Novel Anticoagulation Therapy in Acute Coronary Syndrome

Soon Jun Hong

Korea University Anam Hospital

Thrombus Formation Cascade

Anticoagulation Drugs

New Anticoagulation Drug

What Is the Better Target?

Anti-Xa	Anti-IIa
Gatekeeper of the coagulation cascade	Final common pathway
Block thrombin generation	Block thrombin activity
Preserve hemostatic mechanisms	Block contact activation
	Block platelet activation

Trials Regarding Injectable Anticoagulation Agents

Limitations of Heparins

Attribute	UFH	Enox	Impact
Active moieties in substance	30-35%	40-60%	Unpredictable
Action independent of AT	No	No	Unpredictable
Non-specific protease binding	Yes	Partial	Unpredictable
Variable PK-PD	Yes	Less	Unpredictable
Inhibits fibrin-bound thrombin	No	No	Need ↑ dose
Activates/aggregates platelets	Yes	+/-	Need IIb/IIIa
T _{0.5} in minutes	60-90'	270'	↑ Bleeding
PF-4 complexing & risk of HIT	Yes	Reduced	Very bad

Bivalirudin

Bivalent Synthetic Direct Thrombin Inhibitor

Specifically inhibits

- Fluid phase thrombin
- Clot-bound thrombin
- <u>Thrombin-mediated platelet</u>
 <u>aggregation</u> (blocks activation
 of PAR-1 and PAR-4 receptors
- <u>Reversible</u>
- T_{0.5} 25 minutes

Overcoming Limitations of Heparins

Attribute	UFH	Enox	Bivalirudin
Active moieties in substance	30–35%	40–60%	100%
Action independent of AT	No	No	Yes
Non-specific protease binding	Yes	Partial	No
Variable PK-PD	Yes	Less	No
Inhibits fibrin-bound thrombin	No	No	Yes
Activates/aggregates platelets	<u>Yes</u>	<u>+/-</u>	<u>Inhibits</u>
T _{0.5} in minutes	60–90'	270'	25'
PF-4 complexing & risk of HIT	Yes	Reduced	No

Bivalirudin: No Platelet Activation

Direct platelet activation by UFH but not bivalirudin

Scanning electron micrographs were acquired at a magnification of 4,000x with the investigator blinded to treatment.

Anand SX et al. Am J Cardiol. 2007;100:417-424.

ACS: Pathophysiology

Ruptured plaque with sub-occlusive thrombus

*Stratified by pre-angiography thienopyridine use or administration Stone GW et al. NEJM 2006;355:2203-16

Ischemic Composite Endpoint

UFH/Enoxaparin + GPI vs. Bivalirudin + GPI vs. Bivalirudin Alone

Days from Randomization

Stone GW et al. NEJM 2006;355:2203-16

Major Bleeding Endpoints

UFH/Enoxaparin + GPI vs. Bivalirudin + GPI vs. Bivalirudin Alone

Days from Randomization

Stone GW et al. NEJM 2006;355:2203-16

ISAR-REACT-4

<u>1,721 Pts with NSTEMI (</u>CK-MB or troponin+) undergoing PCI

Pre-treated with aspirin and 600 mg of clopidogrel

R

Double-blind

(double-dummy drug)

UFH + Abciximab

Bolus UFH 70 U/kg Bolus Abcx 0.25 mg/kg + infusion 0.125 µg/kg/min x12h **N=861**

Bivalirudin

Bolus 0.75 mg/kg + infusion 1.75 mg/kg/hr for duration of PCI **N=860**

<u>Primary endpoint</u> = death, large MI, urgent TVR, or major bleeding at 30d Powered for superiority of UFH/Abcx over bivalirudin

Kastrati A et al. NEJM 2011:365:1980-9

ISAR-REACT-4: Composite Ischemia

Kastrati A et al. NEJM 2011:365:1980-9

ISAR-REACT-4: Major Bleeding

Kastrati A et al. NEJM 2011:365:1980-9

ACUITY + ISAR-REACT-4: Pooled

<u>3,798 clopidogrel-pre-treated pts with NSTEMI (troponin +)</u> undergoing PCI randomized to <u>bivalirudin vs. heparin + GPI</u>

