PA,VSD with MAPCAs - Surgical Timing and Techniques -

Woong-Han Kim

Department of Thoracic & Cardiovascular Surgery Seoul National University Children's Hospital

TOF Classification

Native Confluent Pulmonary Arteries

Major Aortopulmonary Collateral Arteries

Connection between MAPCA and true PA

Surgical Strategy for PA with VSD, MAPCA

Central Confluent PA

RV-PA Conduit

Melbourne Shunt

Central end-to-side Aortopulmonary shunt Diminutive central pulmonary arteries

Modified Central Shunt

Pulmonary atresia with ventricular septal defects and major aortopulmonary collateral arteries: Unifocalization brings no long-term benefits Yves d'Udekem, Nelson Alphonso, Martin A. Nørgaard, Andrew D. Cochrane, Leeanne E. Grigg, James L. Wilkinson and Christian P. Brizard J Thorac Cardiovasc Surg 2005;130:1496-1502

Late survival depends exclusively on the growth of the native pulmonary circulation.

On angiography, central shunts promoted growth of central pulmonary arteries in all cases (29 patients). Sixty unifocalized major aortopulmonary collateral arteries were identified in 31 patients. After a mean of 3.2 ± 4 years, 26 thrombosed, and 12 presented with a stenosis of greater than 50%. Serial measurements of 29 major aortopulmonary collateral arteries showed no signs of growth (P = .25).

Unifocalization

Rt. Unifocalization at 3 mo. Native tissue-to-tissue 3 yr. later

Complete Repair : VSD closure - Criteria -

- Central PA area ≥ 50% of predicted normal - Puga JTCS 1989;98(6):1028-9
- Predicted pRV/pLV ≤ 0.7, No MAPCAs remain
 More than 2/3 lung segments are centralized

- by Iyer and Mee, ATS;1991:51:65-72

- Nakata Index > $150 mm^2/m^2$ BSA

-by Metras, EJCTS 2001;20:590-6

- TNPAI \geq 200 mm²/m² by Hanley, JTCS 1997;113(5);858-66
- 15 out of 20 bronchopulmonary segments(1 & 1/2 lungs) are connected to confluent pulmonary artery

- by Baker, 2002

Personal Experience

From 2004 to 2011 16 patients (male=8, female=8) Mean F/U duration 47.7 ± 29.6 months

Mortality cases

- 3 mortalities
 - Cardiac related death
 - 1 patient (F/40, Progressive RV failure)
 - Non-cardiac related death
 - 2 patient
 - CR (+) group
 - 1 patients-pneumonia
 - CR(-) group
 - Severe lung disease (CCAM)

Mortality 1

#1. Heart : PA, MAPCA, VSD
-1 mo: unifocalization, PA banding
-9 mo: unifocalization (Rt.MAPCA to RPA)

#2. Lung : CCAM (type 2, emphysematous change)
-2 mo: lung volume reduction surgery
-9 mo: LLL lobectomy

Tracheostomy

- Persistent respiratory difficulty
- Prolonged ventilator care
- Desaturation and bradycardia
- 13mo, expired

- PA, VSD, MAPCA
 - s/p 외부병원

1 year-old Lt. mod. B-T shunt (5 mm) 3 year-old Rt. mod. B-T shunt (6 mm) + unifocalization

• M/13 / 25 kg 2008.3.11. (aortic dilatation (46 mm) with AR -Ascending aorta & hemiarch replacement (graft 28 mm) -Complete repair : Rastelli operation

- Carpentier-Edwards Valved Conduit 20 mm
- VSD closure

#1. Respiration complication

- 1) underlying restrictive lung disease d/t scoliosis
 2) long-term ventilator care
 - pneumoniae
 - UTI (fungus)
- Hypoxic brain damage after respiratory arrest
 - Bed ridden state
 - Prolonged ventilator care
- Mortality : postop. 2 year later

