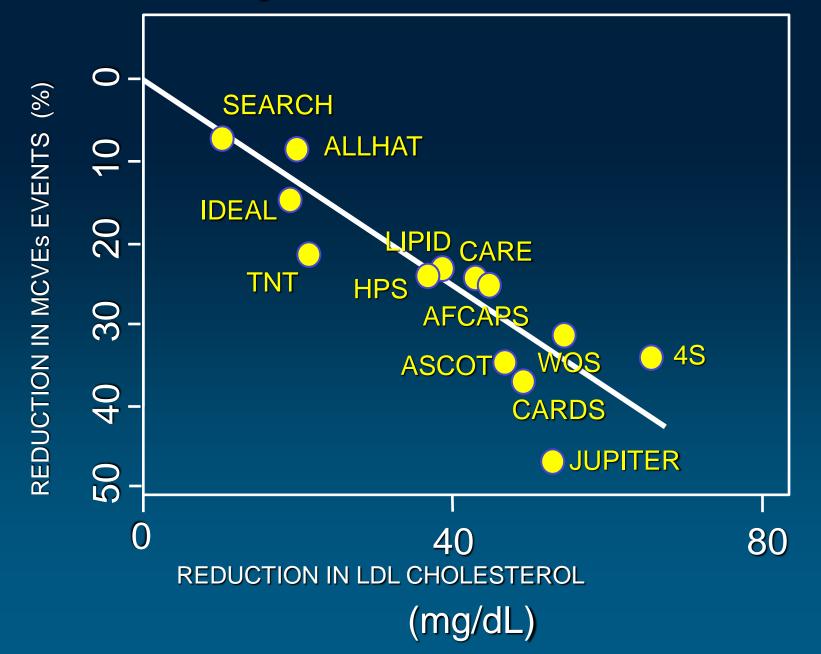
Evolving Mission of CVD Prevention:

Future Direction of Dyslipidemia and Hypertension

management


홍 그 루

연세의대 심장내과

Evolution of NCEP-ATP

ATP I (1988)	ATP II (1993)	ATP III (2002)			
 Diet Low dose (Drug of choice : bile acid sequestrants, nicotinic acid) 	 Delaying the use of drug in patients at low risk Intensive management of LDL-C in pts with CHD (Major drug : bile acid sequestrants, nicotinic acid, statins vs. Other drug : fibric acids , probucol) 	• More intensive LDL-C lowering for the patients with multiple risk factors or CHD			
	4S WOSCOPS CARE LIPID "The Lower, The Better"				
More intensive treatment recommendation					

Major Intervention Trials

Evolution of LDL-C Goals in various guidelines

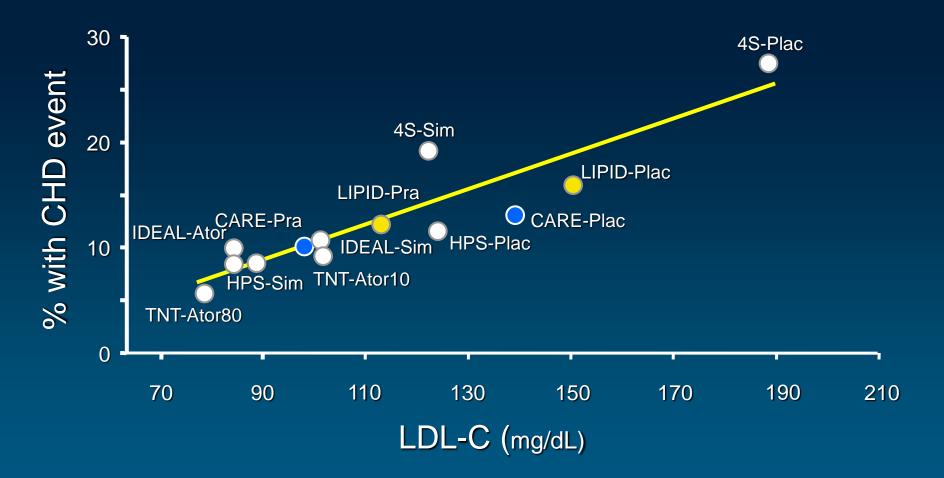
160 - -	2002–2003	2004–2005	2006–2007	2008-2012
150 -	Mess (2002)	PROVE IT (2004)	AHA/ACC (2006)	JUPITER (2008)
140 -	PROSPER (2002)	CARDS (2004)	– "Reasonable"	SATURN (2011)
- 130 - -	 ALLHAT-LLT (2002) ASCOT-LLA (2003) 	TNT (2005)IDEAL (2005)	to treat to LDL-C <70 mg/dL	"Very High CV risk'
120 -	HPS diabetes (2003)			Section 2011)
110 -	NCEP ATP III update	ADA (2005)Patients with	(2007) ፬ 4 th Joint Task	5 th Joint Task Force ESC (2012)
100 -	■ 3 rd Joint Task Force ESC (2003)	diabetes + CVD	Force ESC (2007) Established CHD	 LDL-C <1.8 mmol/L
90 -	TC<5 mmol/LLDL<3mmol/L	 Optional LDL-C goal: <70 	TC<4.5mmo/L (option of 4)	or >50% reduction from baseline LDL-C
- 80 -	 Established CHD 	mg/dL	LDL<2.5mmol/	☑ ADA (2012)
70 -	TC<4.5mmol/LLDL<2.5mmol/L		L (option of 2) SESC/EASD (2007)	
60 -			Pts with diabetes + CVD	
50 -			☑ LDL<1.8-	

2.0mmol/L

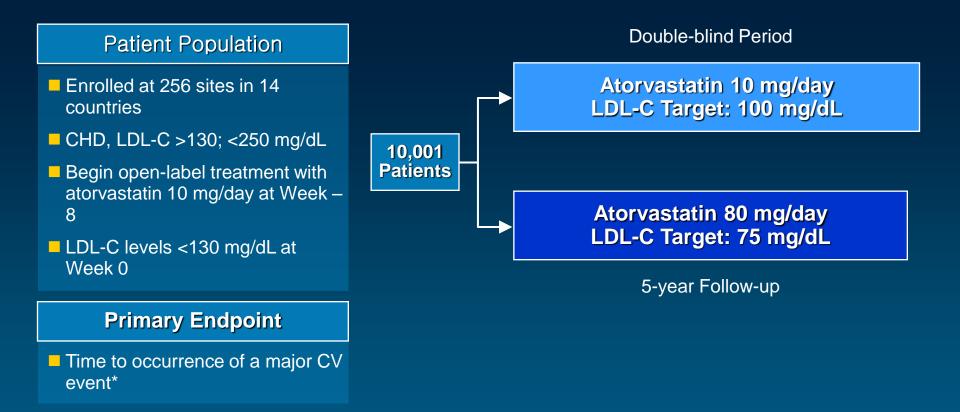
NCEP-ATPIII : LDL-C Goals in Different Risk Categories