Kastrati, Stone et al. TCT 2012

ACUITY + ISAR-REACT-4: Pooled

3,798 clopidogrel-pre-treated pts with NSTEMI (troponin +) undergoing PCI randomized to bivalirudin vs. heparin + GPI

Kastrati, Stone et al. TCT 2012

AMI: Pathophysiology

Ruptured plaque with occlusive thrombus

HORIZON AMI

HORIZONS: 30 Day Adverse Events

Heparin + GPIIb/IIIa inhibitor (N=1802) Bivalirudin monotherapy (N=1800)

*Not related to CABG ** Plat cnt <100,000 cells/mm³

Stone GW et al. NEJM 2008;358:2218-30

HORIZONS: 3-Year All-Cause Mortality

Stone GW et al. NEJM 2008;358:2218-30

Stone GW et al. Lancet 2011;377:2193-204

HORIZONS: 3-Year Reinfarction

Stone GW et al. Lancet 2011;377:2193-204

But Bivalirudin costs too much!

To Summarize Bivalirudin

- Bivalirudin compared with UFH plus GPI <u>significantly</u> reduced both access site and non access site <u>bleeding</u>.
- The ACUITY and ISAR-REACT-4 trials supports the superiority of Bivalirudin compared to LMWH/UFH + GPI.
- Bivalirudin showed reduced mortality with reduced bleeding especially in high risk patients in HORIZONS-AMI:
 - Bivalirudin <u>reduced the rate of cardiac death in the diabetic</u> <u>group at 30 days (2.1 vs. 5.5%, P=0.04)</u> and 1 year (2.5 vs. 7.1%, P=0.01).

Segie Z, et al. Current Opinion, 2012

ACC/AHA Guidelines on Bivalirudin Use

ESC/EACTS Guidelines on Myocardial I Revascularization

• PCI in STEMI and NSTE-ACS

Circulation and JACC 2005, 2007, 2009, 2011 EHJ 2010

Fondaparinux: OASIS-5 (Bleeding & Death)

20,078 patients with NSTE-ACS < 24 hours, 40% PCI, 97% aspirin, 67% clopidogrel, 1 x 2.5 mg/day fondaparinux subcutaneously vs 2 x 1 mg/kg/day enoxaparin subcutaneously for max 8 days

OASIS-5 Investigators. N Engl J Med 2006;354:1464-1476.

Fondaparinux: OASIS-6

STEMI < 12 hours (n = 12,092), 96% aspirin, 58% clopidogrel or ticlopidine, PCI (n = 3789), thrombolysis (n = 5486), or conservative (n = 2869) fondaparinux vs placebo + UFH or placebo only

OASIS-6 Investigators. JAMA 2006;295:1519-1530.

To Summarize Fondaparinux

- Reduces bleeding vs. enoxaparin
- Reduces mortality vs. enoxaparin
- Similar to enoxaparin in reducing the risk of ischemic events at 9 days
- ↑ Catheter-related thrombosis in PCI patients

2011 ESC Guidelines for NSTEMI

Fondaparinux (2.5 mg subcutaneously daily) is recommended as having the most favourable efficacy-safety profile with respect to anticoagulation.	1	A
If the initial anticoagulant is fondaparinux, a single bolus of UFH (85 IU/kg adapted to ACT, or 60 IU in the case of concomitant use of GPIIb/IIIa receptor inhibitors) should be added at the time of PCI.	1	В
Enoxaparin (1 mg/kg twice daily) is recommended when fondaparinux is not available.	1	В
If fondaparinux or enoxaparin are not available, UFH with a target aPTT of 50-70 s or other LMWHs at the specific recommended doses are indicated.	I	С

2012 ACC/AHA Guidelines for NSTEMI

If fondaparinux is used <u>during PCI</u>, it must be coadministered with another anticoagulant with Factor IIa activity (ex. UFH).

