
Jong-Min Song

Asan Medical Center University of Ulsan College of Medicine

Heart Failure

OSingle ventricle or systemic RV

- incidence of heart failure 10 to 22%
- the probability of heart failure likely increasing over time.

Heart Failure

OAfter a Mustard/Senning palliation

 One-third to one-half of patients have demonstrated reduced systemic RV function at 15 to 18 years follow up.

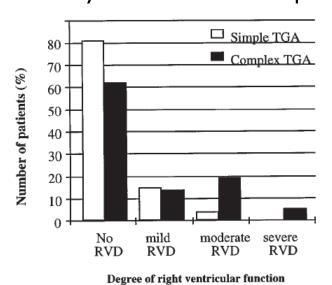
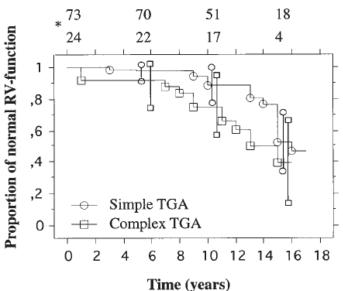



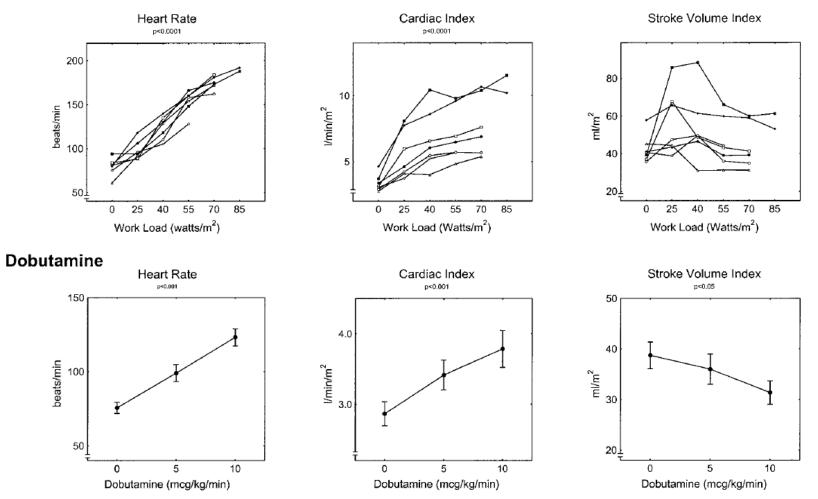
Fig 4. Right ventricular function at last follow-up, with a mean follow-up time of 12.8 years: echocardiographic assessment.

Fig 5. Probability of normal right ventricular function after the Senning operation. *Number of patients at risk. *Vertical lines* represent 95% CI at 5-, 10-, and 15-year follow-up. (Kaplan-Meier cumulative survival plot; P = .03, log-rank test.)

Kirjavainen M, JTCS. 1999; 117: 488-95

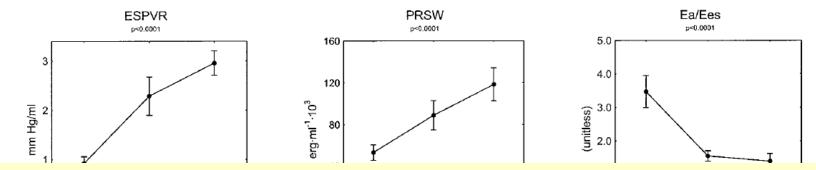
Heart Failure – Mechanism-

OAfter Mustard operation

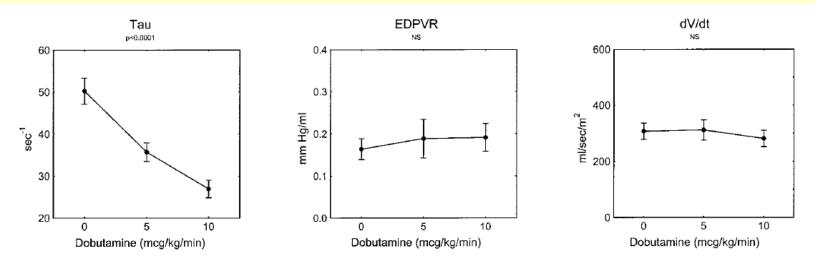

- Impaired increase in cardiac index and stroke volume in response to stress (exercise or dobutamine)
- Inability to augment ventricular filling with tachycardia

Heart Failure – Mechanism-

Exercise



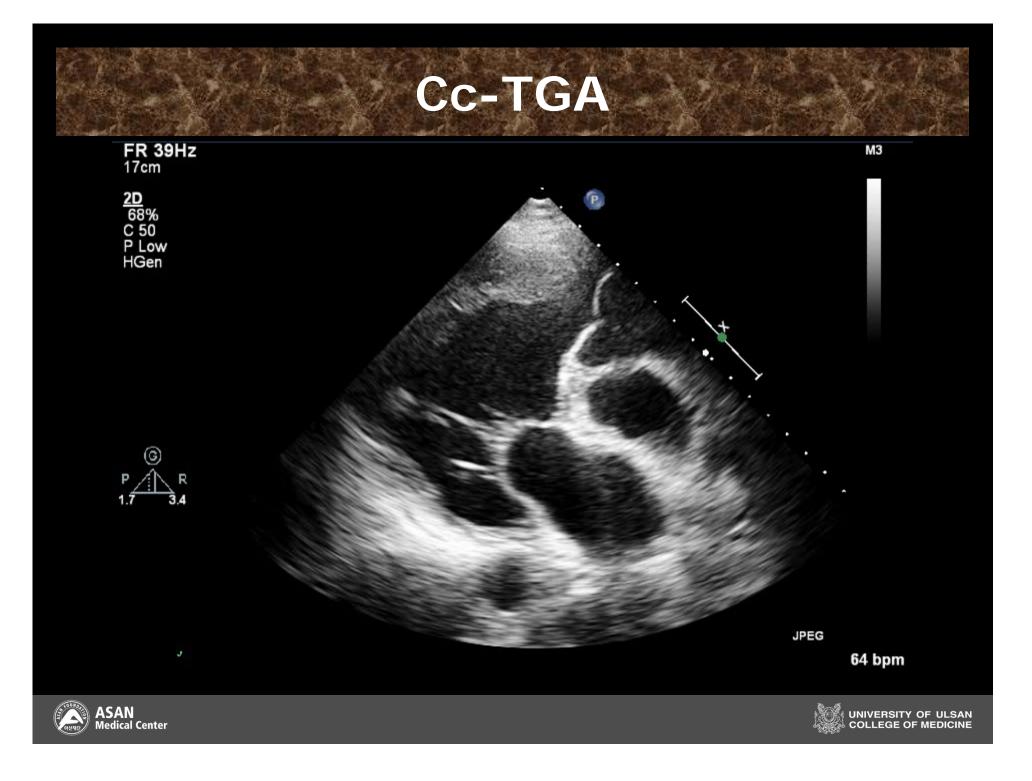
Derrick GP, Circulation 2000; 102: III154-9