Risk Category	LDL-C Goal				
CHD or CHD Risk Equivalents : Other clinical forms of atherosclerotic disease (peripheral arterial disease, abdominal aortic aneurysm, symptomatic carotid artery disease) Diabetes 10-year risk for CHD>20 %	< 100 mg/dL				
2+ Risk Factors without CHD	< 130 mg/dL				
0-1 Risk Factors without CHD	< 160 mg/dL				
LDL-C<70 mg/dL is optional : Very High Risk					
Established CVD plus (1) Multiple risk factors (esp, Diabetes), (2) Severe and poorly controlled risk factors (esp, continued cigarette smoking), (3) Multiple risk factors of the metabolic syndrome (esp TG ≥ 200 mg/dL + non-HDL-C ≥ 130 mg/dL + HDL-C<40mg/dL), (4) ACS					

ESC/EAS guidelines (2011) LDL-C Goals in Difference Risk Categories

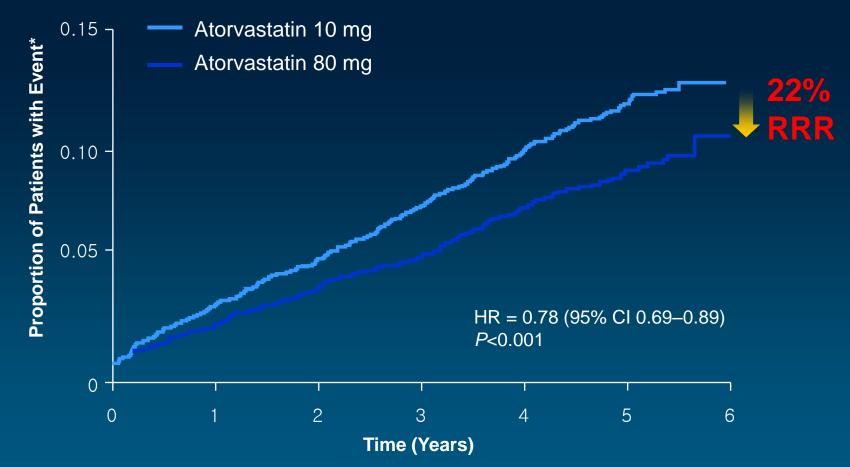

Risk Category	LDL Goal
Very High Risk : Estabilished CVD, Previous MI, ACS, Coronary revascularization, Other arterial revascularization, Ischaemic stroke, PAD, Diabetes, CKD(GFR < 60 mL/min/1.73m ²), 10 year risk SCORE ≥ 10 %	< 70 mg/dL ^{and/or} ≥ 50 % ↓
High Risk : Markedly elevated single risk factors (ex. Familial dyslipidaemias, severe hypertension), 10 year risk SCORE ≥ 5 % and <10 %	< 100 mg/dL
Moderate Risk : 10 year risk SCORE ≥ 1 % and < 5 %	< 115 mg/dL
Low Risk : 10 year risk SCORE < 1 %	

Why < 70 mg/dL?


Aggressive lipid therapy in patients at high risk

Statin for Secondary Prevention : TNT, IDEAL, SATURN

Statin Trials: LDL-C Levels vs Events Secondary Prevention


Stable CHD Patients – TNT Design

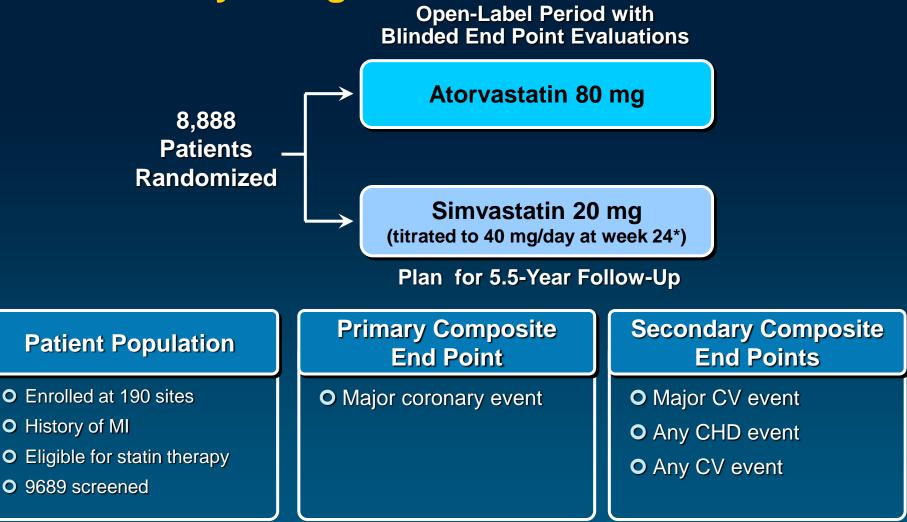
* Major CV events: death from CHD, nonfatal nonprocedure-related myocardial infarction, resuscitation after cardiac arrest , or fatal or nonfatal stroke. LaRosa JC, et al. for the TNT Investigators. *N <u>Engl J Med* 2005;352:1425-1435</u>.

Stable CHD Patients – TNT Results

Incidence of first major CV event

* Major CV events: death from CHD, nonfatal nonprocedure-related myocardial infarction, resuscitation after cardiac arrest, or fatal or nonfatal stroke.

LaRosa JC, et al. for the TNT Investigators. N Engl J Med 2005;352:1425-1435.

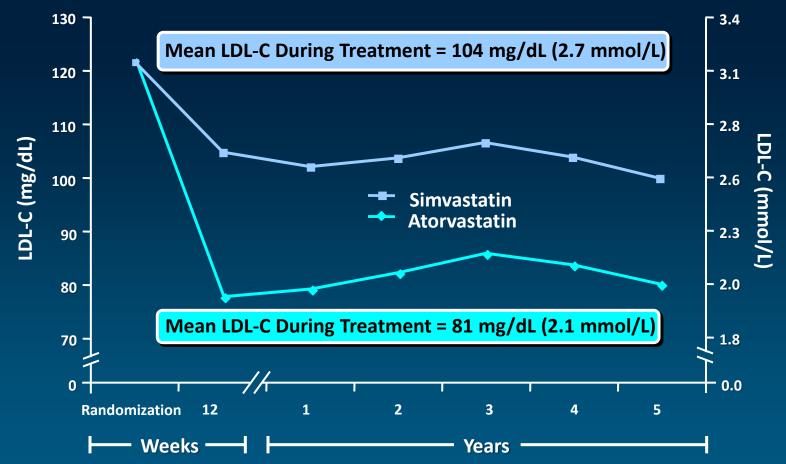

Stable CHD Patients – TNT Sub-Analysis

Primary endpoint result	Diabetes n=1,501	Metabolic syndrome n=5,584	Chronic kidney disease* n=3,107	Previous CABG n=4,654	Previous PCI n=5,407	Age ≥ 65 n=3,809	Heart Failure [†] n=781
Atorvastatin 10 mg	17.9%	13.0%	13.4%	13.0%	10.6%	17.9%	17.3%
Atorvastatin 80 mg	13.8%	9.5%	9.3%	9.7%	8.6%	13.8%	10.6%
Hazard ratio, 95% Cl	0.75 0.58-0.97	0.71 0.61-0.84	0.68 0.55-0.84	27% RRR	0.79 0.67-0.94	0.75 0.58-0.97	0.59 0.40-0.88
Р	0.026	<0.0001	0.0003	0.0004	0.008	0.026	Not reported

TNT primary endpoint: Major CV events: death from CHD, nonfatal nonprocedurerelated MI, resuscitation after cardiac arrest, or fatal or nonfatal stroke.