2012 ESC Guidelines for STEMI

Fondaparinux is not recommended for primary PCI

Trials Regarding Oral Anticoagulation Agents

New Oral Anticoagulants

Comparative Pharmacology

Characteristic	Rivaroxaban	Apixaban	Edoxaban	Dabigatran
Target	Factor Xa	Factor Xa	Factor Xa	Thrombin
Prodrug	No	No	No	Yes
Bioavailability (%)	80	60	50	6
Dosing	Once a day (Twice a day)	Twice a day	Once a day	Twice a day (Once a day)
Half-life (hours)	7-11	12	9-11	12-14
Renal excretion (%)	33 (66)	25	35	80
<u>Monitoring</u>	No	No	No	No
Interactions	3A4/Pgp	3A4	3A4/Pgp	Pgp

Pgp=P-glycoprotein

Dabigatran

- Oral prodrug
- Potent, competitive inhibitor of thrombin
- Half life 12 ~17 hours

Dabigatran

- 80% excreted by <u>kidneys</u>: contraindication in patients with renal failure.
- Drugs that inhibit P-glycoprotein (<u>Amiodarone</u>, <u>Quinidine</u>, <u>Verapamil</u>, <u>Diltiazem</u>) can increase the plasma levels of dabigatran by reducing the clearance of dabigatran

Dabigatran ACS Phase II (RE-DEEM trial)

- Dose-finding study of <u>dabigatran BID vs. placebo</u> on top of <u>DAPT</u> after NSTEMI or STEMI (n=1891), PCI done between 52.2%~58.4%
- Primary endpoint: major or clinically relevant minor bleeding within 6 months

<u>Primary Endpoint:</u> Major and Clinically Relevant Minor Bleeding*

Death, MI, Nonhemorrhagic Stroke

"The <u>net clinical benefit</u> of dabigatran, balancing <u>the reduction</u> of thromboembolic events vs. the increased risk of bleeding, can only be appropriately evaluated in <u>a large-scale</u>, <u>adequately powered phase 3 study</u>, for which there is currently no final decision."

Oldgren J, et al. Eur Heart J 2011;32:2781-2789.

Home > Find Studies > Study Record Detail

Text Size 🔻

Randomized, Open Label Study of Dabigatran Etexilate in Elective Percutaneous Coronary Intervention

This study has been completed.	ClinicalTrials.gov Identifier:
Sponsor:	NC100818753
Boehringer Ingelheim Pharmaceuticals	First received: January 7, 2009
Information provided by (Responsible Party): Boehringer Ingelheim Pharmaceuticals	Last updated: May 18, 2012 Last verified: May 2012 History of Changes
Full Text View Tabular View Stur	v Results Disclaimer 1 How to Read a Study Record

Purpose

To assess whether two doses of dabigatran etexilate (110 mg twice daily (b.i.d) and 150 mg twice daily (b.i.d)) as compared to unfractionated heparin (UFH), both in addition to a standard dual antiplatelet regimen, provide sufficient anticoagulation in the setting of elective percutaneous coronary intervention (PCI).

Condition	Intervention	Phase
Heart Catheterization	Drug: dabigatran 110 mg Drug: dabigatran 150 mg Drug: unfractionated heparin	Phase 2

 Study Type:
 Interventional

 Study Design:
 Allocation: Randomized

 Endpoint Classification: Safety/Efficacy Study

 Intervention Model: Parallel Assignment

 Masking: Open Label

Rivaroxaban

- An oral, direct Factor Xa inhibitor
- Binding <u>reversibly</u> to its active site.
- Half-life of 7–11 h, and 67% is renally cleared.
- Substrate for P-glycoprotein and metabolized via CYP3A4 → co- administration of potent inhibitors of P-glycoprotein and CYP3A4, such as <u>ketoconazole</u>, should be avoided.

Rivaroxaban in ACS (ATLAS-ACS TIMI 46)

- <u>3,491 patients after ACS</u> randomized
- The primary safety endpoint was clinically significant bleeding
- <u>The primary efficacy endpoint</u> was death, MI, stroke, or severe recurrent ischemia requiring revascularization <u>during 6 months</u>.

