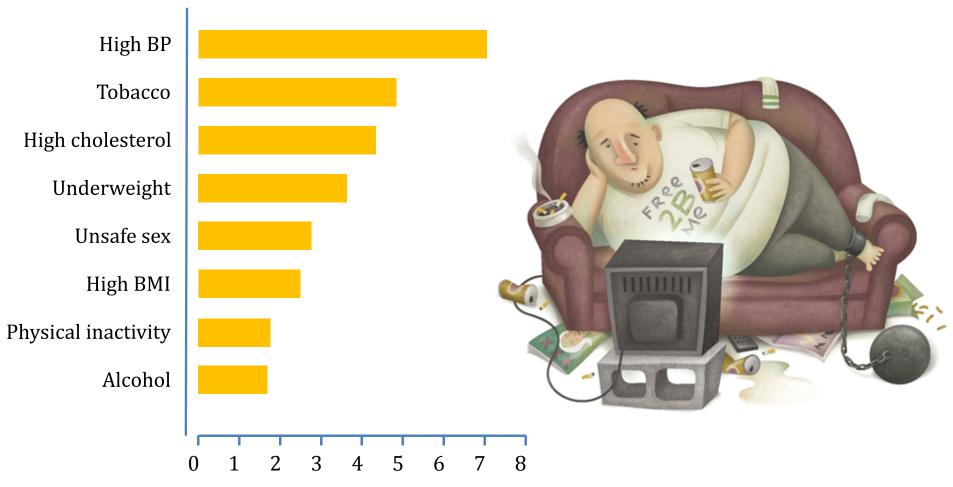
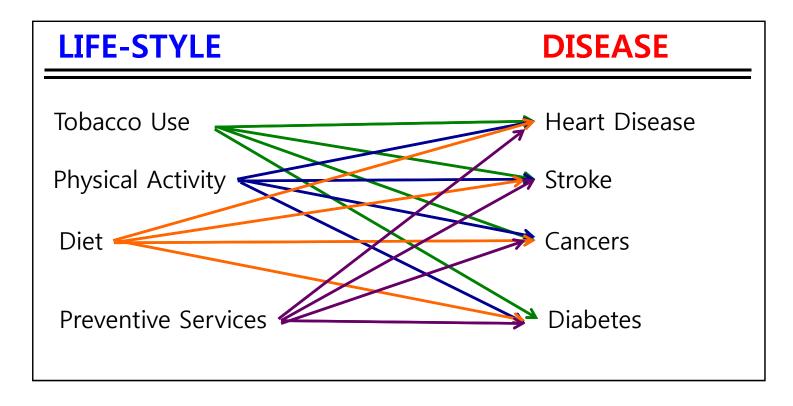
Life-style Medicine for Healthy Artery: Evidence and Pitfall?


김 광 일 분당서울대학교병원 내과

Life-style medicine?

- Lifestyle Medicine is the use of lifestyle interventions in the treatment and management of disease. Such interventions include <u>diet (nutrition), exercise, stress management, smoking</u> cessation
- Lifestyle intervention is an essential component in the treatment of chronic disease that can be as effective as medication, but without the risks and unwanted side-effects.
- Lifestyle Medicine is becoming the preferred modality for not only the prevention but the treatment of most chronic diseases, including: type-2 diabetes, coronary heart disease, hypertension, obesity, insulin resistance syndrome, osteoporosis

Epidemic of Life-style Diseases


Risk Factor for Global Mortality

Attributable mortality in millions (total: 55,861,000)

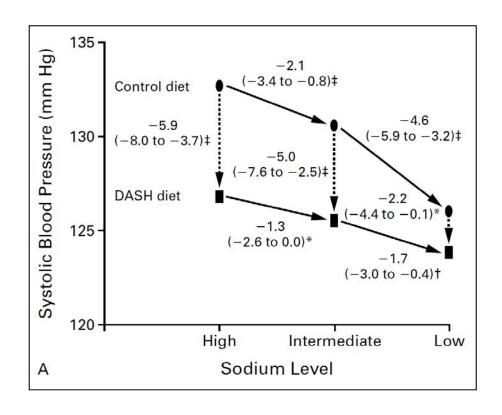
Life-style modification has great potential to reduce the risk

