Pulmonary atresia with IVS

Tae-Gook Jun
Samsung Seoul Hospital
Sungkyunkwan University School of Medicine
Pulmonary atresia with intact ventricular septum

- Absence of communication between RV – PA
- Intact septum
- Morphologically heterogeneous
- Varying degrees of RV and TV hypoplasia
- Aberrations of coronary circulation are common
Treatment strategy for PA IVS

- Initial palliation
- Additional procedure
- Definite repair
- Individualized plan for surgical management, based on the special morphology, is necessary.
Predicted prevalence 5 years after entry (CHSS: 31 institute)
Determinants of mortality and type of repair in neonates with pulmonary atresia and intact ventricular septum

David A. Ashburn, MDa,b
Eugene H. Blackstone, MDc
Winfield J. Wells, MDb
Richard A. Jonas, MDe
Frank A. Pigula, MDf
Peter B. Manning, MDb
Gary K. Lofland, MDb
William G. Williams, MDb
Brian W. McCrindle, MD, MPH

Members of the Congenital Heart Surgeons Society

• 1987 – 1997
• 408 neonates, 33 institutes
• Overall survival: 77% at 1 months, 70% at 6 months
 60% at 5 years, 58% at 15 years
• In the current era, 85% of neonates are likely to reach a definitive surgical end point, with 2-ventricle repair achieved in an estimated 50%
Determinants of mortality and type of repair in neonates with pulmonary atresia and intact ventricular septum

Members of the Congenital Heart Surgeons Society
Initial palliation

- Adequate RV decompression – 2 ventricle strategy
 - Transpulmonary valvotomy ± shunt
 - Outflow tract patch reconstruction ± shunt
 - Balloon valvuloplasty

- Systemic pulmonary shunt only - 1 ventricle strategy
 - RV dependent coronary circulation
 - Small RV with muscular atresia
Initial palliation

Transpulmonary valvotomy

RVOT patch
RV decompression

<table>
<thead>
<tr>
<th>Transpulmonary valvotomy ± shunt</th>
<th>RVOT patch widening ± shunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid CPB in neonate</td>
<td>No residual RVOTO</td>
</tr>
<tr>
<td>Less ventricular damage</td>
<td>Pulmonary regurgitation can</td>
</tr>
<tr>
<td>Less pulmonary regurgitation</td>
<td>augment RV growth</td>
</tr>
<tr>
<td>Residual RVOT obstruction</td>
<td>Need CPB in neonate</td>
</tr>
<tr>
<td>Limitation of RV growth</td>
<td>Heart failure</td>
</tr>
</tbody>
</table>
Catheter based balloon valvuloplasty
Catheter based balloon valvuloplasty

• Benefits
 – Avoid cardiopulmonary bypass in neonate
 – Delaying surgical intervention

• Limitations
 – Cannot enlarge pulmonary valve annulus
 – Difficult to anticipate pulmonary annulus growth
 – Cannot relieve subpulmonary muscular obstruction
Long-term results of catheter-based treatment of pulmonary atresia and intact ventricular septum

M Marasini,1 P F Gorrieri,1 G Tuo,1,2 L Zannini,1 P Guido,1,3 M Pellegrini,1 S Bondanza,1 M G Calevo,4 G Pongiglione1

- 40, attempted perforation of the pulmonary valve
 - 1, unsuccessful perforation
 - 39, successful perforation
 - 2 (5%) early death
 - 16 (41%), neonatal surgery
 - 24 (62%), no neonatal surgery
 - 38 survivors
 - 15, late surgery
 - 1, death
 - 4, 1.5 VR
 - 10, 2 VR
 - 23, no late surgery
 - 33 (33%), 2 VR
 - 23, 2 VR

Neonatal Period
Follow Up

Heart 2009;95:1520–1524
Pulmonary Atresia With Intact Ventricular Septum: Limitations of Catheter-Based Intervention

