Mosaic and Ultra
Tissue	Porcine w/bovine	Pericardial	Porcine	Porcine
Design	Triple composite	Triple composite	Complete	Complete
Stent material	Acetal co- polymer	Elgiloy (metal)	Homopolymer	Homopolymer
Fixation Method	Low pressure (<4mmHg)	Low pressure (<4mmHg)	Low pressure (<4mmHg)	"Zero" pressure
AC Treatment	Linx	XenoLogiX ThermaFix	Т6	AOA

Summary

- Although calcification remains as the main clinical concern associated with bioprosthetic heart valve replacement, there is evidence that tissue deterioration leads to thrombosis.
- Patients with bioprosthetic valves in the mitral position as well as patients with bioprosthetic valves in the aortic position may be at risk for thromboemboli during the first 3 months after operation.

Summary

- Due to the lack of prospective randomised trial data, the optimal antithrombotic or anticoagulation regimen in patients following bioprosthetic AVR remains unclear.
- Whilst several studies have showed equivalence between antiplatelet therapy and anticoagulation, to date, no studies have demonstrated anticoagulation leads to a reduction or increase in adverse outcomes.

Summary

- There is no study specifically examining the safety of omitting warfarin after AVR, and therefore, guidelines remain weighted in favour of early anticoagulation.
- Although the new generation tissue valves with low blood damage and better hemodynamics have been developed, a precise antithrombotic protocol after bioprosthetic valve replacement remains to be developed.

Thank You !!!