Mega JL et al. Lancet. 2009;374:29-38

Rivaroxaban in ACS (ATLAS-ACS TIMI 46)

• Clinically significant bleeding (TIMI major, TIMI minor, or requiring medical attention) across doses

Mega JL et al. Lancet. 2009;374:29-38

Rivaroxaban in ACS (ATLAS-ACS TIMI 46) Primary and Secondary Efficacy Endpoints

٠

Mega JL et al. Lancet. 2009;374:29-38

ATLAS-ACS TIMI 46

- The use of rivaroxaban in patients with ACS increased bleeding in a dose-dependent manner and might reduce major ischemic outcomes.
- On the basis of these observations → <u>a phase III</u> <u>study</u> of low-dose rivaroxaban as adjunctive therapy in ACS patients (<u>ATLAS ACS 2 TIMI 51</u>).

Rivaroxaban in ACS (ATLAS-ACS TIMI 51)

<u>15,570 patients</u> with ACS randomized to rivaroxaban 2.5 or 5mg BID vs. placebo on top of DAPT (>92.6%) for 13~31 months, PCI done in about 60%

Gibson CM et al. Am Heart J. 2011;161:815-821

Rivaroxaban in ACS (ATLAS-ACS TIMI 51)

N Engl J Med. 2012; 366:9-19.

45

ATLAS-ACS TIMI 51 (Rivaroxaban 2.5mg BID vs. Placebo)

		Rivaroxaban %	Placebo %		
		2.5 mg BID n = 5114	n = 5113	Hazard ratio (95% CI)	P value
Primary outcome		9.1	10.7	0.84 (0.72-0.97)	.02
Secondary outcome		2.7	4.1	0. 66 (0.51-0.86)	.002
Major non-CABG bleed	ling	1.8	0.6	3.46 (2.08-5.77)	.001
ІСН		0.4	0.2	2.83 (1.02-7.86)	.04
Fatal bleeding		0.1	0.2	0.67 (0.24-1.89)	.45
Primary outcome: death from CV causes, stroke Secondary outcome: death from any cause, MI, stroke					

Mega JL et al. N Engl J Med. 2011 Nov 13

ATLAS-ACS TIMI 51 (Rivaroxaban 5mg BID vs. Placebo)

	Rivaroxaban %	Placebo %			
	5 mg BID n = 5115	n = 5113	Hazard ratio (95% CI)	P value	
Primary outcome	8.8	10.7	0.85 (0.73-0.98)	.03	
Secondary outcome	4.0	4.1	0.94 (0.75-1.20)	.63	
Major non-CABG bleeding	2.4	0.6	4.47 (2.71-7.36)	<.001	
ІСН	0.7	0.2	3.74 (1.39-10.07)	.005	
Fatal bleeding	0.4	0.2	1.72 (0.75-3.92)	.20	
Primary outcome: death from CV causes, stroke Secondary outcome: death from any cause. MI. stroke					

Mega JL et al. N Engl J Med. 2011 Nov 13

ATLAS-ACS TIMI 51 (STEMI subgroup)

Mega JL et al. JACC 2013

48

ATLAS-ACS TIMI 51 (STEMI subgroup)

ATLAS-ACS TIMI 51 (STEMI subgroup)

50

Mega JL et al. JACC 2013

To Summarize ATLAS-ACS TIMI 51

- In patients with ACS, rivaroxaban <u>reduced the</u> risk of the composite end point of death from CV causes, MI, or stroke.
- Rivaroxaban increased the risk of major bleeding and intracranial hemorrhage but not the risk of fatal bleeding.
- Same findings in STEMI subgroups.

2012 ESC Guidelines (STEMI)

Routine therapies in the acute, subacute, and long-term phase of STEMI

	Class	Level	
In selected patients who receive aspirin and clopidogrel, low-dose			
rivaroxaban (2.5 mg BID) may be	llb	В	
considered if the patient is at			
low bleeding risk.			