Yasutaka Hirata, MD, Jonathan M. Chen, MD, Jan M. Quaegebeur, MD, William E. Hellenbrand, MD, and Ralph S. Mosca, MD

The Divisions of Pediatric Cardiac Surgery and Pediatric Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
Effect of residual RVOT obstruction

Residual RV obstruction

- Hindrance to RV growth
- Decreased RV dimension and TV size
- Persistent right ventricular sinusoids

- Micro and macro coronary abnormalities
Early re-evaluation after the RV decompression and adequate additional palliative procedures are essential for the preparation for the definite repair
Secondary palliative surgery

- Repeated balloon vavuloplasty

- Preparation for bi-ventricular repair
 RVOT reconstruction
 RV overhaul procedure
 Closure or adjustment of atrial communication

- Preparation for uni-ventricular repair
 BCPS
Right ventricular overhaul

- TV valvotomy
- RV muscle resection
- PV valvotomy
- RVOT patch

<table>
<thead>
<tr>
<th>1991 – 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 patients (critical PS in 6)</td>
</tr>
<tr>
<td>BAS in 21 patients</td>
</tr>
<tr>
<td>Z value of T valve: -1.4 (range, -4.4 – 2.3)</td>
</tr>
<tr>
<td>Initial pulmonary valvotomy</td>
</tr>
<tr>
<td>Repeated valvotomy or surgical palliation</td>
</tr>
</tbody>
</table>
Staged Biventricular Repair of Pulmonary Atresia or Stenosis With Intact Ventricular Septum

Shunji Sano, MD, Kozo Ishino, MD, Masaaki Kawada MD, Emi Fujisawa, MD, Masahiro Kamada, MD, and Shin-ichi Ohtsuki, MD

Departments of Cardiovascular Surgery and Pediatrics, Okayama University Medical School, Okayama, Japan

- Initial pulmonary valvotomy
- Overhaul
- Adjustment of interatrial communication
Staged Biventricular Repair of Pulmonary Atresia or Stenosis With Intact Ventricular Septum

Shunji Sano, MD, Kozo Ishino, MD, Masaaki Kawada MD, Emi Fujisawa, MD, Masahiro Kamada, MD, and Shin-ichi Ohtsuki, MD

Departments of Cardiovascular Surgery and Pediatrics, Okayama University Medical School, Okayama, Japan
Success and limitations of right ventricular sinus myectomy for pulmonary atresia with intact ventricular septum

Roosvelt Bryant, III, MD, a Edward R. Nowicki, MD, a Roger B. B. Mee, MB, ChB, FRACS, b Jeevanantham Rajeswaran, MSc, c Brian W. Duncan, MD, d Geoffrey L. Rosenthal, MD, PhD, b Uthara Mohan, MD, d Muhammad Mumtaz, MD, b and Eugene H. Blackstone, MD a,c

Figure 1. Right ventricular myectomy is performed by means of a combined transatrial/transpulmonary approach. A. On the left, the dashed line indicates the intended extent of right ventricular sinus resection. On the right, the figure represents the results of sinus resection through the tricuspid valve. B. On the left, an incision is made in the pulmonary trunk. At top right, pulmonary valvotomy is shown. This reveals infundibular muscle (lower right) that will be resected (dashed line) to complete the right ventricular myectomy. RVT, Right ventricular trabecular sinus.
Success and limitations of right ventricular sinus myectomy for pulmonary atresia with intact ventricular septum

Roosevelt Bryant, III, MD, a Edward R. Nowicki, MD, a Roger B. B. Mee, MB, ChB, FRACS, b Jeevanantham Rajeswaran, MSc, c Brian W. Duncan, MD, d Geoffrey L. Rosenthal, MD, PhD, b Uthara Mohan, MD, d Muhammad Mumtaz, MD, b and Eugene H. Blackstone, MD a,c
Success and limitations of right ventricular sinus myectomy for pulmonary atresia with intact ventricular septum