CASE 1

• F/27• Before Marriage

PA/VSD/MAPCA

F / 27 Aortic root dilatation AR, TR : moderate

Midline One-stage Complete Repair

Midline One-stage Complete Repair F / 27 Postop. $P_{RV/LV} = 0.65$

1st operation 4 mo/5.4kg

Melbourne shunt

2nd operation 9 mo/6.8 kg

Palliative RV to PA conduit interposition —Goretex tube graft 8 mm, Both PA angioplasty

PA, VSD, MAPCA (multiple, hypoplas:a)

initially rudimentary PA (\$ 1mm) \$/p 2006. 1. 12. MPA reimplantation to aorta -> well growing PA

12month

- Ballon angioplasty of LPA and distal RPA

F / 1 yr. 8 mo.

unificalization

F / 2 yr. 2 mo. F/U Angio.

26 month

- Balloon angioplasty of proximal LPA

4th operation 30 mo/10.7 kg

Total repair

o 3yr LPA stent insertiono 4yr RLPA, RUPA, LPA ballooning

CASE 3

• M / 6 mo • PA,VSD, MAPCAs, No confluent central PA

Left unifocalization Left mod. BT shunt (6mm)

MAPCA 1.3. : no protection, no collaterals (:: no back flow) MAPCA 2.4 : stenosis (+)

Lt. Rt. Unifocalization & BT shunt

Total correction

CASE 4

- M/3 mo
- o PA,VSD, MAPCAs
 - RPA : ascending aorta
 - LPA : descending aorta

Left unifocalization - Bovine pericardial roll (8mm) - Left mod. BT shunt (4mm)

1st operation 3 mo/5.7 kg

op.: 2011.1.7.

CASE 5

F/6 mo
Rt. Isomerism
UVH(RV type)
MAPCA (x 2)
No confluent PA
2011-04-12

- BCPS, MAPCA unifocalization
- Central confluent PA reconstruction (MAPCA+bovine pericardium)

midline IVC & HV

R/o Rt. isomerism UVH(RV type). Pul. atres:a MAPCA(x2): from provincel. autic arch No confluent central PA Good hilm PA size

BCPS MAPCA unifocalization Central confluent PA reconstruction (MAPCA + bouine pencardin)

Il patients (male=6, female=5)
Mean FU duration

45.9 ± 64.0 months

Median age at initial operation

6.0 months (Range 1.5-336.7 months)

Median age at total correction

1.9 yrs (Range 1.1-27.7 yrs)

• MAPCA numbers/patient

• Mean 3.5 ± 0.5

• Confluent central PA

• 9 patients (9/11, 81.8%)

• Strategy

• One stage total (n = 2) : success

Multi-stage approach (n = 9)

• 1 mortality

• 2 VSD fenestration

• 2 waiting next state

• Overall complete repair rate (VSD closure)

• 6 patients (6/9, 66.6 %)

• Complete Operation

- Confluent PA
 - 100 % (7/7)
 - 1 VSD fenestration
- Nonconfluent PA
 - 1 mortality
 - 1 VSD fenestration

Staged Reconstruction & Repair

Initial Palliation	No (%)
Shunt	1 (9.1%)
Central	1
BT shunt	0
RV-PA Conduit interposition	3 (27.3%)
RV-PA interposition	2
RV-PA interposition + Unifocalization	1
RV-PA interposition + Ligation	0
Unifocalization	5 (45.5%)
With BT	4
Without BT	1
Staged procedure number	11

Management of MAPCAs

Manipulation of MAPCAs	No (%) (11 patients)
Unifocalization	6 (54.5%)
Ligation	2 (18.2%)
Unifocalization+ligation	2 (18.2%)
None	1 (9.1%)

Additional PA Procedures

Pulmonary artery procedures	Mean 1.5 ± 0.8
Surgical angioplasty	8 patients
Intervention	2 patients
Balloon angioplasty	4
Stent insertion	1

Conclusions

- One stage total correction may be successful in selected patients
- Confluent central pulmonary artery is most important factor for survival and complete repair.
- Individualized approach is required.