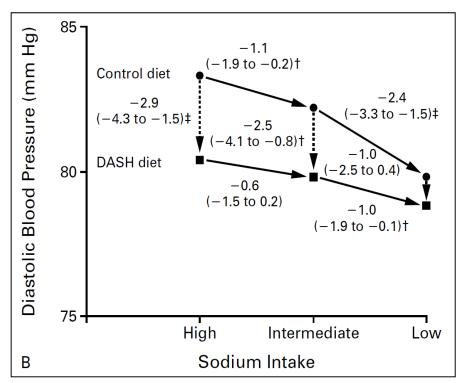
 Virtually ALL of the top 10 leading causes of death are <u>MODERATELY TO STRONGLY</u> influenced by lifestyle patters and behavioral factors

USPSTF Recommendations

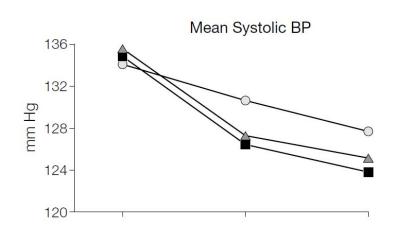
Behavior	Recommendation for Screening and Behavioral Counseling
Tobacco Use	A
Physical Activity	I
Healthy Diet	B (for at-risk patients)
Alcohol Misuse	В

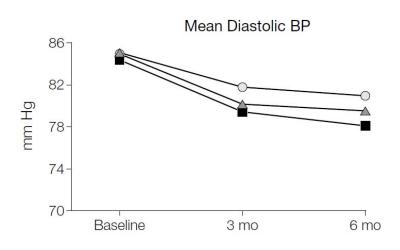
I- still need further studies in this area

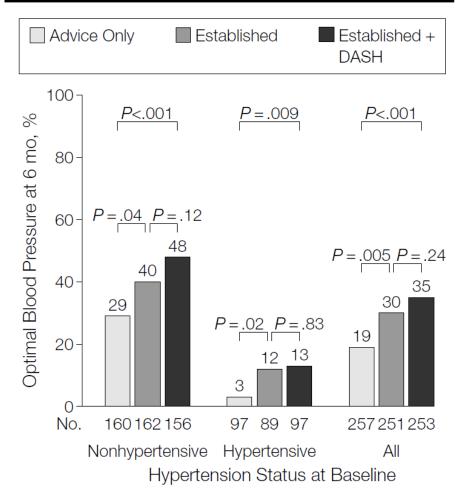



Physician Barriers to Counseling

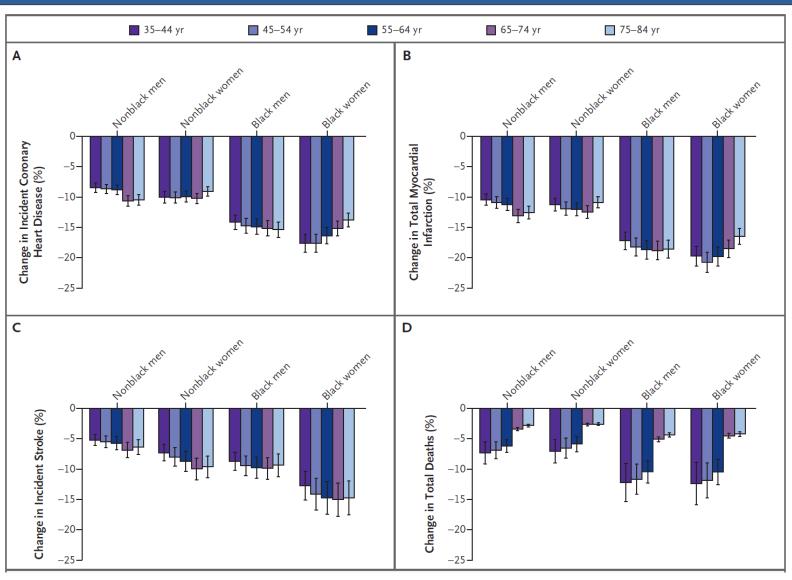
- Lack of time
- Reimbursement issues
- Insufficient confidence
- Insufficient knowledge
- Insufficient skills
- Others?