Roosevelt Bryant, III, MD,a Edward R. Nowicki, MD,a Roger B. B. Mee, MB, ChB, FRACS,b Jeevanantham Rajeswaran, MSc,c Brian W. Duncan, MD,d Geoffrey L. Rosenthal, MD, PhD,b Uthara Mohan, MD,d Muhammad Mumtaz, MD,b and Eugene H. Blackstone, MD,a,c

- 13/16 biventricular repair
- Death: 3 (19%, 3/16)
- Survival rate: 94%, 85%(5 year), 64%(10 year)

- Small tricuspid valve - poor result
Definite repair

- Biventricular repair
- One and half repair
- Single ventricle repair
- Transplantation
Bi-ventricular repair
Bi-ventricular repair

- RVOT reconstruction
 - Pericardial patch, monocuspid patch,
 - homograft, tissue valve
- RV muscle resection and enlargement
- TV repair
- Atrial communication closure or adjustment
- Removal of additional pulmonary blood source.
Late problems after bi-ventricular repair

- RV dysfunction
- Tricuspid valve regurgitation
- Pulmonary valve regurgitation
- Pulmonary artery deformity
- Repeated reoperation or interventions
Risk factors for early death and reoperation following biventricular repair of pulmonary atresia with intact ventricular septum

Jonah Odim*, Hillel Laks, Thomas Tung

Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA,
10833 Le Conte Avenue, CHS 62-226B Los Angeles, CA 90095, USA

• 1982 – 2001: 106 patients
• Biventricular repair (n=30), one and half repair (n=26)
• Single ventricle repair (n=23), transplantation (n=2)
• death before definite repair (n=9), follow up loss (n=8), waiting definite repair (n=8)

• 5 – year survival after definite repair : 91.5%
• Risk factor for early death:
 – Omission of palliative RVOT relief
 – Non Causasian race
Risk factors for early death and reoperation following biventricular repair of pulmonary atresia with intact ventricular septum

Jonah Odim*, Hillel Laks, Thomas Tung

Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 62-226B Los Angeles, CA 90095, USA
Risk factors for early death and reoperation following biventricular repair of pulmonary atresia with intact ventricular septum

Jonah Odim *, Hillel Laks, Thomas Tung

Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 62-226B Los Angeles, CA 90095, USA
Partial bi-ventricular repair
One and Half ventricle repair

- BCPS
- ASD closure or adjustment
- RVOT patch or homograft
- RV muscle resection
- Shunt take down
Advantage of 1+ 1/2 ventricle repair

- Physiologic benefit of lower systemic venous pressure (corresponding potential salutatory effects on cerebral, coronary, hepatic and splanchnic circulatory beds)
- Prevention of right heart blood stasis and subsequent thrombo-embolism
- Improved exercise tolerance
- Naturally pulsatile pulmonary blood flow.
- Avoid RV volume loading
- RV growth and TV growth
Fate of one and half repair

• We don’t know the long term result

• Possible problems
 – TR
 – Pulmonary regurgitation
 – RV dysfunction
 – Arrhythmias

• Consier conversion from one-half ventricular repair to Single ventricle type repair just in case
Pulmonary Atresia With Intact Ventricular Septum: Long-Term Results of “One and a Half Ventricular Repair”

Kagami Miyaji, MD, Munehiro Shimada, MD, Akihiko Sekiguchi, MD, Akira Ishizawa, MD, Takayoshi Isoda, MD, and Minoru Tsunemoto, MD

Departments of Cardiovascular Surgery and Pediatric Cardiology, National Children’s Hospital, Tokyo, Japan

Background. Between 1982 and 1984, we successfully performed “one and a half ventricular repair” using a Glenn shunt for 3 patients with pulmonary atresia with intact ventricular septum. Here we review the 10-year follow-up results.