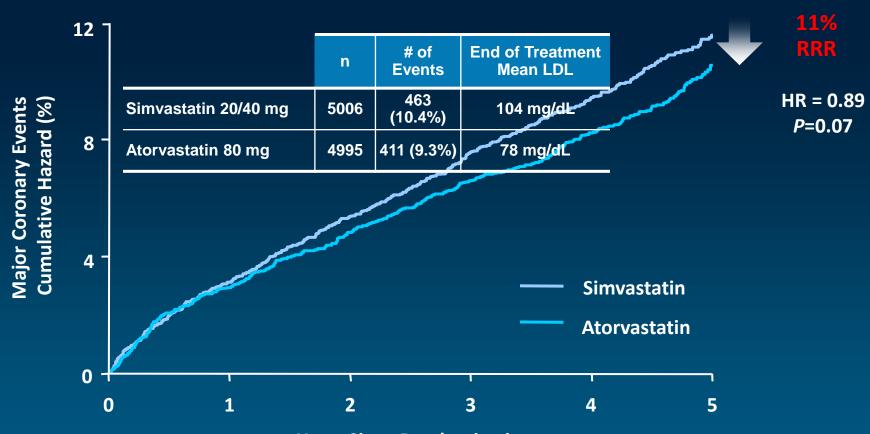
* Defined as GFR <60mL/min per 1.73m²
† Incidence of HF hospitalisation
Waters DD. *Prog Cardiovasc Dis* 2009;51:487-502

Secondary Prevention – IDEAL: Study Design



*Simvastatin dose was increased to 40 mg/day at week 24 in patients whose plasma total cholesterol remained >5.0 mmol/L (190 mg/dL) or whose LDL cholesterol remained >3.0 mmol/L (115 mg/dL).

Adapted from Pedersen TR, et al. Am J Cardiol. 2004;94:720-724.


IDEAL Results

LDL-C Result

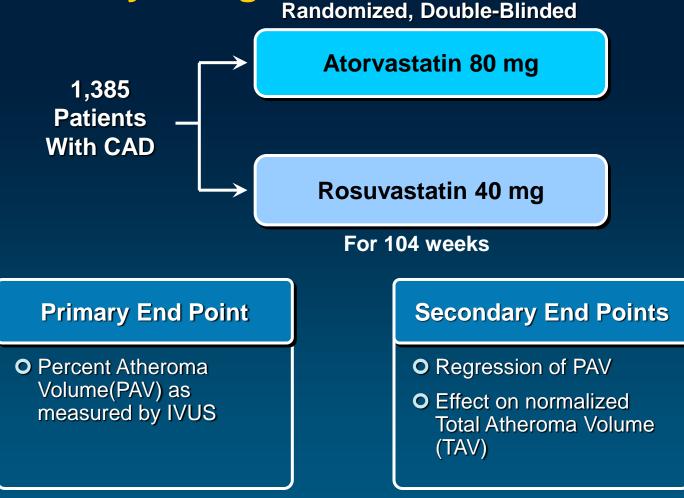
Adapted from Pedersen TR, et al. JAMA. 2005;294:2437-2445.

IDEAL Results

Major Coronary Events*

Years Since Randomization

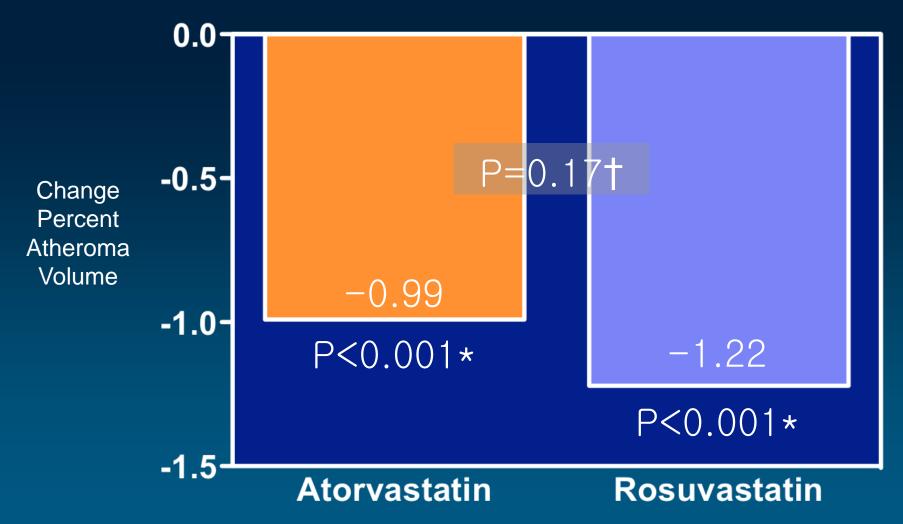
*CHD death, nonfatal MI, and resuscitated cardiac arrest.


Adapted from Pedersen TR, et al. JAMA. 2005;294:2437-2445.