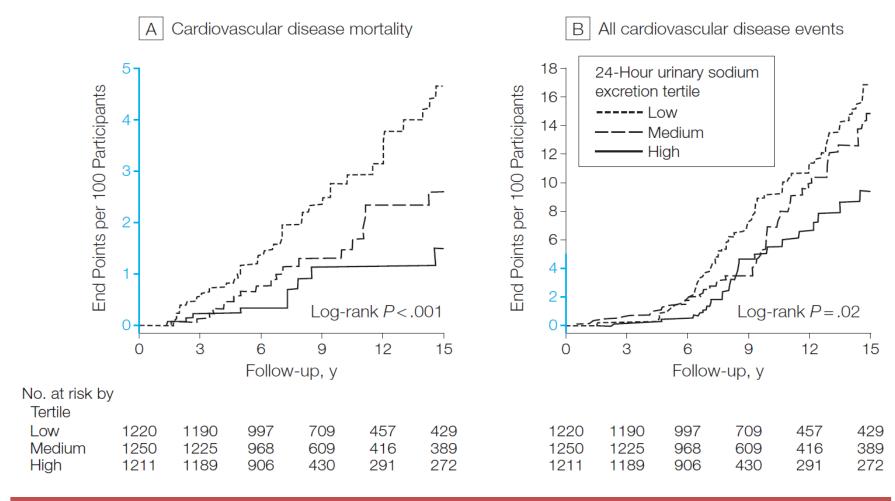

1. Diet


The Effect on Blood Pressure of Reduced Sodium Intake & DASH Diet



Effects of lifestyle modification on blood pressure control



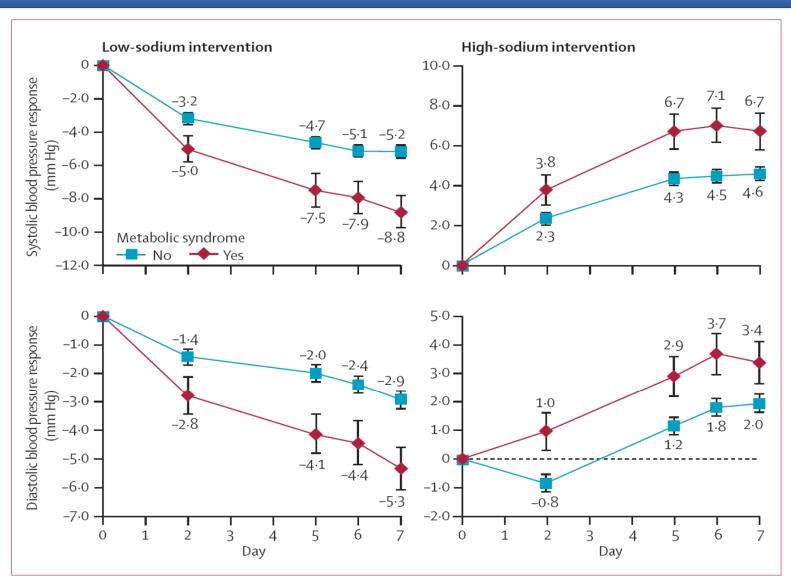

Percentage of Participants With Optimal Blood Pressure at 6 Months

Projected Annual Reductions in CV Events (Dietary Salt: 3 g per day)

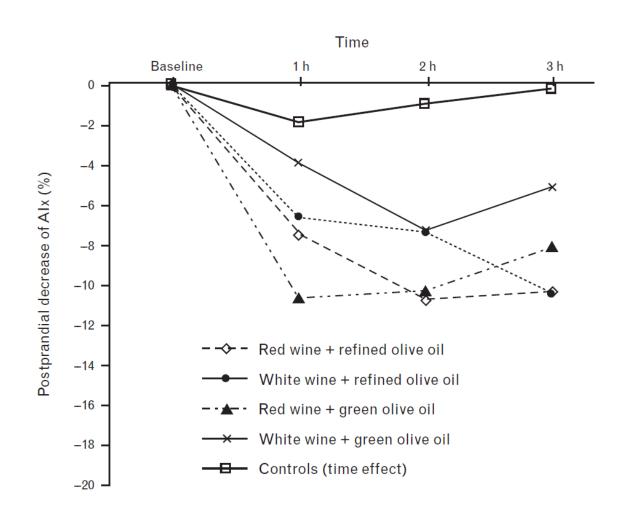
Low sodium intake increases cardiovascular risk ??