Methods. In these patients, the preoperative Z scores of the tricuspid valve diameters ranged from −5.2 to −6.5. Right ventricular outflow tract reconstruction combined with a Glenn shunt were performed in all patients. Cardiac catheterization was done at least 10 years postoperatively.

Results. All 3 patients have maintained New York Heart Association functional class I status for more than 10 years. Angiography in 2 patients confirms sufficient left pulmonary artery pressure with pulsatile blood flow and good right ventricular contraction. A pulmonary arteriovenous fistula has developed in 1 patient.

Conclusions. Although the lower limits of the tricuspid valve diameter for “one and a half ventricular repair” using a cavopulmonary shunt have not yet been determined, we successfully performed this procedure in 3 patients with severely hypoplastic right ventricles and tricuspid valve diameter Z scores of less than −5.0. The results up to 10 years postoperatively are acceptable.

(Ann Thorac Surg 1995;60:1762–4)
• Follow-up: 17 – 19 years
• Functional class: I
• Exercise ECG: supraventricular arrhythmia in 2
 ST depression in 1
• Echo
 – Increased RV EDV
 – TR: mild in 1
• Pulmonary regurgitation
• Pulmonary AV fistular in 2
Long-term functional results of the one and one half ventricular repair for the spectrum of patients with pulmonary atresia/stenosis with intact ventricular septum

Satoshi Numata, Hideki Uemura*, Toshikatsu Yagihara, Koji Kagisaki, Masashi Takahashi, Hideo Ohuchi

- National cardiovascular center, Japan
- From 1987 – 1999
- 7 PA IVS, 6 PS RV hypoplasia (3 Ebstein’s)
- One half ventricle repair

- Age at 1.5 repair: 4 years (10 months – 9 years)
- Follow up: 3 – 15 years (10 + 4 years)
Long-term functional results of the one and one half ventricular repair for the spectrum of patients with pulmonary atresia/stenosis with intact ventricular septum

Satoshi Numata, Hideki Uemura, Toshikatsu Yagihara, Koji Kagisaki, Masashi Takahashi, Hideo Ohuchi

Survival curve

Arrhythmia free curve

years after operation

years after operation

Long-term functional results of the one and one half ventricular repair for the spectrum of patients with pulmonary atresia/stenosis with intact ventricular septum

Satoshi Numata, Hideki Uemura, Toshikatsu Yagihara, Koji Kagisaki, Masashi Takahashi, Hideo Ohuchi

Cardiac index

5 to 10 years after operation

Right atrial pressure

- after one and one half ventricular repair
- Fontan circulation

Uni-ventricular repair
Univentricular repair

- BDG after taking down of shunt at 4-6 months of age
- Fontan operation at 2-4 year of age
- Cardiac transplantation
- Heart lung transplantation
RV-coronary artery circulation

- Frequency: 17 - 75% (Coles, 1989; Hanley, 1993)

- Fistula alone

- Fistula + stenosis or interruption to coronary arteries
 (RV dependent coronary circulation)
Mechanism of proximal coronary artery stenosis

- Turbulent flow
- Intimal and adventitial fibrosis
- Medial muscular hypertrophy

RV-coronary artery circulation

- Deoxygenated blood supply to myocardium (systole)
- Coronary steal (diastole)
- Left ventricular dysfunction

- Decompression of RV -- increase ischemia (Giglia, 1992)

- Tricuspid valve excision or avulsion (Hawkins, 1990)
- TV closure (Waldman, 1995)
- Thromboexclusion of RV (Najm, 1997; William, 1991)
- Aortic - RV shunt (Laks, 1995; Freeman 1993)

- Transplantation
TV closure in RV-CAC

- Assessing hemodynamic stability -- temporary balloon closure
- Not indicated RV dependent coronary circulation
- Closure by 6 months of age
- Patch of Dacron or Gore-Tex
- Base of septal leaflet

Thromboexclusion of RV

- Not indicated with RV dependent coronary circulation
- Recommended before 1 year of age at the time of BCPS
- TV closure and Coils and Gelfoam injection to RV