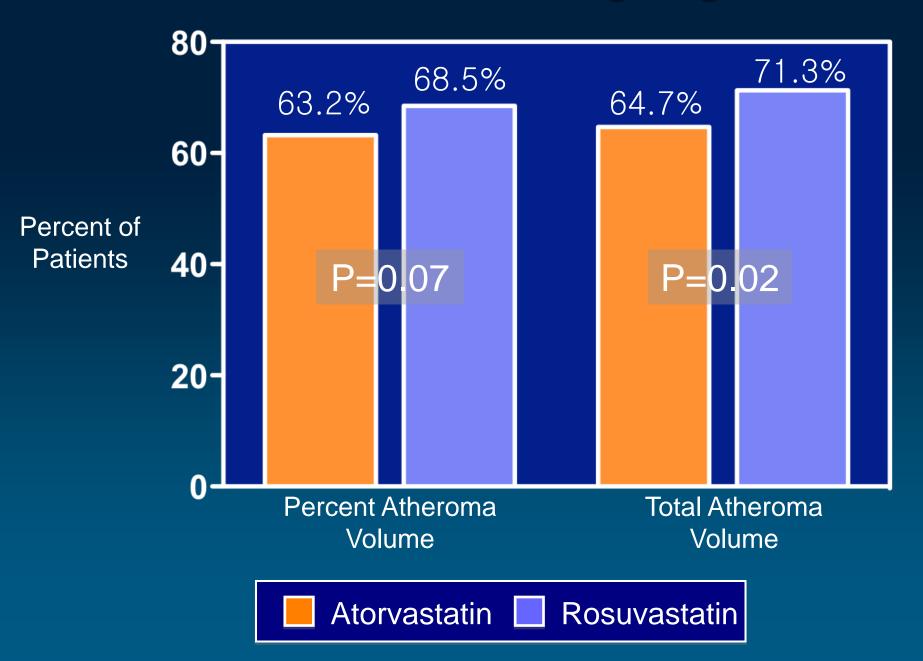
IDEAL Results

	No. of Patients (%)						
	Atorvastatin (N=4,439)Simvastatin (N=4,449)Hazard RatioP						
Major coronary event	411 (9.3)	463 (10.4)	0.89	.07			
CHD death	175 (3.9)	178 (4.0)	0.99	.90			
Nonfatal MI	267 (6.0)	321 (7.2)	0.83	.02			
Resuscitated cardiac arrest	10 (0.2)	7 (0.2)	-	-			

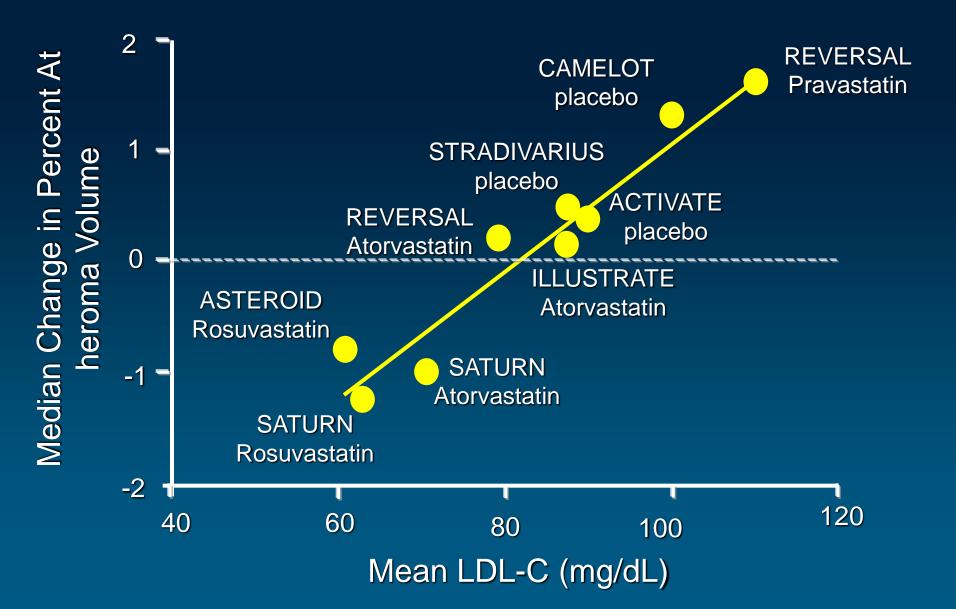
Adapted from Pedersen TR, et al. JAMA. 2005;294:2437-2445.


SATURN: Study Design

NEJM. 2011; 365: 2078-87


Primary IVUS Efficacy Parameter

Median Change Percent Atheroma Volume



† comparison between groups. *** comparison from baseline

Fraction of Patients Exhibiting Regression

Achieved LDL-C and Change in Percent Atheroma Volume


Is < 70 mg/dL Safe in Asian?</pre>

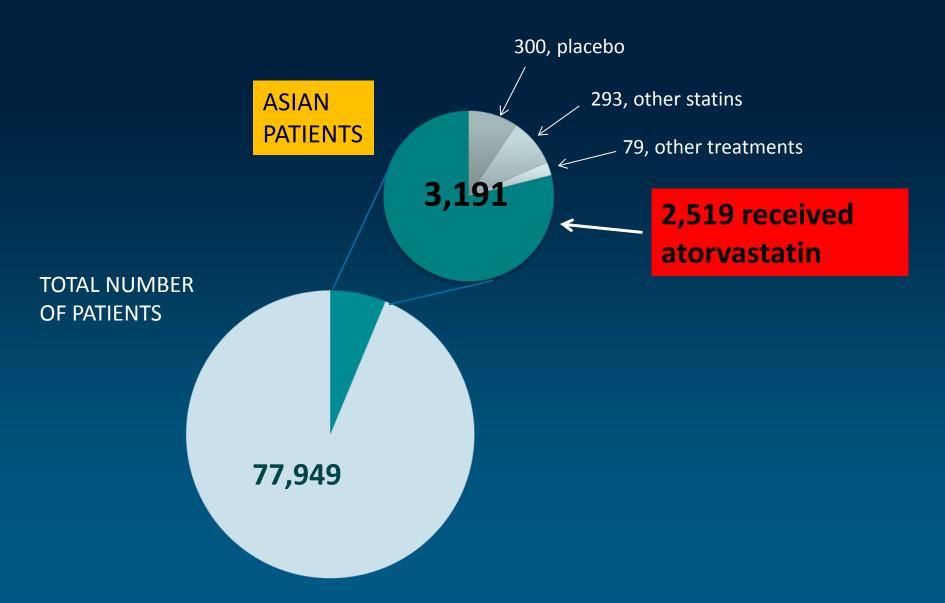
Similar Safety Profile for Atorvastatin Among Asians Compared to Total Patient Population

ASCOT, CARDS, TNT ... SPARCL

Juliana Chan¹, Weihang Bao², Rana Fayyad², Rachel Laskey²1. Chinese University of Hong Kong2. Pfizer Inc., New York, USA

Key Atorvastatin Clinical Studies

Key to Clinical Sections:



Lipid-Lowering Efficacy Clinical Endpoint Regression/Surrogate
 Non-cardiovascular

Asia Region Trials

Total Number of Patients

Trials Included in Analysis

	Long-term trials	Short-term trials
Number	6	52
Median duration	3.1 to 4.9 years	4 to 72 weeks
Number of patients	39,169	38,780
Asians in study	547	2,644
Asians on atorvastatin	344	2,175

Long-term CV Outcome Trials

SPARCL	N=4,731
SPARCL	Prior stroke
TNT	N=10,001
	Clinically evident coronary heart disease
IDEAL	N=8,888
IDEAL	Had a myocardial infarction (MI)
CARDS	N=2,838
CARDS	Type 2 diabetes; ≥1 risk factor
ASPEN	N=2,410
ASPEN	Type 2 diabetes; with or without MI
ASCOT-LLA	N=10,305
	Hypertension; ≥3 risk factors