Conclusion: Lower sodium excretion was associated with higher CVD mortality

Features of salt-sensitive hypertension


Epidemiologic features

- Black race
- Obesity
- Advanced age
- Diabetes
- Renal dysfunction
- Use of cyclosporine

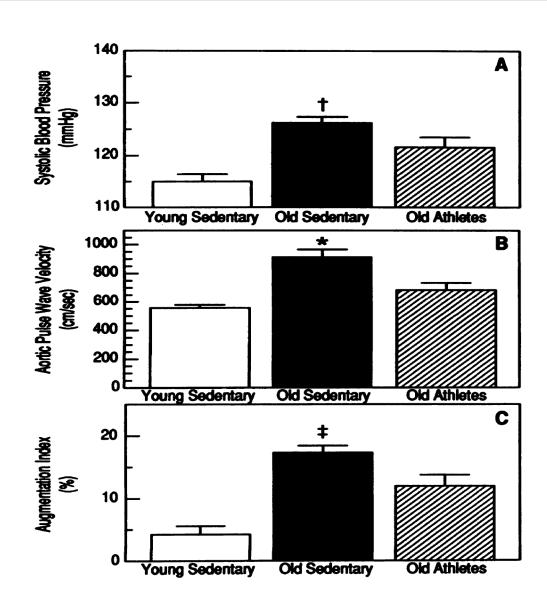

Clinical features

- Microalbuminuria
- Absence of normal nocturnal decrease in blood pressure
- Absence of modulation of renal blood flow with sodium loading

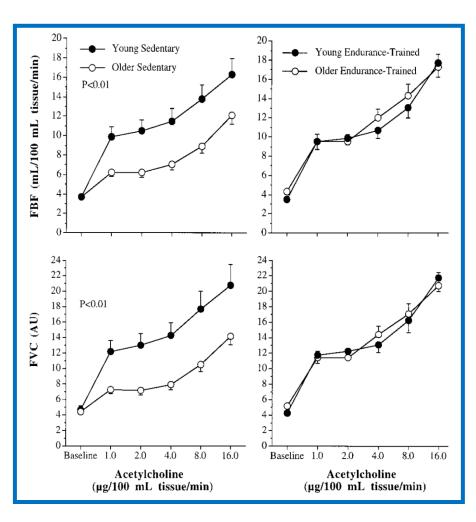
BP responses to low-& high-sodium intervention (Gensalt Result)

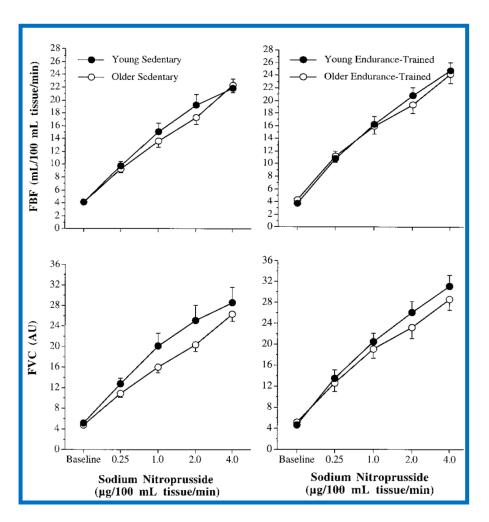
Combined effects of olive oil and wine on pressure wave reflections