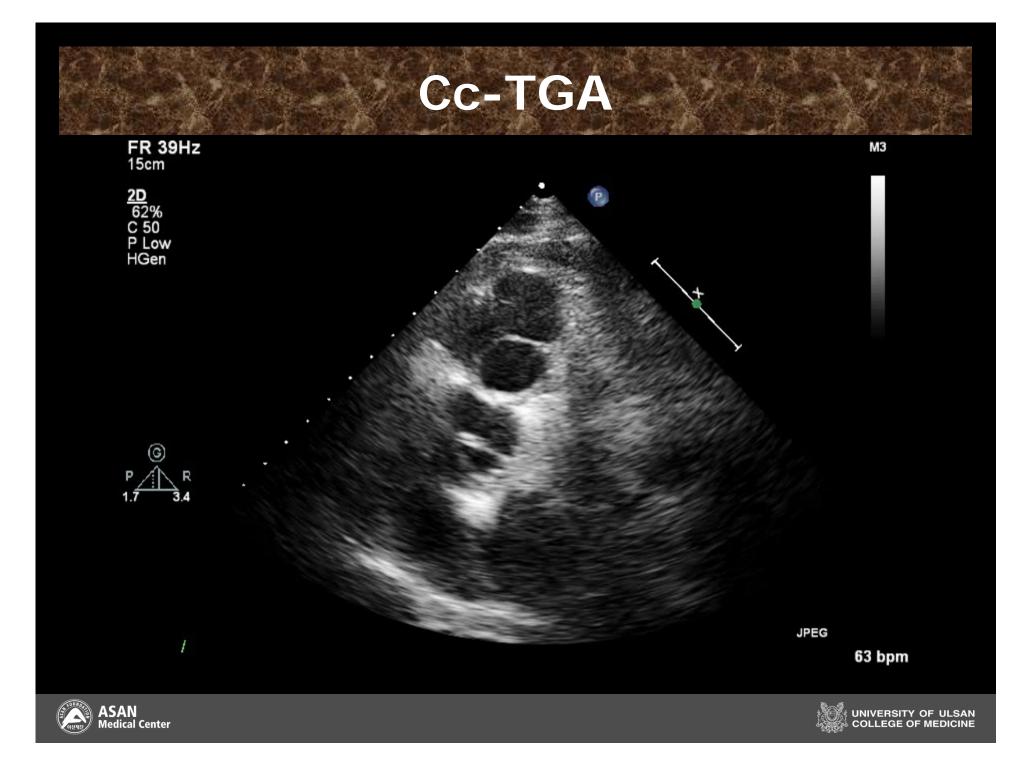


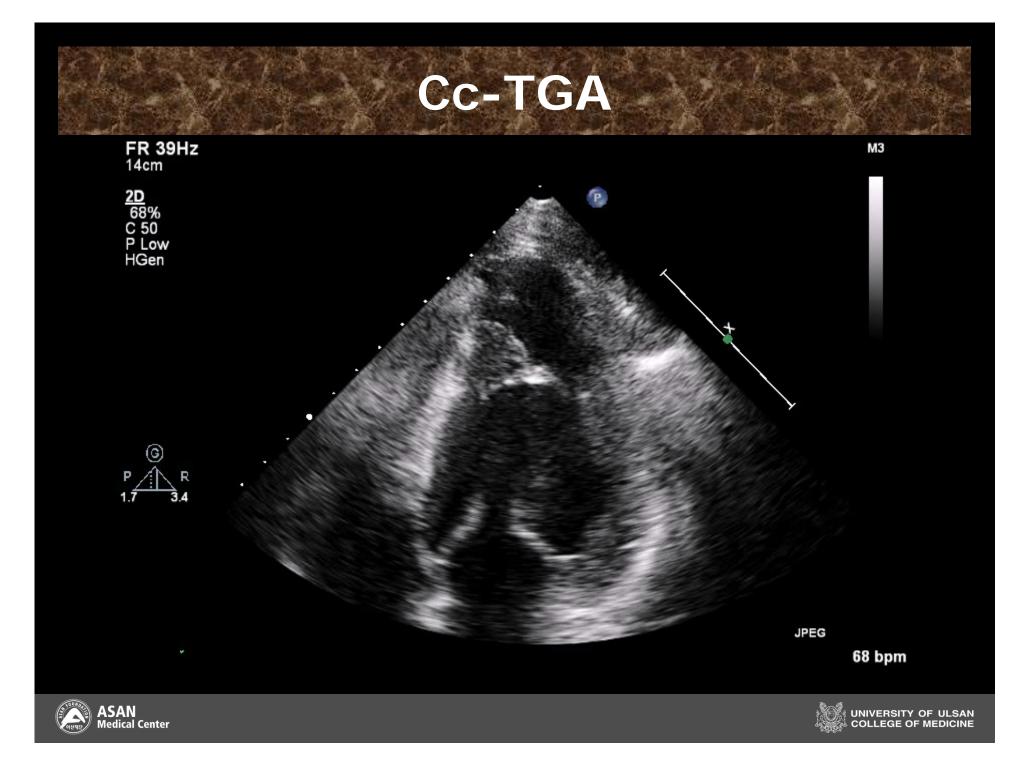
Heart Failure – Mechanism-

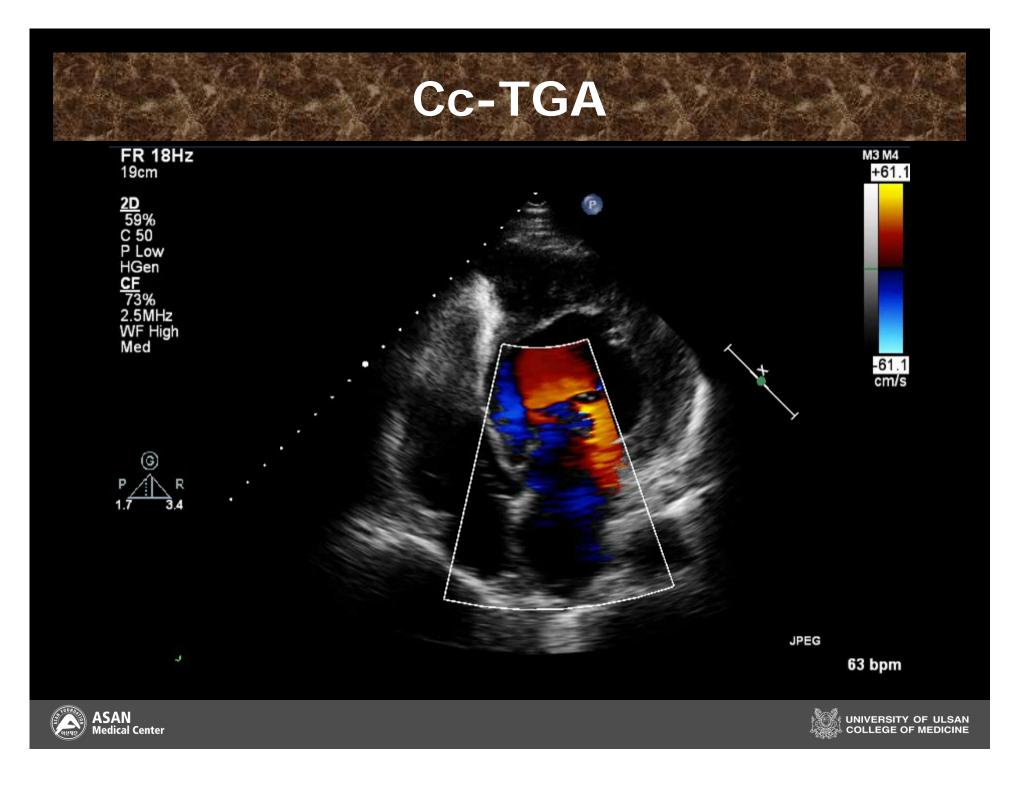
Failure to augment **right ventricular filling rates** during tachycardia, presumably as a result of **impaired AV transport**, consequent to the abnormal intra-atrial pathways

Derrick GP, Circulation 2000; 102: III154-9






Prognosis



Systemic RV Dysfunction

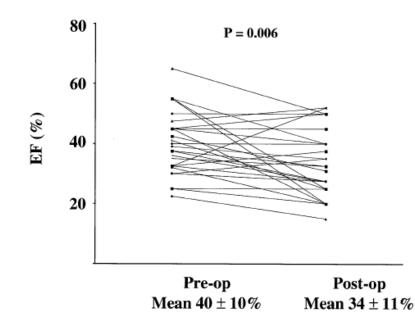
OAdults with cc-TGA

• Average systemic EF of 41%.