Results: Overall Safety

Similar – The incidence of AEs and SAEs for Asian patients and all patients

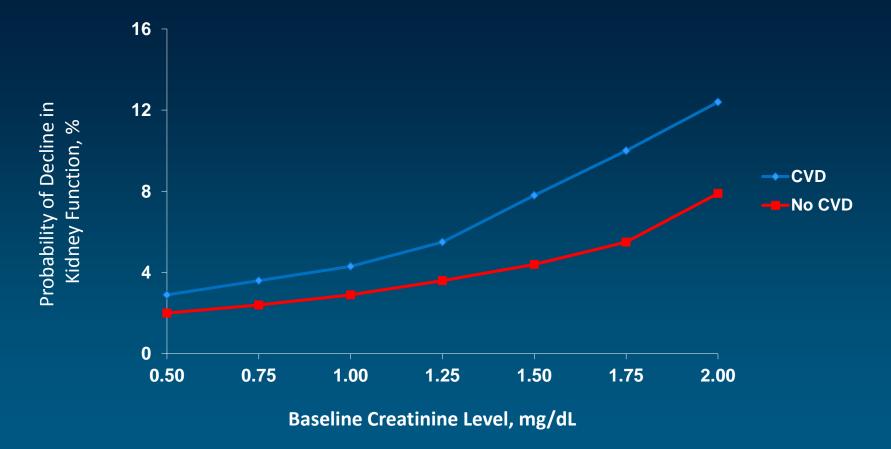
Similar – Study discontinuations because of AEs between Asian patients and all patients

Rare – Treatment-related SAEs in Asian patients

Not observed – Dose relationship for AEs (all-cause and treatment-related) in Asian patients

Conclusions

- The safety profile of atorvastatin 10 mg to 80 mg is similar in Asian pts. and the overall study populations.
- In high-risk patients with coronary artery disease and the metabolic syndrome, very aggressive treatment of low-density lipoprotein (LDL) or 'bad' cholesterol reduces the risk for additional CV events.
- General rule: the lower the LDL-C, the better
- New evidence may encourage physicians to help more people in Asia to reach cholesterol goals, particularly in high-risk patients – eg, patients with diabetes or chronic kidney disease


Is < 70 mg/dL Safe in CKD patients?</pre>

Statin in CKD Patients

CARDS-CKD TNT-eGFR TNT-CKD PLANET ATV vs. RSV Meta-Analysis

CVD is an Independent Risk Factor for Renal Function Decline and Development of CKD

Adjusted Estimated Probability of Kidney Function Decline as a Function of the Baseline Serum Creatinine Level

Elsayed EF, et al. Arch Intern Med. 2007;167:1130-1136.

NKF Guidelines Recommend Aggressive LDL-C Management in DM & CKD

Year	Lipid Management Guidelines	LDL-C Goal
2003 ¹	K/DOQI Clinical Practice Guidelines	<100 mg/dL in all CKD patients: Initiate therapeutic lifestyle changes Initiate a statin in LDL-C ≥130 mg/dL
	for Managing	 May add a statin in LDL-C >100 mg/dL
2007 ²	Dyslipidemia in CKD	 <100 mg/dL in patients with diabetes and CKD stages 1-4: Initiate therapeutic lifestyle changes Initiate a statin if LDL-C ≥100 mg/dL <70 mg/dL is a therapeutic option

1. National Kidney Foundation. Am J Kidney Dis. 2003;41(suppl 3);S1-S91.

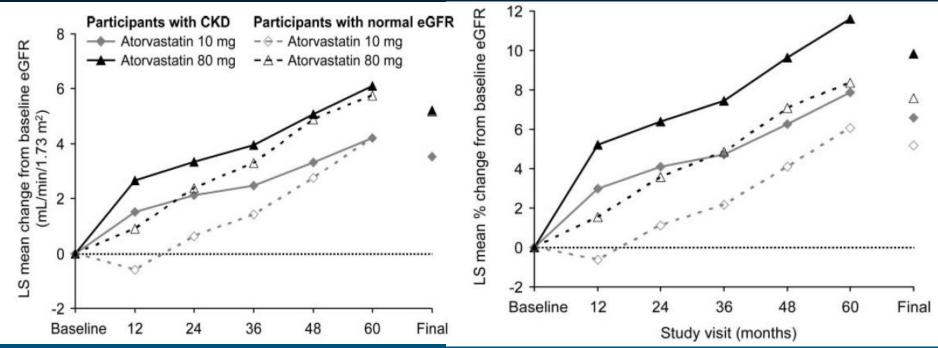
2. National Kidney Foundation. Am J Kidney Dis. 2007;49(suppl 2);S1-S180.

Effects of Atorvastatin on Kidney Outcomes and Cardiovascular Disease in Patients With Diabetes

CARDS-CKD Result

cebo normoalbuminuric statin normoalbuminuric Mean within-person change in eGFR from baseline (mL/min/1.73 m²) rvastatin albuminuric cebo albuminuric Figure 1. Yearly mean з within-person change in esti-2 mated glomerular filtration rate (eGFR) by treatment group and 1 baseline albuminuria. Net effect of atorvastatin on eGFR in 0 those with normoalbuminuria: Baselin 0.13 mL/min/1.73 m²/y; P =-1 0.1; in those with albuminuria: 0.38 mL/min/1.73 m²/y; P =-2 0.03. Interaction between albuminuria and atorvastatin: $\beta =$ -3 0.26 (95% confidence interval, -0.09 to 0.60; P = 0.1). -4

Atorvastatin treatment was associated with a modest improvement in annual change in eGFR

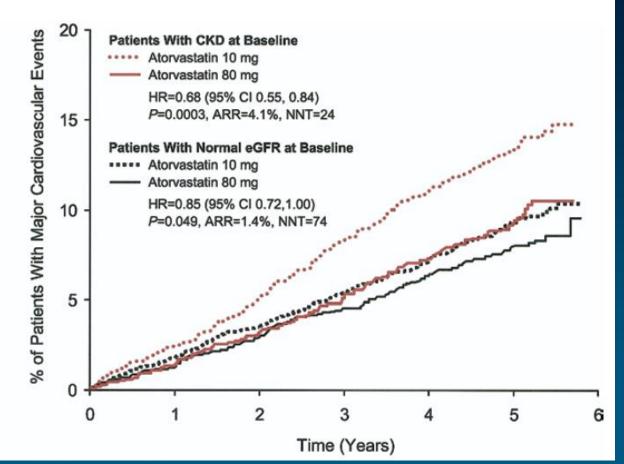

That was most apparent in those with albuminuria (net improvement, 0.38 mL/min/1.73 m2/y; P 0.03)

Am J Kidney Dis. 54:810-819

Effect of Intensive Lipid Lowering with Atorvastatin on Renal Function in Patients with Coronary Heart Disease

TNT-eGFR Result

Estimated GFR improved in both treatment groups but was significantly greater with Atorvastatin 80 mg than with 10 mg, suggesting this benefit may be dosage related