LV function after Fontan in PA-IVS

• Poor LV function
 – RVDCC: myocardial ischemia
 – High pressure RV

• Abnormalities in myocardial perfusion
Left ventricular performance of pulmonary atresia with intact ventricular septum after right heart bypass surgery

Yoshihisa Tanoue, MD
Hideaki Kado, MD
Taketoshi Maeda, MD

- Fukuoka children’s hospital
- 20 PA IVS vs. 21 TA

- Contractility
- Afterload
- Ventricular efficiency
- Stroke work, pressure – volume area
- Before and after BCPS
Left ventricular performance of pulmonary atresia with intact ventricular septum after right heart bypass surgery

Yoshihisa Tanoue, MD
Hideaki Kado, MD
Taketoshi Maeda, MD
Exclusion of the non-functioning right ventricle in children with pulmonary atresia and intact ventricular septum

Ji-Hyuk Yanga, Tae-Gook Juna,∗, Pyo Won Parka, Kiick Sunga, Wook Sung Kima, Young Tak Leea, June Huhb, I-Seok Kangb

Table 1
Preoperative patients’ characteristics and operative procedures

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (months)</th>
<th>Previous procedure</th>
<th>z-Value</th>
<th>RV-to-coronary sinusoids</th>
<th>Operation</th>
<th>Palliative procedure</th>
<th>Tricuspid valve closure</th>
<th>Thrombotic material insertion</th>
<th>Atrial septectomy</th>
<th>Other procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.8</td>
<td>RVOT + BT shunt at 3.7 months</td>
<td>−3.6</td>
<td>Yes</td>
<td>BCPS</td>
<td>Patch</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.9</td>
<td>RVOT + BT shunt at 6 days</td>
<td>−1.3</td>
<td>−</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>RPA angioplasty</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>DVP at 8 days</td>
<td>−4</td>
<td>Yes</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
<td>BT shunt at 6 days</td>
<td>−3.3</td>
<td>−</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.1</td>
<td>−</td>
<td>−5</td>
<td>−</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>BT shunt at 7 days</td>
<td>−3.2</td>
<td>−</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.2</td>
<td>BT shunt at 23 days</td>
<td>−6.5</td>
<td>Yes</td>
<td>BCPS</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>BT shunt</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>LPA angioplasty</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.6</td>
<td>−</td>
<td>−5.4</td>
<td>Yes</td>
<td>BT shunt</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>LPA angioplasty</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>−</td>
<td>−3.3</td>
<td>Yes</td>
<td>BT shunt</td>
<td>Direct</td>
<td>−</td>
<td>Yes</td>
<td>Coronary fistula ligation</td>
<td></td>
</tr>
</tbody>
</table>
Exclusion of the non-functioning right ventricle in children with pulmonary atresia and intact ventricular septum

Ji-Hyuk Yanga, Tae-Gook Juna,, Pyo Won Parka, Kiick Sunga, Wook Sung Kima, Young Tak Leea, June Huhb, I-Seok Kangb
Clinical outcomes of adult survivors of pulmonary atresia with intact ventricular septum

Anitha S. Johna, b, *, Carole A. Warnesa

a Division of Cardiovascular Diseases, Internal Medicine, and Pediatric Cardiology, Mayo Clinic, Rochester, MN, United States
b Division of Cardiology, Children’s National Medical Center, George Washington University, Washington, DC, United States