Table 2. Baseline Hemodynamics of Subjects Requiring Subsequent Surgical Intervention	n Versus
Medically Treated Subjects $(n = 44)$	

	Subsequent Surgery (30)	No Surgery (14)	p Value
Age, median (range), yr	44 (20-75)	43 (20-79)	0.71
SV EF, mean ± SD (range), %	40 ± 10 (23–65)	43 ± 8 (25–58)	0.16
SAVV regurgitation $\geq 3/4$, no., %	24 (80)	2 (14)	0.0001
CT ratio, mean \pm SD, %	0.57 ± 0.10	0.47 ± 0.07	0.005
Ability index ≥2, no., %	25 (83)	8 (57)	0.13
Functional capacity, mean ± SD, %*	74 ± 27	87 ± 24	0.37
Unable to do EST, no., %†	13 (43)	0 (0)	0.01

*Performance on cardiopulmonary testing, expressed as percent of expected when compared with predicted value for gender, age and body size; †Patient too ill to undergo exercise stress testing (EST) at presentation.


CT ratio = cardiothoracic ratio measured on chest radiograph; SAVV = systemic atrioventricular valve; SV EF = ejection fraction of the systemic ventricle.

Beauchesne LM, JACC 2002; 40: 285-90

Systemic RV Dysfunction

Table 4. Variables Predicting Need for Eventual Orthotopic

 Heart Transplantation in the Surgical Group*

Variable	p Value
Age at surgery	0.26
Functional capacity†	0.77
Ability index ≥ 2	0.21
CT ratio	0.31
Preoperative SV EF	0.001

*After initial surgical repair, four patients eventually required orthotopic transplantation—proportional hazards regression; †Performance on exercise stress testing at initial visit, expressed as percent of expected when compared with predicted value for gender, age and body size.

CT ratio = cardiothoracic ratio measured on chest radiograph; SV EF = ejection fraction of the systemic ventricle.

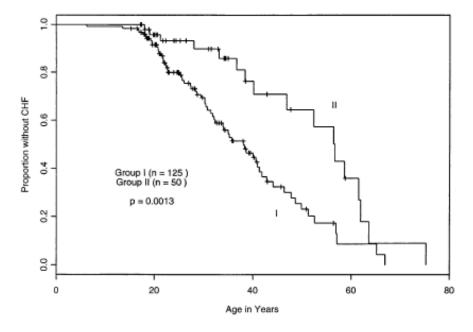
Beauchesne LM, JACC 2002; 40: 285-90

Systemic RV Dysfunction

Occ-TGA associated with PS or VSD

- 70% have systolic dysfunction
- 30 to 50% have symptomatic heart failure

	Group I (Associated Lesions) (n = 132)	Group II (No Associated Lesions) (n = 50)	p Value
Age (yr, mean ± SD)	32 ± 12	34 ± 15	NS
Gender	37% female	52% female	NS
CHF	51%	34%	0.04
RV Dysfunction:			
Any	70%	55%	NS
Moderate or severe	39%	32%	NS
TR:			
Any	82%	85%	NS
Moderate or severe	57%	40%	NS
Pacemaker	45%	27%	0.04
Arrhythmia	47%	29%	0.04
Open heart surgery (excludes transplant)	70%	15%	0.001
LV Dysfunction	25%	7%	0.014
AR	36%	25%	NS


Table 4. Demographic and Clinical Variables by Patient Group

Graham TP Jr, JACC 2000; 36: 255-61.

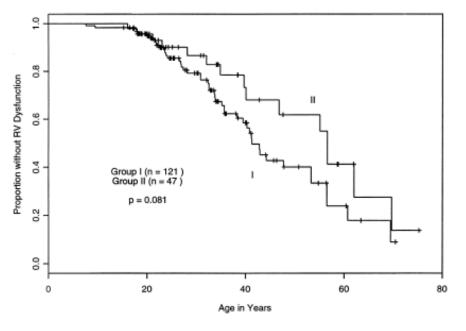
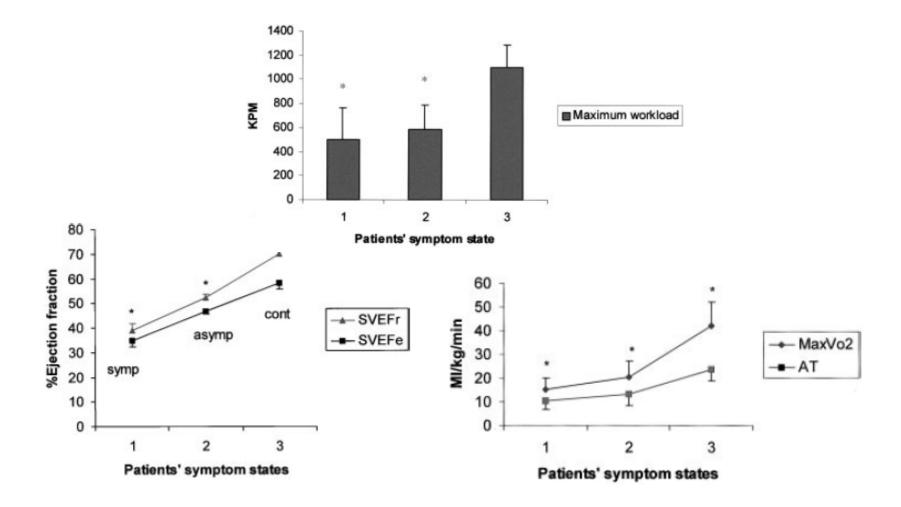


Figure 1. Probability of freedom from CHF for group I (associated lesions) and group II (no significant associated lesions) as a function of increasing age (N = 175 instead of 182 because it was unclear in 7 patients whether they had clinical CHF).


Figure 2. Probability of freedom from moderate or severe RV dysfunction as a function of increasing age. (N = 168 because data were unavailable to make this determination in 14 patients.)

Graham TP Jr, JACC 2000; 36: 255-61.

Single or Systemic Right Ventricles

Circulation. 2002; 105: 1189-1194

Single or Systemic Right Ventricles

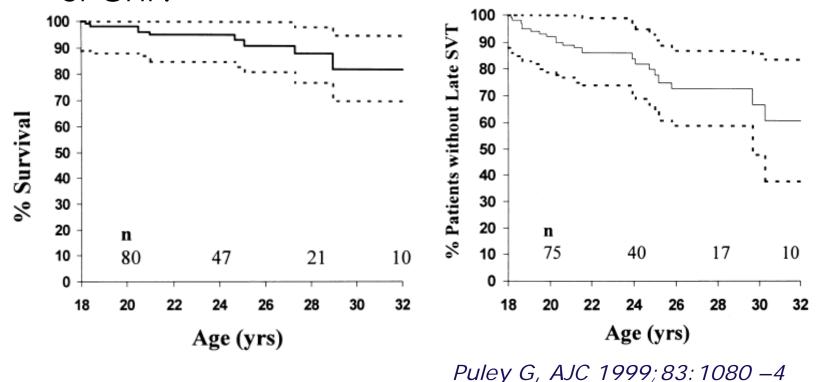
OMortality

- 47.1% among symptomatic patients
- 5% among asymptomatic patients at 15.7 years of postoperative follow-up.