Shepherd J et al. Clin J Am Soc Nephrol 2: 1131–1139, 2007. doi: 10.2215/CJN.04371206

*CKD=Chronic kidney Diesase: eGFR <60 mL/min/1.73 m2

A Post hoc Analysis of TNT in Patients with CHD and CKD

TNT-CKD Result

Intensive lipid lowering with Atorvastatin 80 mg resulted in a 32% relative reduction in risk of major cardiovascular (CV) events compared with 10 mg

In patients with CKD, atorvastatin 80mg resulted in significant reductions in secondary event rates

	Event ra 10 mg	te (CKD) 80 mg				E	vent rate (10 mg	normal eGFR) 80 mg
Any CV event	38.1%	30.5%	_	•			30.9%	26.6%
Major coronary	10.4%	6.9%		•_			6.8%	6.1%
Any coronary	28.6%	22.2%		→			24.9%	21.0%
Cerebrovascular	6.9%	4.6%		•	_		4.2%	3.4%
CHF with hosp.	5.6%	3.1% —	•				2.2%	2.2%
PAD	7.4%	7.6%		•	•	-	4.8%	4.6%
All-cause mortality	7.5%	7.0%			- -		3.7%	4.1%
		0.4	0.6		.0 1.2	1.4	1.6	
	Ator	vastatin 80 m	g better	Hazard ratio	Atorvas	statin 10	0 mg bette	r

Shepherd J et al. Am Coll Cardiol. 2008;51(15):1448-1454.

Safety in Patients With CKD and Patients With Normal eGFR

	No. of patients (%)				
	Cł	(D	Normal eGFR		
	Atorva 10 mg (n=1505)	Atorva 80 mg (n=1602)	Atorva 10 mg (n=3324)	Atorva 80 mg (n=3225)	
Hematuria (all-cause)	51 (3.4)	58 (3.6)	124 (3.7)	121 (3.8)	
Albuminuria (all-cause)	25 (1.7)	28 (1.7)	47 (1.4)	53 (1.6)	
$CPK \ge 10 \times ULN*$	0 0		0	0	
ALT and/or AST \ge 3 × ULN*	1 (0.1)	22 (1.4)	8 (0.2)	38 (1.2)	


Shepherd J et al. Am Coll Cardiol. 2008;51(15):1448-1454.

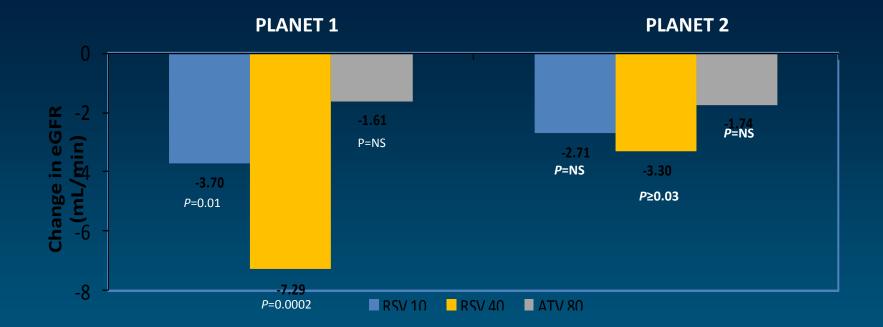
PLANET 1 and 2: Study Design

PLANET 1: 325 patients with type I or II diabetes (ITT population)

PLANET 2: 220 patients without diabetes (ITT population)

- Inclusion criteria
 - Moderate proteinuria (urinary protein / creatinine ratio 500–5,000 mg/g)
 - > Hypercholesterolaemia (fasting LDL-C ≥90 mg/dL (2.33 mmol/L)
 - > ACE inhibitors or ARBs for \geq 3 months prior to screening

PLANET 1 and 2: Primary Endpoint - Effect on Proteinuria


Vs Baseline, Atorvastatin 80 mg significantly reduced urinary protein ratio, while Rosuvastatin 40 mg demonstrated no significant change in urinary protein ratio

		Rosuvastatin 10 mg	Rosuvastatin 40 mg	Atorvastatin 80 mg				
	Urinary protein excretion							
PLANET 1	Post:Pre protein / creatinine % change	_	_	0.874				
	P-value vs baseline	<5%* NS	<5%* NS	-12.6 0.033				
	Urinary albumin excretion							
	Post:Pre albumin / creatinine	-	0.836	0.823				
	% change	'Small'*	-16.4	-17.7				
	P-value vs baseline	NS	0.041	0.010				
	Urinary protein excretion							
	Post:Pre protein / creatinine	-	-	0.759				
	% change	<10%*	<10%	-24.6 [†]				
DIANET 2	P-value vs baseline	NS	NS	0.003				
PLANET 2	Urinary albumin excretion							
	Post:Pre albumin / creatinine	0.879	0.967	0.719				
	% change	-	-	-28.1				
	P-value vs baseline	0.390	0.696	0.002				

*Not specified whether change was increase or decrease. †P = 0.01 vs. rosuvastatin 20/40 mg.

PLANET 1 and 2: Secondary Endpoint - Changes in eGFR

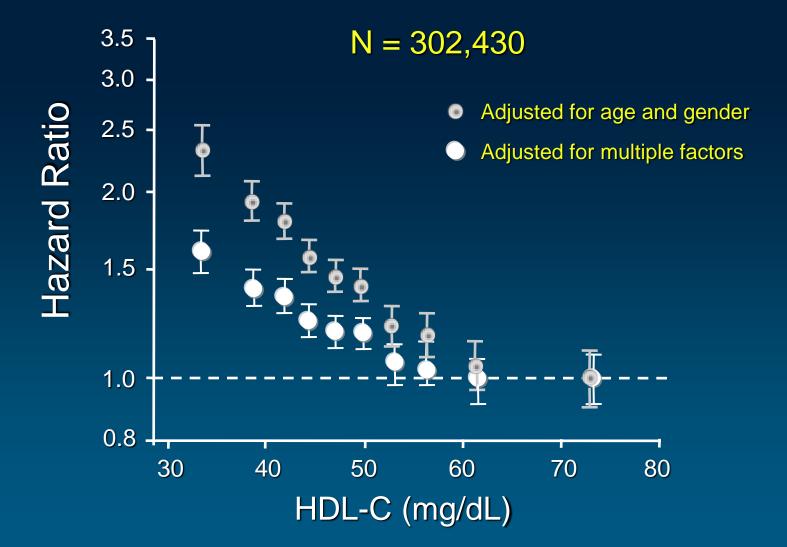
PLANET 1: Patinets on <u>RSV lost more kidney function over 52 weeks than did those on ATV</u> PLANET 2: <u>RSV 40 mg significantly decreased eGFR vs baseline</u>