<table>
<thead>
<tr>
<th>Characteristics (^a)</th>
<th>Univentricular, palliated (n = 5)</th>
<th>Univentricular, Fontan (n = 7)</th>
<th>Biventricular repair (n = 8)</th>
<th>Total number (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, years (^b)</td>
<td>29 (23–35)</td>
<td>28 (23–32)</td>
<td>30 (18–39)</td>
<td>29 (18–39)</td>
</tr>
<tr>
<td>Number of patients alive (^b)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>NYHA class I-II (^b)</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Arrhythmias (^b)</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>4</td>
<td>0 (^c)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Intracardiac thrombosis</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Valvular dysfunction</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Protein losing enteropathy (^b)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Echocardiogram parameters</td>
<td>Left ventricular EF</td>
<td>55% (50–65%)</td>
<td>51% (45–58%)</td>
<td>58% (50–65%)</td>
</tr>
</tbody>
</table>
Clinical outcomes of adult survivors of pulmonary atresia with intact ventricular septum

Anitha S. Johna,b,*, Carole A. Warnesa

a Division of Cardiovascular Diseases, Internal Medicine, and Pediatric Cardiology, Mayo Clinic, Rochester, MN, United States
b Division of Cardiology, Children’s National Medical Center, George Washington University, Washington, DC, United States

Types of surgical re-interventions in adulthood (≥18 years).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number of patients</th>
<th>Number of procedures</th>
<th>NYHA class I-II pts pre/pts posta</th>
<th>Average age, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univentricular, palliated (n = 5)</td>
<td></td>
<td></td>
<td>2/4</td>
<td>22 (19–24)</td>
</tr>
<tr>
<td>Patients with re-interventions, total</td>
<td>3/5</td>
<td>7 (total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt revision, surgical</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt dilation, transcatheter</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil embolization of collaterals</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univentricular, Fontan (n = 7)</td>
<td>2/5</td>
<td>14 (total)</td>
<td></td>
<td>21 (17–32)</td>
</tr>
<tr>
<td>Patients with re-interventions, total</td>
<td>7/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontan conversion</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAZE procedure</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral valve repair/replacement</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontan fenestration, transcatheter</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascending aorta replacement</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontan revision</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biventricular repair (n = 8)</td>
<td></td>
<td>3/6</td>
<td>27 (19–38)</td>
<td></td>
</tr>
<tr>
<td>Patients with re-interventions, total</td>
<td>7/8</td>
<td>31 (total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricuspid valve repair/replacement</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve replacement</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV to PA conduit replacement</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVOT reconstruction/augmentation</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery intervention, transcatheter</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral valve repair/replacement</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAZE procedure</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Predictors for Biventricular Repair in Pulmonary Atresia with Intact Ventricular Septum

Thorac Cardiov Surg 2010; 58: 339–344
Predictors for Biventricular Repair in Pulmonary Atresia with Intact Ventricular Septum

Thorac Cardiov Surg 2010; 58: 339–344
Predictors for Biventricular Repair in Pulmonary Atresia with Intact Ventricular Septum

Table 1 Surgical and morphological factors predicting biventricular repair in 48 patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients with biventricular repair (n = 48)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV decompression</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Systemic-to-pulmonary artery shunt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RV decompression + shunt</td>
<td>10</td>
<td><0.001</td>
</tr>
<tr>
<td>Right ventricular morphology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unipartite RV</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bipartite RV</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tripartite RV</td>
<td>42</td>
<td><0.001</td>
</tr>
<tr>
<td>TV z-score ≤ −6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>TV z-score > −6</td>
<td>35</td>
<td><0.001</td>
</tr>
<tr>
<td>TR 0–I</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TR II–III</td>
<td>46</td>
<td><0.001</td>
</tr>
<tr>
<td>Coronary fistulae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>▶ no</td>
<td>41</td>
<td><0.001</td>
</tr>
<tr>
<td>Coronary stenoses</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No coronary stenoses</td>
<td>48</td>
<td>0.004</td>
</tr>
<tr>
<td>Right ventricular dependent coronary circulation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No RV dependent coronary circulation</td>
<td>47</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Changing trends in the management of pulmonary atresia with intact ventricular septum: the Melbourne experience

Matthew Liava'a, Paul Brooks, Igor Konstantinov, Christian Brizard, Yves d’Udekem
Changing trends in the management of pulmonary atresia with intact ventricular septum: the Melbourne experience

Matthew Liava’a a,c, Paul Brooks b, Igor Konstantinov a, Christian Brizard a, Yves d’Udekem a,c,1,*

Table 3. Outcomes based on right-ventricle size.