OBest predictors for mortality

- New York Heart Association class
- Systemic ejection fraction
- Age at operation

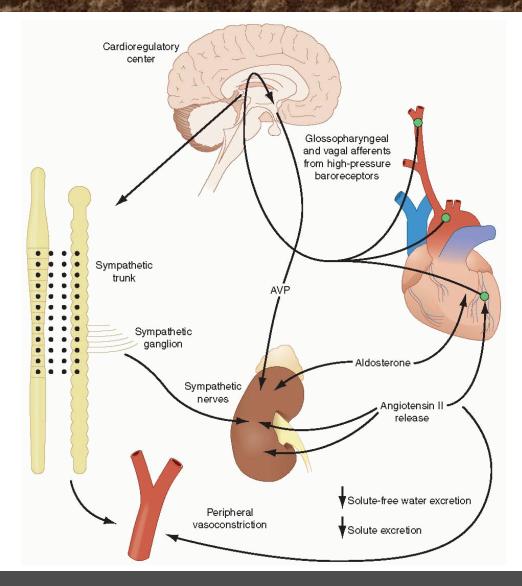
Circulation. 2002; 105: 1189-1194



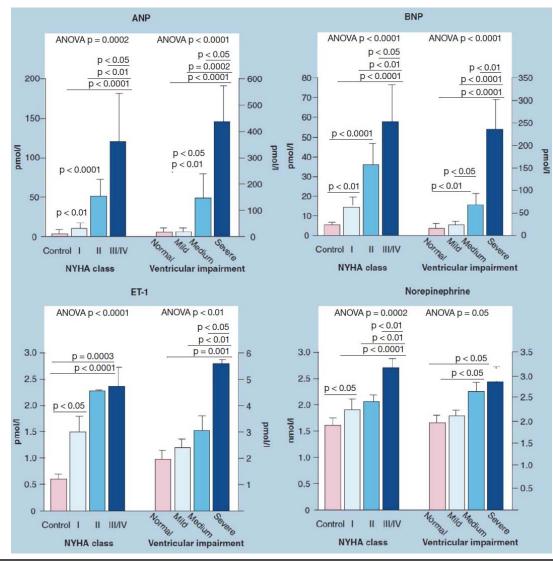
Systemic Right Ventricle

OAdults after Mustard procedure

 Pulmonary hypertension and systemic ventricular dysfunction were independent risk factors for death or CHF.



Treatment for HF


Neurohumoral Mechanism

Neurohumoral Activation

Bolger AP, Circulation. 2002; 106: 92-9

Diuretics

OMechanism

- Control fluid retention in advanced HF
- Furosemide, torsemide, and bumetanide act at the loop of Henle (loop diuretics)
 - Reversibly inhibit the reabsorption of Na+, K+, and Cl- in the thick ascending limb of Henle's loop
- Thiazides and metolazone
 - Reduce the reabsorption of Na+ and Cl- in the first half of the distal convoluted tubule
- Potassium-sparing diuretics (spironolactone)

> Act at the level of the collecting duct

Diuretics

OPotency and pharmacologic properties

• Loop diuretics

- \geq Increase the fractional excretion of sodium by 20-25%
- Generally required to restore normal volume status in patients with HF

Thiazide diuretics

- > Increase it by only 5-10%
- Loose their effectiveness in patients with moderate or severe renal insufficiency (creatinine >2.5 mg/dL)

Diuretics

OIn CHD

- The balance between adequate volume status and pulmonary perfusion
 - ➢ Fontan palliation
 - Passive, nonpulsatile filling for preload of the systemic chamber
 - > Shunt-dependent patients
 - Driving pressure and volume

CONSENSUS: Cooperative North Scandinavian Enalapril Survival Study - TRIAL DESIGN -

Design

Multicenter, multinational, randomized, double-blind, placebocontrolled

Patients

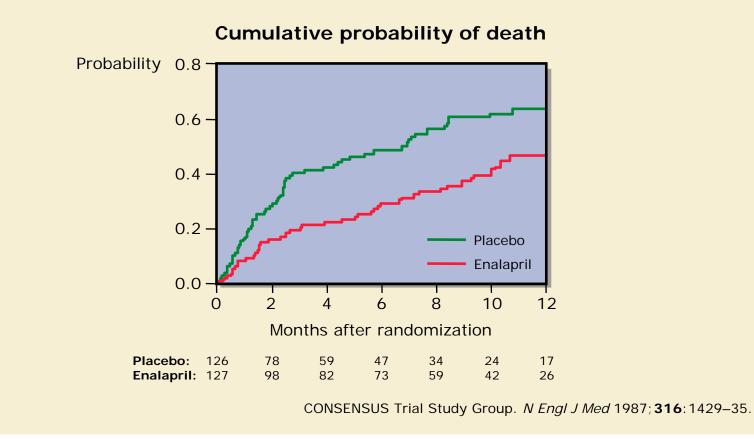
253 patients with severe congestive heart failure (**NYHA class IV**) and heart size >600 (men) or >500 mL/m² (women), and receiving a diuretic and digoxin; patients with MI in previous 2 months excluded

Follow up and primary endpoint

Primary endpoint: all-cause mortality. Mean 188 days follow up

Treatment

Placebo or enalapril initiated at 5 mg twice daily; increased to 10 mg twice daily after 1 week if no side effects, then to maximum 20 mg twice daily according to clinical response


CONSENSUS: Cooperative North Scandinavian Enalapril Survival Study - RESULTS -

- Trial halted early on recommendation of Ethical Review Committee because of evident benefit of enalapril
- Significant reduction in all-cause mortality in enalapril group at 6 months and 1 year, with overall relative risk reduction of 27% (39 vs. 54%, P=0.003)
- Reduction in mortality entirely attributed to reduction in death due to progression of heart failure
- No difference in incidence of sudden cardiac death within the two groups
- NYHA class improved in significantly higher proportion of enalapril group (42 vs. 22%, P<0.001)
- Withdrawal due to hypotension higher in enalapril group, but overall withdrawal rate similar in the two groups

CONSENSUS: Cooperative North Scandinavian Enalapril Survival Study - RESULTS continued -

SOLVD: Studies Of Left Ventricular Dysfunction - TRIAL DESIGN -

Design

Multicenter, multinational, randomized, double-blind, placebocontrolled

Patients

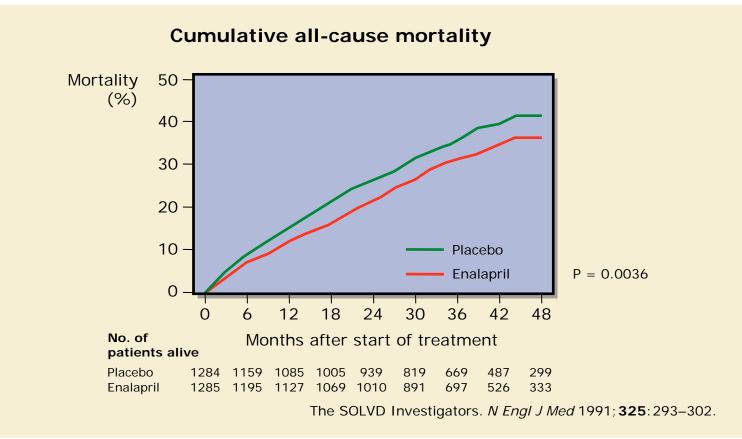
2569 clinically stable patients with chronic CHF and ejection fraction \leq 0.35, approximately 90% in **NYHA classes II and III**; patients with MI in previous month excluded