Effects of Dietary Factors on blood pressure : A Summary of the Evidence

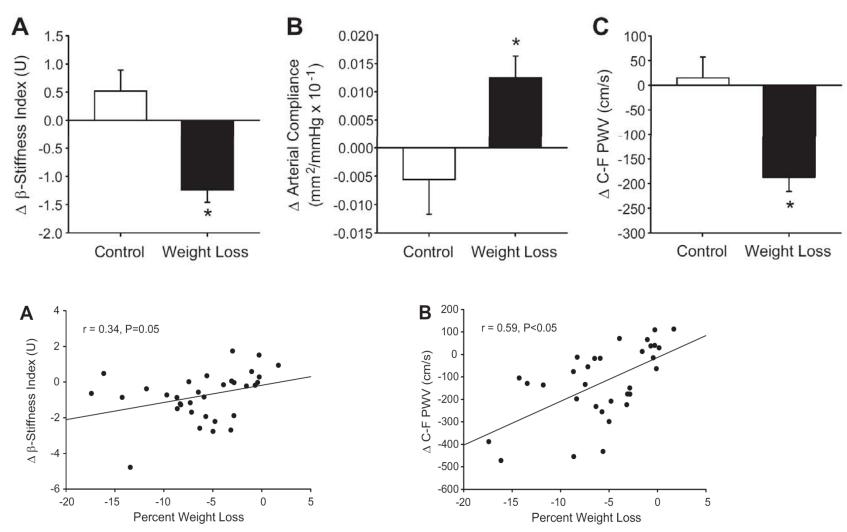

	Hypothesized Effect	Evidence
Weight	Direct	++
Sodium chloride (salt)	Direct	++
Potassium	Inverse	++
Magnesium	Inverse	+/-
Calcium	Inverse	+/-
Alcohol	Direct	++
Fat		
Saturated fat	Direct	+/-
Omega-3 polyunsaturated fat	Inverse	++
Omega-6 polyunsaturated fat	Inverse	+/-
Monounsaturated fat	Inverse	+
Protein		
Total protein	Uncertain	+
Vegetable protein	Inverse	+
Animal protein	Uncertain	+/-
Carbohydrate	Direct	+
Fiber	Inverse	+
Cholesterol	Direct	+/-
Dietary patterns		
Vegetarian diets	Inverse	++
DASH-type dietary patterns	Inverse	++

2. Exercise


Effect of Exercise Training on Cardiac Risk Factors


Risk Factor	Effects						
Diabetes mellitus	Meta-analysis of exercise programs in diabetic patients demonstrates mean decrease in hemoglobin A1C of 0.8%						
Dyslipidemia	Meta-analysis of exercise programs demonstrated a mean increase in high-density lipoprotein of 2.5 mg/dL						
Hypertension	Meta-analysis of exercise programs demonstrated a reduction in blood pressure of 3.4/2.4 mm Hg						
Cigarette smoking	An exercise program resulted in higher levels of abstinence from smoking at 3 and 12 months						
Obesity	Lifestyle modification including exercise resulted in a mean 6.7-kg weight loss at 1 year						
Psychosocial health	A program of cardiac rehabilitation resulted in significant decreases in depression, anxiety, hostility, somatization, and psychosocial stress						

Effects of aerobic capacity on arterial stiffness in healthy adults



Regular Aerobic Exercise Restores Age-Related Declines in Endothelium-Dependent Vasodilation

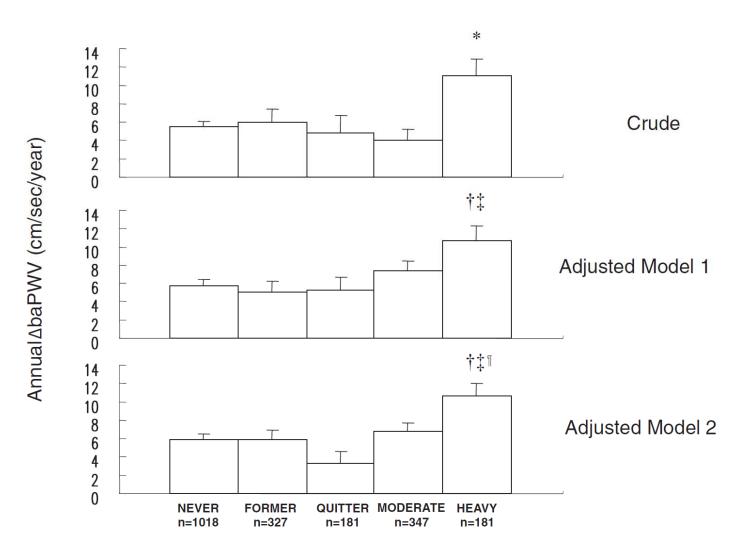
Arterial Destiffening With Weight Loss in Overweight & Obese Older Adults

Dengo et al, Hypertension 2010

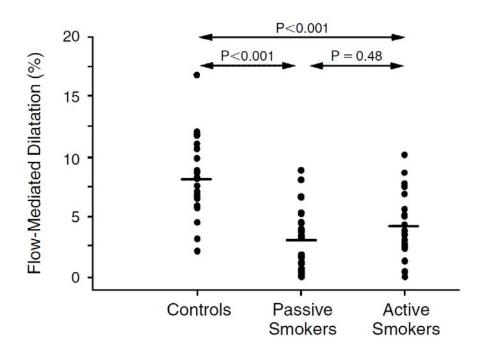
Comparison between Aerobic & Resistance Exercise