PLANET 1 and 2: Summary of Reported Adverse Events

n (%)	Rosuvastatin 10 mg	Rosuvastatin 40 mg	Atorvastatin 80 mg	P-value
PLANET 1 (Diabetic patients)	n = 116	n = 123	n = 110	
Any adverse event	69 (59.5)	79 (64.2)	63 (57.3)	NS
Any serious adverse event	18 (15.5)	20 (16.3)	21 (19.1)	NS
Any renal adverse event	9 (7.8)	12 (9.8)	5 (4.5)	NS
Acute renal failure	0	5 (4.1)	1 (0.9)	<0.05
Serum creatinine doubling	0	6 (4.9)	0	<0.01
Doubling of serum creatinine or acute renal failure	0	9 (7.3)	1 (0.9)	<0.01
PLANET 2	n = 69	n = 87	n = 80	
Any adverse event	37 (53.6)	49 (56.3)	42 (52.5)	NS
Any serious adverse event	10 (14.5)	6 (6.9)	5 (6.3)	NS
Any renal adverse event	4 (5.8)	6 (6.9)	3 (3.8)	NS
Acute renal failure	0	1 (1.1)	0	NS
Doubling of Serum creatinine	1 (1.4)	0	0	NS
Doubling of serum creatinine or acute renal failure	1 (1.4)	1 (1.1)	0	NS

PLANET Conclusions

In people with or without diabetes with proteinuria:

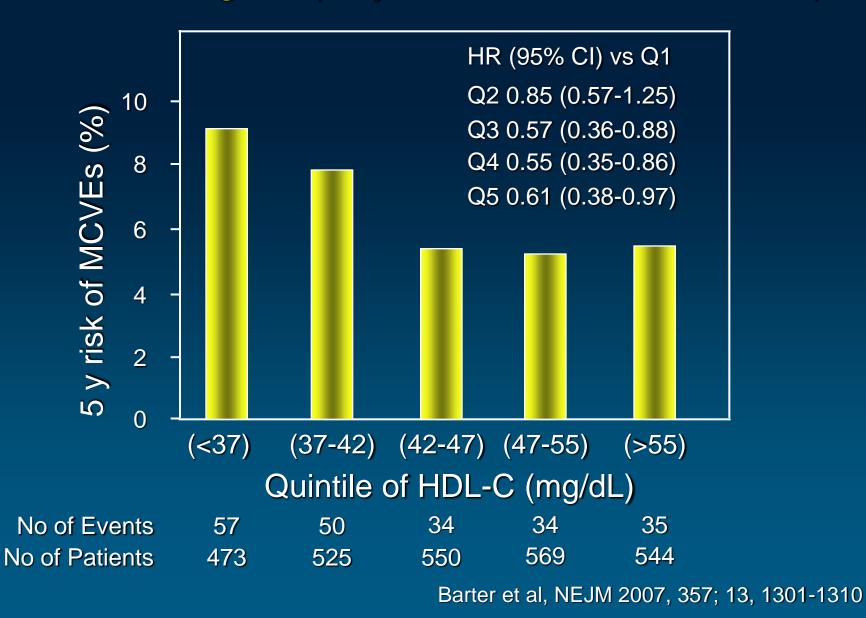

 Rosuvastatin 10 or 40 mg had no effect on proteinuria, whereas atorvastatin 80 mg reduced proteinuria

 Rosuvastatin 40 mg was associated with a significant decline in eGFR, whereas atorvastatin 80 mg showed no change in eGFR

 With respect to statin-induced renal protection or renal damage, atorvastatin 80 mg had a clear advantage over rosuvastatin 40 mg in the studied renal patient populations Despite the effective reduction in CV risk achieved by lowering LDL-C with statins, many people remain at risk and have furt her CV events

One factor responsible for this residual C V risk is a low level of HDL-C

Coronary heart disease and HDL-C

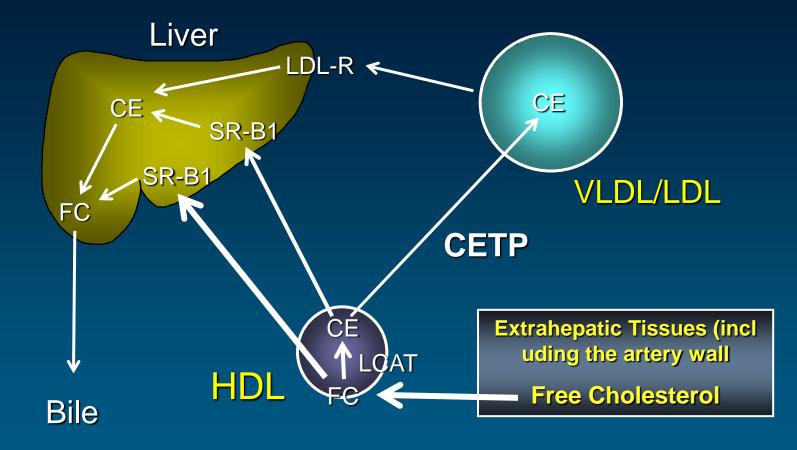


The Emerging Risk Factors Collaboration. JAMA 2009;302:1993-2000.

Question

Does the HDL level matter if the LDL-C is very low?

MCVE Frequency by HDL level in group with LD L-C < 70 mg/dL (Adjusted for baseline LDL)

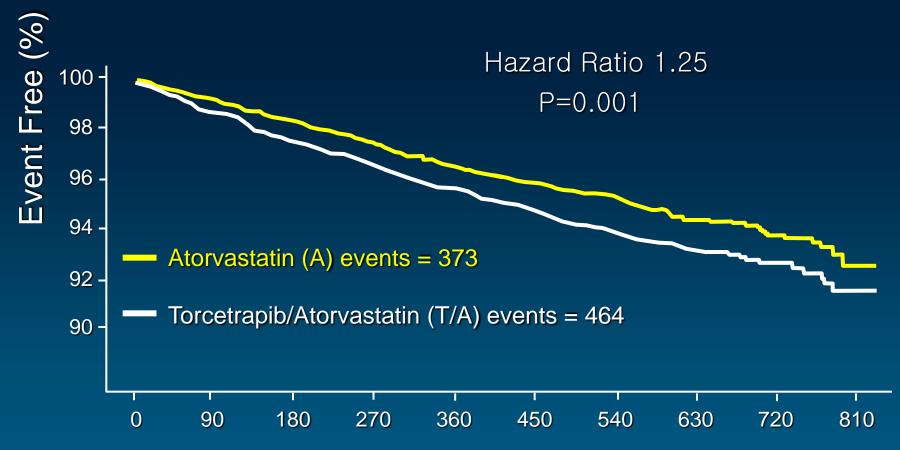


Potential protective properties of HDL

- Promote cholesterol efflux
- Anti-oxidant properties
- Anti-thrombotic properties
- Anti-inflammatory properties
- Improve endothelial function
- Promote endothelial repair
- Improve diabetic control
- Other

(humans, non-human primates, rabbits)