Follow up and primary endpoint

Average 41.4 months follow up. Primary endpoints mortality and hospitalization for worsening heart failure

Treatment

Patients assigned enalapril received 2.5 or 5 mg twice daily initially, then 2.5–20 mg per day


SOLVD: Studies Of Left Ventricular Dysfunction - RESULTS -

- All-cause mortality and death or hospitalization due to heart failure significantly reduced in enalapril group compared with placebo
- Significant reduction in several categories of death due to cardiovascular causes, majority attributable to reduction in progressive heart failure
- Benefit in terms of death or hospitalization due to heart failure significantly smaller for highest tertile baseline ejection fraction
- No significant difference in MI in placebo and enalapril groups
- Most common side effects hypotension and increased serum creatinine

SOLVD: Studies Of Left Ventricular Dysfunction - RESULTS continued -

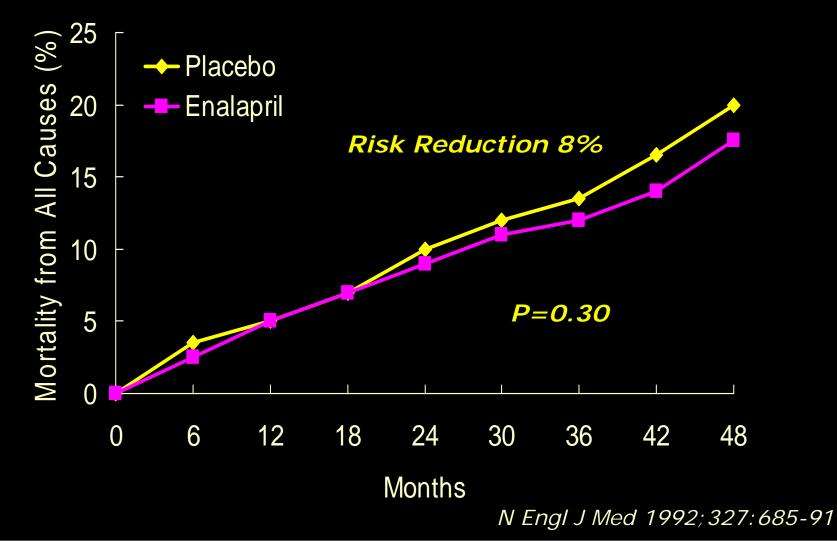
SOLVD: Studies Of Left Ventricular Dysfunction - RESULTS continued -

Death and hospitalization for CHF				
	Placebo n=1284 (%)	Enalapril n=1285 (%)	% Risk reduction (95% CI)	One-sided P
Death due to any cause	39.7	35.2	16 (5–26)	<0.0036
Death or hospitalization for CHF	57.3	47.7	26 (18–34)	< 0.0001
Cardiovascular death ^a	35.9	31.1	18 (6–28)	< 0.002
Cardiac death	34.3	29.3	19 (7–29)	<0.0015
Arrhythmia without worsening CHF	8.8	8.2	10 (-17–31)	-
Heart failure or arrhythmia with CHF	19.5	16.3	22 (6–35)	<0.0045

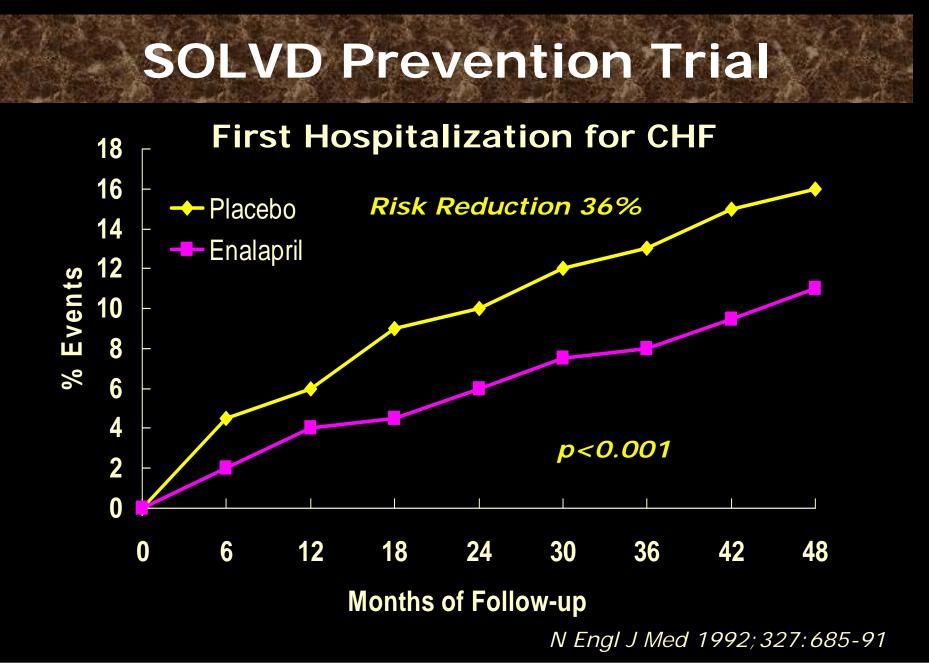
^a Cardiac causes (including MI), stroke and other vascular causes

The SOLVD Investigators. N Engl J Med 1991; 325:293-302.

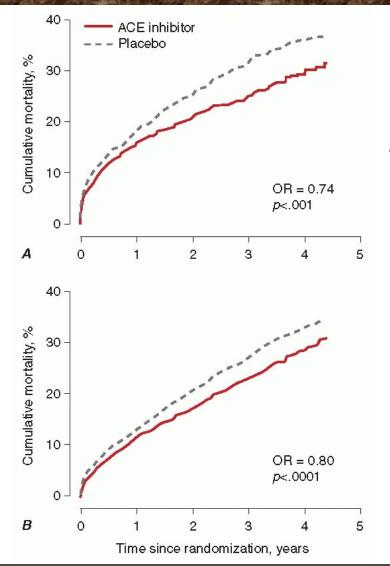
SOLVD: Studies Of Left Ventricular Dysfunction - RESULTS continued -


		Placebo n=1284		RR (%)	
	Ejection fraction (%) 6–22	50	41	24	
Death	23–29	39	33	24	
	30–35 Overall	28 40	31 35	-7 16	
	ovorall	10			50 0 50
	Ejection fraction (%)				
	6 00	10	F 0	25	
Death or	6–22	69	52	35	
Death or bospitalization	0–22 23–29	69 56	52 47	35 30	-
Death or hospitalization					+
	23–29	56	47	30	

Effect of enalapril on ejection fraction subgroups (% of patients)



SOLVD Prevention Trial



ACE Inhibitors in HF

Acute myocardial infarction (SAVE, AIRE, and TRACE trials)