<table>
<thead>
<tr>
<th>RV size</th>
<th>Outcome</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bi-V</td>
<td>1.5-V</td>
<td>Awaiting</td>
<td>Uni-V</td>
<td>HTx</td>
<td>Dead</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11 (13.5%)</td>
</tr>
<tr>
<td>Moderate hypoplasia</td>
<td>19</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>45 (55.5%)</td>
</tr>
<tr>
<td>Severe hypoplasia</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>25 (31.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>1</td>
<td>16</td>
<td>81 (100%)</td>
</tr>
</tbody>
</table>

Bi-V: biventricular; 1.5-V: 11/2 ventricle; Uni-V: univentricular; and HTx: heart transplant.
SMC Experience

- 1995 – 2009
- 54 patients
- PA IVS
- Exclusion: palliation procedure in other hospital
SMC Experience

Initial palliation

Biventricular strategy (n=39)

Single ventricle strategy (n=15)

Definite Repair
SMC Experience

Biventricular strategy (n=39)

BVP (n=24)

Success BVP

RVOT + shunt (n=23)

Death :2

RVOT (± overhaul) n=14

Wait : 2

Bi-ventricle (n= 24)

One and half (n=5)

Fontan (n=4)

RVOT (n=13)

n=24

n=11

Others

n=3

n=4

BCP S

n=4

Death :2

n=5

n=7

n=1

n=2

n=10
SMC Experience

Single ventricle strategy (n=15)

Shunt (n=9)

- Shunt + LPA angioplasty (n=1)
 - Death: 3 (n=2)

- BCP S (thromboexclusion in 6) (n=11)
 - Wait: 1

- Shunt + RV exclusion (n=5)
 - Wait: 1 (n=4)

Fontan (n=10)
SMC Experience

Initial palliation
- Biventricular strategy (n=39)
 - Death: 4
 - Wait: 2
- Single ventricle strategy (n=15)
 - Death: 3
 - Wait: 2

Definite Repair
- Bi-ventricle (n=24) 45%
- One and half (n=5) 9%
- Fontan (n=14) 23%
SMC experiences

- Reoperation after definite repair
 - PVR in 3
 - RV exclusion after Fontan in 1

- Last Echo of biventricular + one and half group (29)
 - PR > moderate in 14
 - TR > moderate in 19
Summary

• Catheter based BVP can be a best option for initial palliation, however additional surgical procedure should be considered when it is needed.

• Early re-evaluation after the RV decompression and adequate additional palliative procedures are essential for the preparation for the definite repair.

• When the TV size (valve orifice) is too small, it seems that decompression of RV can not guarantee biventricular repair.
Summary

• Angiographic evaluation may be essential to find the RV-coronary fistula (or RVDCC) even in the single ventricle group.

• We cannot insist which protocol is superior to other strategies especially in the point of long term results.

• Every procedure should be considered precisely in the aspect of reducing repeated re-operations and interventions after definite repairs.
Critical Pulmonary Valve Stenosis and Pulmonary Atresia/Intact Ventricular Septum: To Lump or Split? Examining Procedural Success and Risk for Reintervention

Indications for reintervention included failure to tolerate PGE1 withdrawal with excess cyanosis (<70%) and metabolic acidosis. PGE1 was continued for up to 14 days following cardiac catheterization. The need for reintervention within the study period was 15/43 (36%). Reintervention was more commonly needed for PA/IVS (52%) compared with critical pulmonary valve stenosis (17%). Patients with PA/IVS were more likely to require surgery as the second intervention (18%) compared with critical pulmonary valve stenosis (0%). One surgical mortality was encountered.