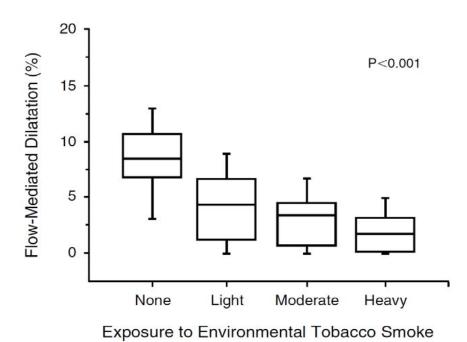
Variable	Aerobic Exercise	Resistance Exercise	
Body composition			
Bone mineral density	\uparrow \uparrow	11	
Percent body fat	\downarrow \downarrow	Ţ	
Lean body mass	0	11	
Muscle strength	0 ↑	111	
Glucose metabolism			
Insulin response to glucose challenge	\downarrow \downarrow	\downarrow \downarrow	
Basal insulin levels	\downarrow	\downarrow	
Insulin sensitivity	\uparrow \uparrow	\uparrow \uparrow	
Plasma lipids and lipoproteins			
HDL cholesterol	↑ O	↑ 0	
LDL cholesterol	↓ 0	↓ 0	
Triglycerides	\downarrow \downarrow	↓ 0	
Cardiovascular dynamics			
Resting heart rate	$\downarrow\downarrow$	0	
Stroke volume, resting and maximal	↑ ↑	0	
Cardiac output, rest	0	0	
Cardiac output, maximal	11	0	
SBP at rest	↓0	0	
DBP at rest	↓0	0	
Vo₂max	$\uparrow\uparrow\uparrow$	↑0	
Submaximal and maximal endurance time	$\uparrow\uparrow\uparrow$	1 1	
Submaximal exercise rate-pressure product	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	
Basal metabolic rate	↑0	1	
Health-related quality of life	↑ 0	↑ 0	

Effects of resistance exercise on arterial stiffness

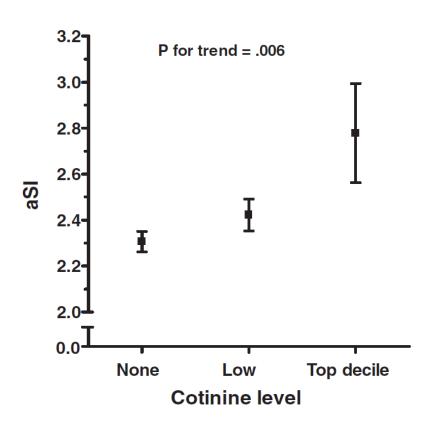

	Resistance Training Control				Mean Difference			Mean Difference		
Study or Subgroup	Mean [%change]	SD [%change]	Total	Mean [%change]	SD [%change]	Total	Weight	IV, Random, 95% CI [%change]	Year	IV, Random, 95% CI [%change]
1.2.1 Young (<40 yrs)										
Miyachi 2004	25.8	18	14	-4.08	24	14	9.4%	29.88 [14.17, 45.59]	2004	
Kawano 2006	31.2	23.5	12	-4.13	24.3	16	8.3%	35.33 [17.48, 53.18]	2006	
Okamoto 2006	10.7	4.45	10	0.3	2.73	9	16.0%	10.40 [7.12, 13.68]	2006	
Okamoto 2009-2	12.8	7.53	10	0.62	7.53	10	14.6%	12.18 [5.58, 18.78]	2009	
Okamoto 2009-1	9.77	5.65	10	0.85	5.35	10	15.4%	8.92 [4.10, 13.74]	2009	
Subtotal (95% CI)			56			59	63.7%	14.29 [8.53, 20.05]		•
Heterogeneity: $Tau^2 = 2$	25.16; Chi ² = 13.62	P, df = 4 (P = 0.0)	009); I ²	= 71%						
Test for overall effect: 2	Z = 4.86 (P < 0.000)	01)								
1.2.2 Middle-aged (≥4	10 yrs)									
Cortez-Cooper 2008	-5.44	12.31	12	0.187	8.528	13	13.6%	-5.63 [-13.99, 2.74]	2008	
Collier 2008	14.7	30.22	15	-8.66	26.84	15	7.2%	23.36 [2.91, 43.81]	2008	
Yoshizawa 2009	-2.4	6.36	12	2.74	4.87	11	15.5%	-5.14 [-9.75, -0.53]	2009	
Subtotal (95% CI)			39			39	36.3%	-0.60 [-10.76, 9.56]		•
Heterogeneity: $Tau^2 = 5$	53.13 ; $Chi^2 = 7.25$,	df = 2 (P = 0.03)	3); $I^2 = 7$	72%						
Test for overall effect: 2	Z = 0.12 (P = 0.91)									
Total (95% CI)			95			98	100.0%	10.69 [3.36, 18.03]		•
Heterogeneity: $Tau^2 = 8$	84.84: Chi ² = 62.78	8. df = 7 (P < 0.0)	00001):	$I^2 = 89\%$						
Test for overall effect: 2	,	,	/1							-50 -25 0 25 50
Test for overall effect: $Z = 2.86 (P = 0.004)$ Test for subgroup differences: Chi ² = 6.24, df = 1 (P = 0.01), I ² = 84.0%										