HF with depressed EF

Flather, Lancet 2000; 355: 1575

ACE Inhibitors

OAdverse Effects

- Decreases in blood pressure and mild azotemia that may occur during the initiation of therapy
 - Generally well tolerated
- Potassium retention
- Nonproductive cough (10-15%), angioedema (1%), skin rash
 - ➤ Kinin potentiation
 - Angiotensin receptor blockers (ARBs) are the recommended first line of therapy

ACE Inhibitors

After Mustard procedureCardiopulmonary exercise testCardiac MRI

TABLE 1 Cardiop After ACE Inhibit inhibitors)	oulmond or There	ary Study Data apy (minimum	of 6 months o	e and n ACE
Variable	No.	Before ACE	After ACE	p Value
Forced vital capacity1	14	4.2 ± 0.85	4.1 ± 0.91	0.310
Forced vital capacity % predicted	14	80 ± 8	78 ± 9	0.214
Heart Rate (beats/min)	14	75 ± 13	77 ± 15	0.970
Systolic blood pressure (mm Hg)	14	114 ± 11	120 ± 13	0.340
Diastolic blood pressure (mm Hg)	14	68 ± 8	72 ± 12	0.290
Left ventricular ejection fraction (%)	14	58 ± 10	59 ± 12	0.609
Right ventricular ejection fraction (%)	14	47 ± 11	45 ± 11	0.608

TABLE 2 Cardiopulmonary Study Data at Maximal ExerciseBefore and After ACE Inhibitor Therapy (minimum of 6months on ACE inhibitors)

Variable	No.	Before ACE	After ACE	p Value
Exercise time (min)		6.6 ± 1.8		0.58
Heart rate _{max} (beats/min)	14	148 ± 21	144 ± 27	0.340
Systolic blood pressure _{max}	14	178 ± 16	166 ± 28	0.148
(mm Hg)				
Diastolic blood	14	84 ± 14	85 ± 16	0.740
pressure _{max} (mm Hg)				
Maximum oxygen uptake	14	16.7 ± 5.1	18.5 ± 5.4	0.360
(ml · kg ⁻¹ · min ⁻	1			
Ventilation		61.4 ± 18.6	63.9 ± 23.9	0.554
(L • min ^{−1})				
Left ventricular	14	58 ± 10	59 ± 12	0.609
ejection				
fraction _{max} (%)				
Right ventricular	14	47 ± 11	45 ± 11	0.608
ejection				
fraction _{max} (%)				

Hechter SJ, AJC 2001;87:660-3

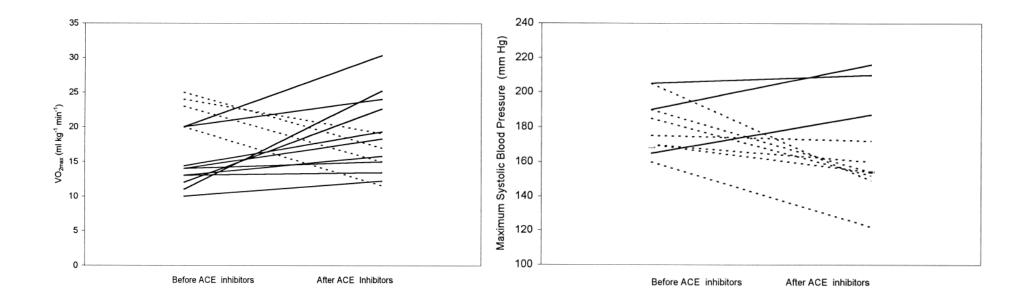


TABLE 1 C

1. 1

Hechter SJ, AJC 2001;87:660-3

Angiotensin Receptor Blockers

OMechanism

- Block the effects of angiotensin II on the angiotensin type 1 receptor
- **OAlternative therapy to ACE inhibitors**
- **OACE inhibitors + ARBs**
 - Benefit in some trial
- OBeta blockers + ARBs
 - Reverse the process of LV remodeling
 - Improve patient symptoms
 - Prevent hospitalization
 - Prolong life

Angiotensin Receptor Blockers

OLosartan

Seven patients ≥13 years of age Surgically palliated TGA Who had never received vasodilator therapy

TABLE 1 Summary of Effects of Losartan

Parameter	Immediately Before Losartan Therapy	After 8 Weeks of Losartan Therapy	p Value
Blood pressure (mm Hg) Systolic Diastolic	117 ± 6	107 ± 13	0.04 NS
Ejection fraction (%)	48 ± 10	54 ± 7	0.04
EROA (mm ²)	12.9 ± 6.4	6.3 ± 6.4	0.02
Regurgitant volume (mL)	22.5 ± 11.1	8.2 ± 11.3	0.01
Right ventricular dp/dt (mm Hg/s)			NS
Right ventricular ejection time (ms)			NS
Acceleration time (ms)	147 ± 28	119 ± 19	0.05
Duration of exercise (min)	11.2 ± 2.9	13.2 ± 3.7	0.02

Values are expressed as mean ± SD.

dp/dt = change in pressure over the change in time (rate of rise of ventricular pressure); EROA = effective regurgitant orifice area of systemic atrioventricular valve.

Lester SJ, AJC 2001;88:1314-6

OMechanism

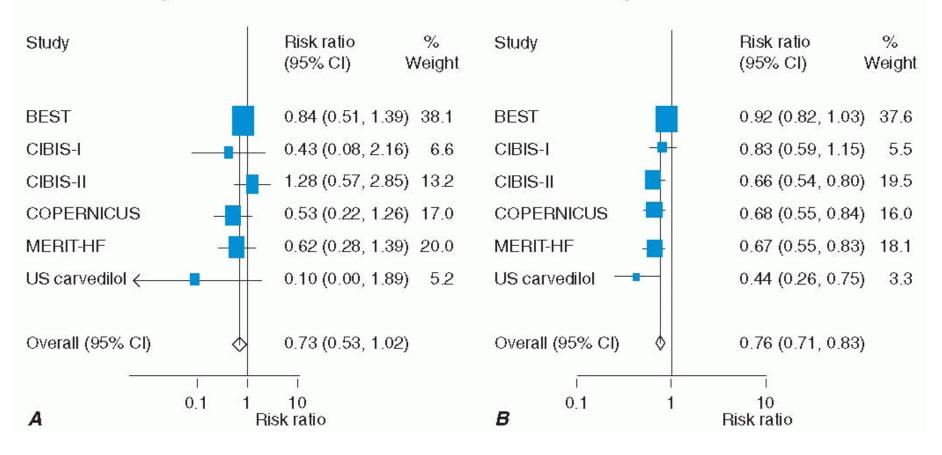
 Interfere with the harmful effects of sustained activation of the adrenergic nervous system

OACE inhibitors + beta blockers

- Reverse the process of LV remodeling
- Improve patient symptoms
- Prevent hospitalization, and prolong life.