 On March 2013: Rivaroxaban gets <u>ACS indication</u> recommendation from European regulators

Apixaban

- Oral direct Factor Xa Inhibitor
- Half-life :12 h

- 25% of the drug is cleared by kidney.
- Metabolized via the CYP3A4 system

 \rightarrow coadministration of potent inhibitors of the enzyme, including some <u>HIV protease inhibitors</u>, <u>macrolide antibiotics</u>, and azole <u>antifungals</u>, should be avoided.

Apixaban in ACS (APPRAISE II)

PCI in about 44%

Primary outcome: Cardiovascular death, MI, ischemic stroke

Safety: TIMI major bleeding

*≥ 65 years, DM, h/o MI < 5 years, cerebrovascular disease, PVD, HF, or LVEF < 40%, CrCl < 60 mL/min, no revascularization for index ACS

Alexander JH et al. New Eng J Med 2011: 365:699-708 54

Apixaban in ACS (APPRAISE II)

Alexander JH et al. New Eng J Med 2011: 365:699-708 55

Apixaban in ACS (APPRAISE II)

TIMI Major Bleeding

Alexander JH et al. New Eng J Med 2011: 365:699-708 ⁵⁶

Potential Advantages of New Oral Anticoagulants

- <u>High specificity</u>
- Predictable pharmacokinetics
- Good efficacy and tolerability balance
- Fixed daily dose (once- or twice-daily)
- <u>No monitoring or dose adjustment</u> requirement
- Rapid onset of action
- Fewer drug and food interactions

Unresolved Issues with New Oral Anticoagulants

- <u>No</u> established methods of <u>monitoring</u>
- No known therapeutic ranges
- <u>Lack of an antidote</u> (difficulty in the management of bleeding)
- Long-term safety
- No head-to-head comparisons of new agents

Ideal Anticoagulation Drug

- 1. Potent antithrombotic effect
- 2. Rapid onset and offset (availability of an antidote)
- 3. Predictable pharmacodynamic profile, making monitoring unnecessary
- 4. <u>No interaction with adjunctive medications</u>
- 5. Low risk and cost
- 6. Easy to administer

Summary

- 1. Bivalirudin: Approved for ACS patients undergoing PCI
 - Reduced 3-year cardiac mortality in STEMI pts after PCI.
 - Reduced CV events with lower bleeding in NSTEMI pts after PCI.
 - BUT too expensive and not available in Korea!
- 2. Fondaparinux:
 - Not recommended for ACS pts undergoing PCI
- 3. Dabigatran:
 - Reduced CV events with increased bleeding in AMI pts.
 - Still need more data in PCI pts!
- 4. Rivaroxaban: Approved for ACS patients in Europe
 - Reduced CV events with increased bleeding in ACS pts.
- 5. Apixaban:
 - No reduction in CV events with increased bleeding in ACS pts.
 - Too early for PCI pts!

Conclusions

Novel injectable anticoagulant

 \rightarrow <u>Bivalirudin</u>, which is not available in Korea and more expensive than heparin, could be a good alternative option in ACS pts undergoing PCI.

• Novel oral anticoagulant

 \rightarrow <u>**Rivaroxaban**</u> which is approved only in Europe for ACS could be used to decrease CV events.

 \rightarrow Apixaban and dabigatran need more data in ACS.

No data yet on new anticoagulants + prasugrel or ticagrelor.

Thank You For Your Attention!

3-Year Mortality: Cardiac and Non Cardiac

Stone GW et al. Lancet 2011;377:2193-204

Rivaroxaban in ACS (ATLAS-ACS 2 TIMI 51)

N Engl J Med. 2012; 366:9-19.

Rivaroxaban in ACS (ATLAS-ACS TIMI 46)

- <u>3,491 patients after ACS</u> randomized, PCI between 63.3%~ 64.2%
- The primary safety endpoint was clinically significant bleeding
- <u>The primary efficacy endpoint</u> was death, MI, stroke, or severe recurrent ischemia requiring revascularization during 6 months.

Mega JL et al. Lancet. 2009;374:29-38