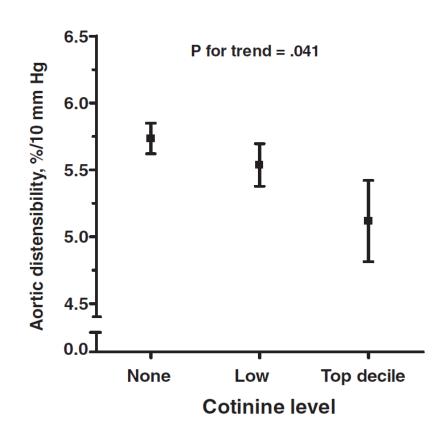
Conclusion

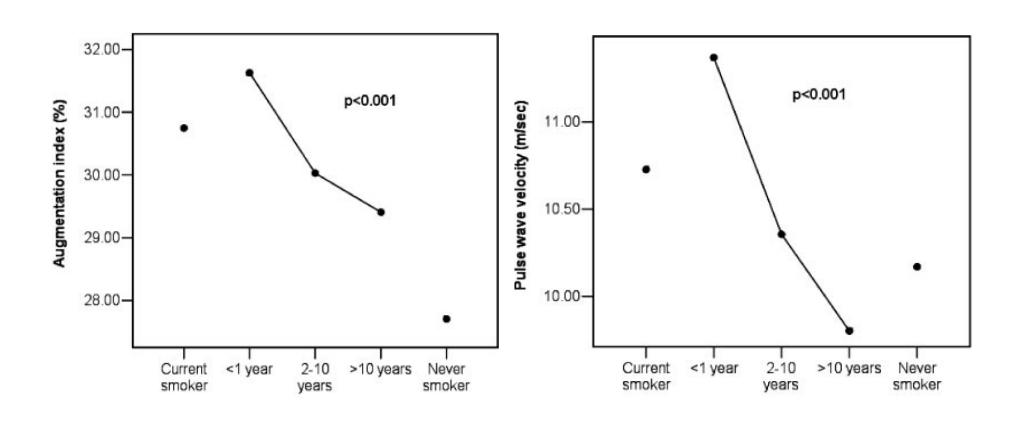

- ◆ This meta-analysis indicates that resistance training is associated with an increase of ~11% in arterial stiffness.
- ◆ Although high-intensity resistance training is associated with increased arterial stiffness in young with low baseline levels of arterial stiffness, moderate-intensity resistance training in middle-aged was not.


3. Smoking

Continuous Smoking & Progression of Arterial Stiffening




Passive Smoking Impaired Endothelium-dependent Arterial Dilatation In Healthy Young Adults



Decreased Aortic Elasticity in Healthy Children Exposed to Tobacco Smoke

Impact of Smoking Cessation on Arterial Stiffness

Lifestyle Medicine Competencies

- Perform comprehensive lifestyle assessments
 - Risk assessments
 - Patient's readiness to change modifiable risk factors
- Establish effective relationships and use national guidelines
- Use team approach
- Make referrals
- Use medical information technology to maximize lifestyle medicine care
- Promote healthy behaviors as foundation of health promotion and medical care
- Physician should personally practice a healthy lifestyle