ODose

 Should be initiated in low doses followed by gradual increments in the dose (more than 2week intervals)



Beta Blockers in HF

No background ACE-inhibitor/ARB

Background ACE-inhibitor/ARB

Krum, Eur Heart J 2005; 26: 2154

OAdverse effects

- Beta-blocker therapy is well tolerated by the great majority (≥85%) of HF patients
- Bradycardia and/or exacerbate heart block
- Worsening fluid retention or symptomatic hypotension
 - > Generally occur within several days of initiating therapy
 - Generally responsive to adjusting concomitant medications

Table 1

Baseline	charac	teristics

Variable	β-Blocke	r Therapy	p Value	
	Yes (n = 31)	No (n = 29)		
Men	20 (65%)	18 (62%)	NS	
Women	11 (35%)	11 (38%)	NS	
Age (yrs)	29 ± 6	27 ± 6	NS	
Age at surgery (yrs)	1.5 ± 1.4	1.3 ± 1.2	NS	
Other drugs				
Angiotensin-converting enzyme inhibitors	14 (45%)	12 (41%)	NS	
Angiotensin receptor blockers	2 (6%)	1 (3%)	NS	
Aldactone	11 (35%)	2 (7%)	< 0.01	
Digoxin	13 (42%)	15 (52%)	NS	
Diuretic	11 (35%)	4 (14%)	NS	
Pacemaker	24 (77%)	12 (41%)	< 0.01	
Pacing indications				
Sick sinus syndrome	13 (42%)	10 (35%)		
Atrioventricular block	2 (6%)	2 (7%)		
Paroxysmal atrial fibrillation	9 (29%)	0 (0%)		
Pacing modes				
DDD	12 (39%)	10 (35%)		
VVI	3 (10%)	0 (0%)		
AAI	9 (29%)	2 (7%)		

•Retrospective analysis

•d-TGA after atrial switch operation•Systemic RV dysfunction

Data are presented as number (%) and mean \pm SD.

Doughan AR, AJC 2007; 99: 704-6

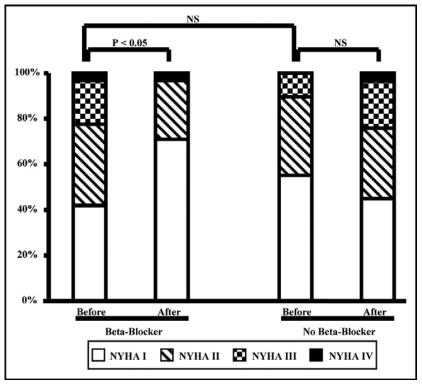


Figure 1. Comparison of NYHA class distribution in patients treated with β blockers and untreated patients at baseline and after a mean follow-up of 4 months.

Table	2		
Right	ventricular	echocardiographic	parameters

Variable	β -Blocker Therapy					
	Y		1	No		
	Before	After	Before	After		
RV ejection fraction (%) [†] RV end-diastolic area (cm ²) [†] Degree of tricuspid regurgitation [‡]	37 ± 12	36 ± 13 39 ± 10 1 (1-3)	40 ± 6	$44\pm5^*$		

* p <0.05 versus before.

[†] Data are presented as mean \pm SD.

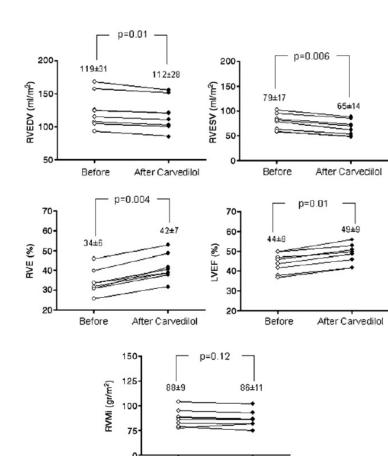
* Data are presented as median (range).

Doughan AR, AJC 2007; 99: 704-6

•Prospective

Cardiovascular magnetic resonance (CMR)Cardiopulmonary exercise testing

Table 1					
Baseline	characteristics	of the	study	cohort	


	Gender	Age, years	Diagnosis	Associated lesions	Surgical procedures	Age at surgery	Tricuspid regurgitation	Baseline NYHA class	Baseline RVEF	Medications	Carvedilol final dosage
Patient 1	Male	18	D-TGA	_	Senning	8 months	Mild	Ι	46	ACE-inhibitor	50 mg/day
Patient 2	Male	28	CTGA	_	_	_	Mild	II	31	ACE-inhibitor	50 mg/day
Patient 3	Male	24	D-TGA	VSD	Senning, VSD closure	7 months	Moderate	Π	31	ACE-inhibitor, loop diuretic	25 mg/day
Patient 4	Male	19	D-TGA	_	Senning	9 months	Mild	II	40	ACE-inhibitor	50 mg/day
Patient 5	Male	25	D-TGA	_	Senning	10 months	Mild	II	34	ACE-inhibitor	50 mg/day
Patient 6	Female	30	D-TGA	_	Senning	11 months	Moderate	II	32	ACE-inhibitor	50 mg/day
Patient 7	Female	31	CTGA	Ebstein	-	-	Severe	III	26	ACE-inhibitor, loop diuretic	12.5 mg/day
Patient 8	Female	29	D-TGA	-	Senning	14 months	Severe	Ш	34	ACE-inhibitor, loop diuretic	25 mg/day

ACE indicates angiotensin-converting enzyme; CTGA, congenitally corrected transposition of the great arteries; D-TGA, transposition of the great arteries; NYHA, New York Heart Association; RVEF, right ventricular ejection fraction; VSD, ventricular septal defect.

Giardini A, IJC 2007;114:241-6

Before

After Carvedilol

Table 2 Carvedilol-induced changes in exercise capacity

	Baseline	Carvedilol	р
Peak VO ₂ , ml O ₂ /Kg/min	26.8 ± 5.3	27.3 ± 5.7	0.58
Peak heart rate, beats/min	165 ± 17	161 ± 18	0.01
Peak SBP, mm Hg	163 ± 21	158 ± 19	0.53
Peak SO ₂ , %	95 ± 3	93±4	0.58
Peak respiratory exchange ratio	1.18 ± 0.10	1.17 ± 0.09	0.86
Exercise duration, min	13.4 ± 2.6	17.3 ± 3.1	0.008
Peak workload, W	131 ± 25	168 ± 29	0.009

VO2 indicates oxygen uptake.

Giardini A, IJC 2007;114:241-6

Aldosterone Antagonists

OMechanism

- Block the effects of aldosterone (spironolactone or eplerenone)
- Beneficial effects independent of the effects on sodium balance
- Recommended for patients with NYHA class IV or class III HF who have a depressed EF

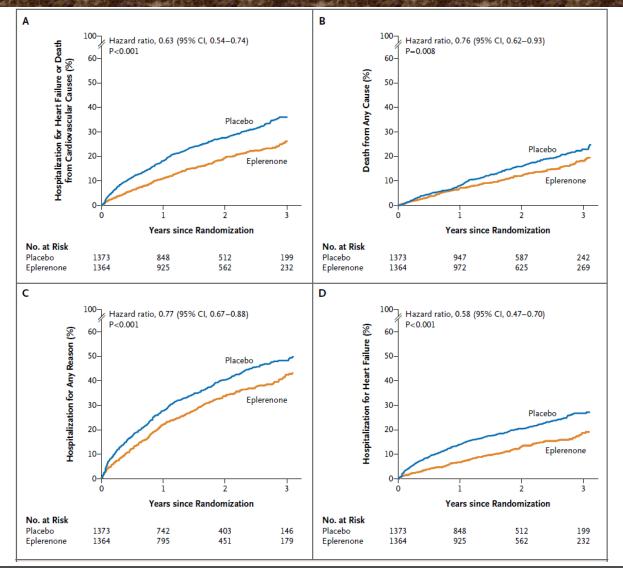
Aldosterone Antagonists

OAdverse Effects

- Life-threatening hyperkalemia
 - > Receiving potassium supplements
 - ➢ Renal insufficiency
- Aldosterone antagonists are not recommended when the serum creatinine is >2.5 mg/dL
- Painful gynecomastia (10-15%) of patients who use spironolactone

