Markers of Vascualr Aging: Arterioscleosis

충북의대 김 동운

A. Lumenal dilation

Age-associated aortic structural remodeling

- Intimal thickening
- Increased VSMC cellularity

Flow-mediated induced dilation in the brachial artery of apparently healthy women

J Am Coll Cardiol 1994;24(2):471-6

Arterial Buffering function

Large arteries store a part of the ejection volume during systole and restore it during diastole.

Make Up of Blood Vessels: Arteries and Arterioles

- Endothelium
- Elastic tissues
 - Rebounds
 - Evens flow
- Smooth muscles
- Fibrous tissue
 - Tough
 - Resists stretch

Definitions

- Compliance $\Delta V / \Delta P$
 - The absolute change in vessel size (volume) for a given change in pressure
- Distensibility $\Delta V/(\Delta P-V_0)$
 - The relative change in vessel size for a given change in pressure
- Stiffness
 - Non-specific term eventually the opposite of compliance and distensibility

Aging reduces aortic compliance

PULSE WAVE VELOCITY

Ejection of blood into ascending aorta generates a pressure wave traveling along the arterial wall at a certain speed.

Blood = incompressible fluid Artery = elastic conduit

Usually measured over 10 heart beats.

PULSE WAVE VELOCITY

- The propagation velocity is determined by:
 - the elastic and geometric properties of the arterial wall
 - the characteristics of the arterial wall structure.

PWV in Different Arteries

• Progressive increase in PWV with increasing distance from the heart in animals (solid line) and humans (dashed line).

Branching to smaller radius vessels increases resistance

Properties of Pressure Wave

Augmentation index (Aix)

Med Clin N Am 93 (2009) 605-619

Age-associated changes in arterial function in humans

- A. Flow-mediated induced dilation in the brachial artery
- B. Age-associated increase in carotidfemoral PWV
- C. Age-associated increase in augmentation index

Markers of arterial aging are risk factors for adverse cardiovascular (CV) outcomes

Hypertension 2005;46;454-46

Progression of the pressure wave along the arterial tree

(1) Blood Pressure Propagation (PWV)

Med Clin N Am 93 (2009) 605-619

Changes of Pressure Pulse Wave with Age

• Pressure wave recorded in different sites in three adult subjects

Hemodynamic patterns of age-related changes in blood pressure

Franklin et al. Circulation 1999:100:354.

Pulse Pressure Predicts Risk Best In Older Hypertensives

Blacher et al. Arch Intern med. 2000:160

Normal Vascular Aging: ACCT trial

- Peripheral and central pulse pressure, AP, AI, and aortic and brachial PWV all increased significantly with age
- Age-related changes in AI and aortic PWV were non-linear
 - AI increasing more in younger individuals
 - Changes in PWV were more prominent in older individuals
- AI: more sensitive marker of risk in younger individuals
- Aortic PWV: more sensitive marker of risk in older individuals

Components of the RAS in the human agrtic wall

•Arterial function is governed by age-associated changes in several signaling cascades, most prominently the reninangiotensin system (RAS).

•The local Ang II concentration **B** is more than 1000-fold that of circulating Ang II.

•Ang II is independently regulated, and plays an important role in vascular pathophysiology with aging.

•Elements of the classic RAS are all up-regulated in the aged arterial wall.

Med Clin N Am 93 (2009) 583-604

- The molecules linked to the Ang II signaling cascade are up-regulated within the aged arterial wall.
- Calpain-1
- MMP-2, MMP-9
- MCP-1/CCR-2

• TGF-β1

Vascular aging and Atherosclelosis

	Vascular Aging	Atherosclelosis
Luminal dilation	+	?
↑ Stiffness	+	?
† Collagen	+	?
↓ Elastin	+	?
Endothelial dysfunction	+	+
Diffuse intimal thickening	+	+
Lipid involvement	_	+
↑ VSMC number	+	+
Macrophages	+	+
T cells	+	+
↑ Matrix	+	+
↑ Local Ang II-ACE	+	+
MMP dysregualtion	+	+
↑ MCP-1/CCR2	+	+
↓ VEGF	+	+
↓ Telomere length	+	+

Modified from Najjar SS et al. *Hypertension*. 2005;46:454-462

Proposed mechanisms linking aortic stiffness with atherosclerotic and nonatherosclerotic cardiovascular disease