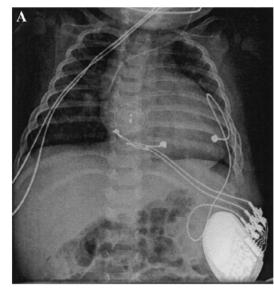
EMPHASIS-HF trial

OEligibility criteria


- Age \geq 55 years
- NYHA functional class II symptoms
- Ejection fraction $\leq 30\%$
 - ≻ if >30 to 35%, a QRS duration >130 msec
- Treatment with an ACEI or ARB
- Treatment with a beta-blocker (unless contraindicated) at the recommended dose or maximal tolerated dose

N Engl J Med. 2011; 364: 11-21

EMPHASIS-HF trial



N Engl J Med. 2011;364:11-21

103 patients <21 years of age or with CHD

EF Improvement (EF units) Type of Disease QRS Shortening (ms) Age (yrs) n Congenital heart disease 73 12.2 (0.5-55.4) $11.9 \pm 12.9\%$ 39.1 ± 31.9 Cardiomyopathy 15.8 (0.3-19.6) 31.9 ± 37.9 16 $12.3 \pm 13.6\%$ Heart block 14 12.5(0.3-24.3) $16.1 \pm 12.9\%$ 36.8 ± 13.0 NS NS NS p Value

CRT = cardiac resynchronization therapy; EF = ejection fraction.

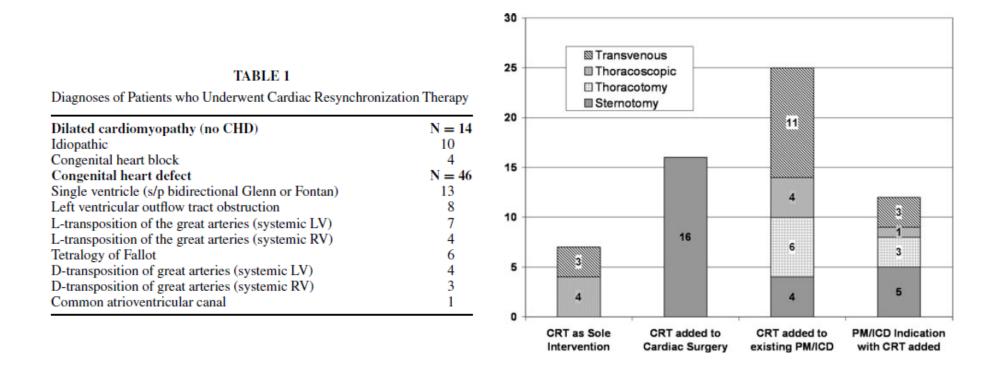
Table 3. Effect of CRT Pacing by Type of Heart Disease

Table 4. Characteristics of CRT Responders Versus Non-Responders

	Responders $(n = 78)$	Non-Responders (n = 11)	p Value
Age (yrs)	11.9 (0.4-55.4)	14.8 (3.1-18.4)	NS
Baseline EF (%)	24.3 ± 11.0	32.0 ± 14.2	0.04
Baseline QRS (ms)	166.5 ± 33.2	172.9 ± 21.3	NS
Change in QRS (ms)	36.8 ± 24.7	33.4 ± 18.3	NS
% with CHD	71%	73%	NS
Baseline NYHA functional class 3/4	38%	31%	NS

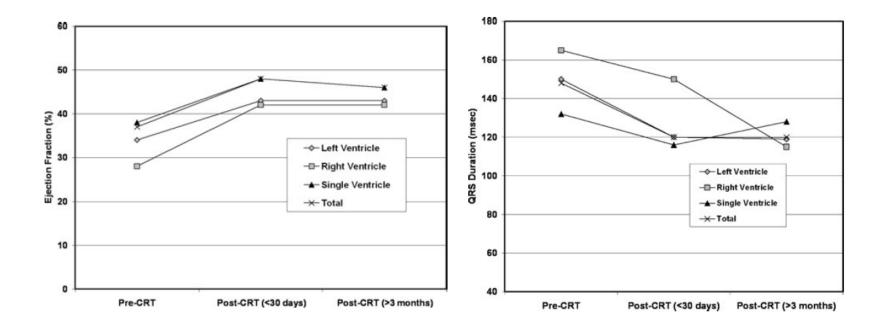
CHD = congenital heart disease; CRT = cardiac resynchronization therapy; EF = ejection fraction; NYHA = New York Heart Association.

Dubin AM, JACC 2005; 46: 277-83

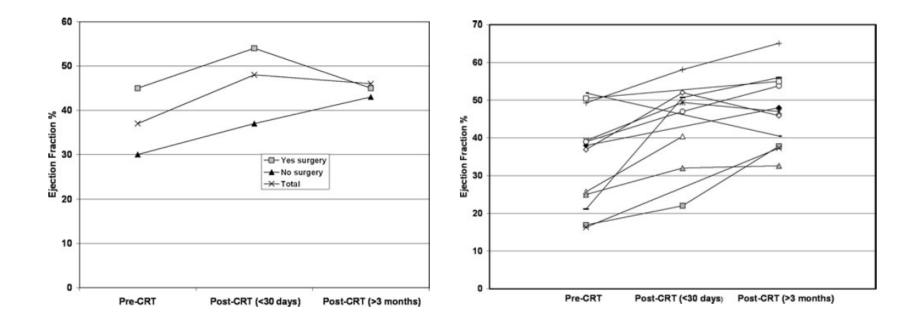


ASAN

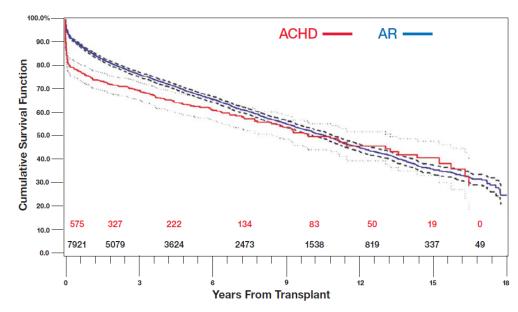
Medical Center



Cecchin F, J Cardiovasc Electrophysiol. 2009; 20: 58-65



Cecchin F, J Cardiovasc Electrophysiol. 2009; 20:58-65



Cecchin F, J Cardiovasc Electrophysiol. 2009; 20:58-65

Heart Transplantation

TABLE 2.	Multivariable	factors	associated	with	posttransplantation
mortality					

Variable	Parameter estimate (± SE)	Hazard ratio	P value
ACHD	0.67 ± 0.15	1.96	<.001
Younger age	0.01 ± 0.002	1.01	.003
Female sex	0.08 ± 0.04	1.10	.03
Longer ischemic time	0.07 ± 0.02	1.07	<.001
No steroid maintenance	0.78 ± 0.09	2.18	<.001
No induction agent	0.19 ± 0.07	1.22	<.001
Status 1	0.09 ± 0.04	1.09	.03
Interaction term between ACHD and steroid maintenance	_	0.51	<.001

SE, Standard error; ACHD, adult congenital heart disease.

Karamlou T, JTCVS 2010: 140: 161-8

Conclusions

OThe cohort of adults with congenital heart disease continues to grow, but the clinical and academic infancy of the field results in limited evidence-based applications in clinical practice.

OExtrapolation from adult studies is necessary for those caring for ACHD patients with heart failure.

> Dhaval R. Parekh, M.D. Baylor College of Medicine, Houston, Texas