Human Genetics

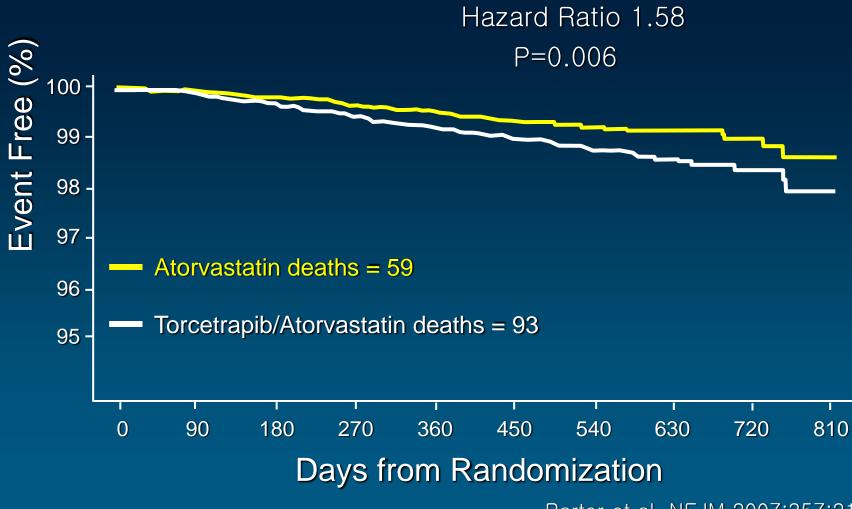

Four very large human studies found tha t genetic variants of CETP associated wi th reduced levels of CETP activity are ac companied by higher HDL-C, lower LDL-C and reduced CV risk

> Thompson et al JAMA2008;299:2777-278 Voight et al Lancet, online ahead of publication, 17 May 2012 Ridker et al. Circ Cardiovasc Genet 2009; 2: 26 Johannsen et al JACC 2012; 60:2041

But

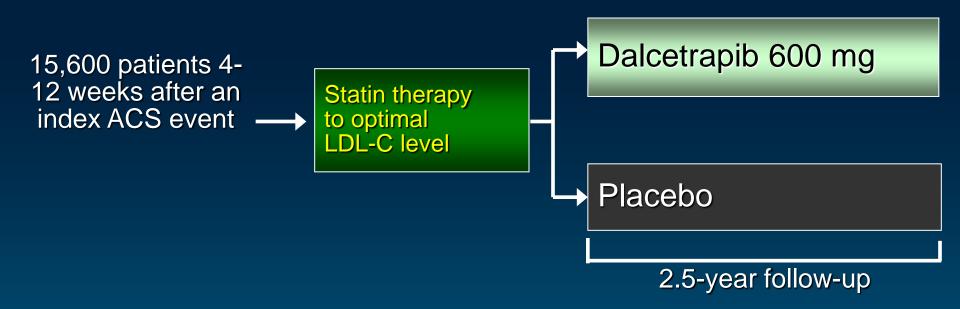
Inhibition of CETP with torcetrapib and dalcetrapib did not reduce CV events a nd, in the case of torcetrapib, caused s erious harm.

ILLUMINATE: Primary Endpoint: Time to First MCVE*: Kaplan-Meier Plot



Days from Randomization

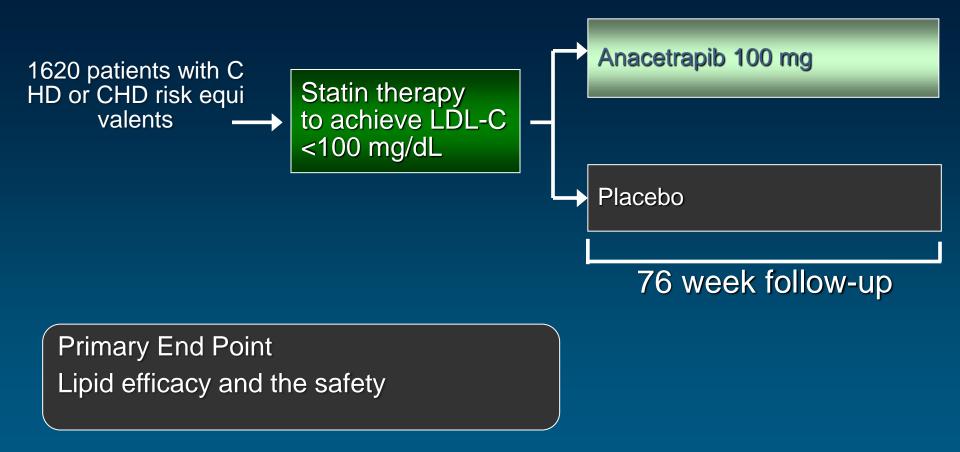
*Major cardiovascular event: CHD death, non-fatal MI, stroke or hospitalization for unstable angina


Barter et al, NEJM 2007;357:2109

ILLUMINATE: Secondary Endpoint Time to Death: Kaplan-Meier Plot

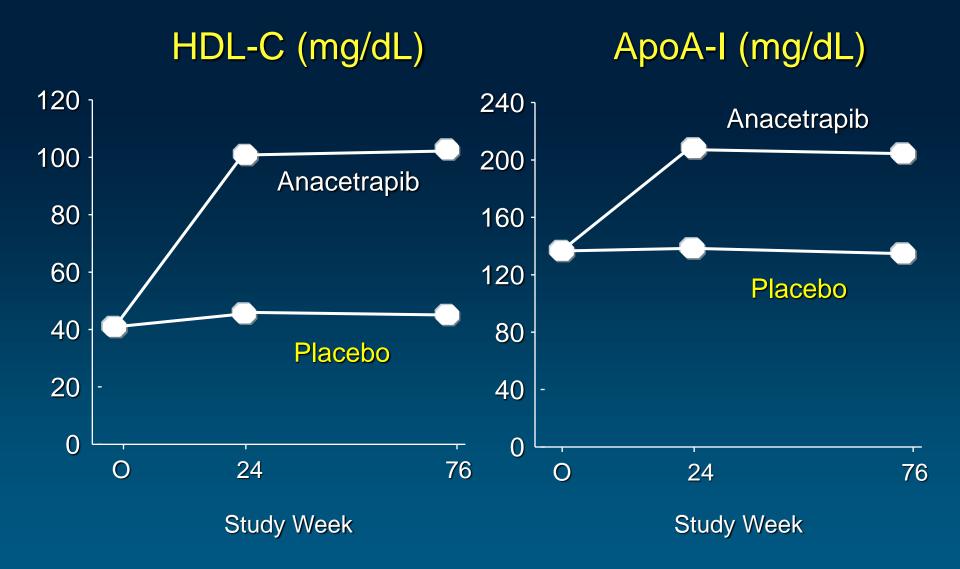
Barter et al, NEJM 2007;357:2109

dal-OUTCOMES Trial


Primary End Point CHD death, non-fatal MI, atherothrombotic stroke , unstable angina requiring hospitalization or resu scitated cardiac arrest

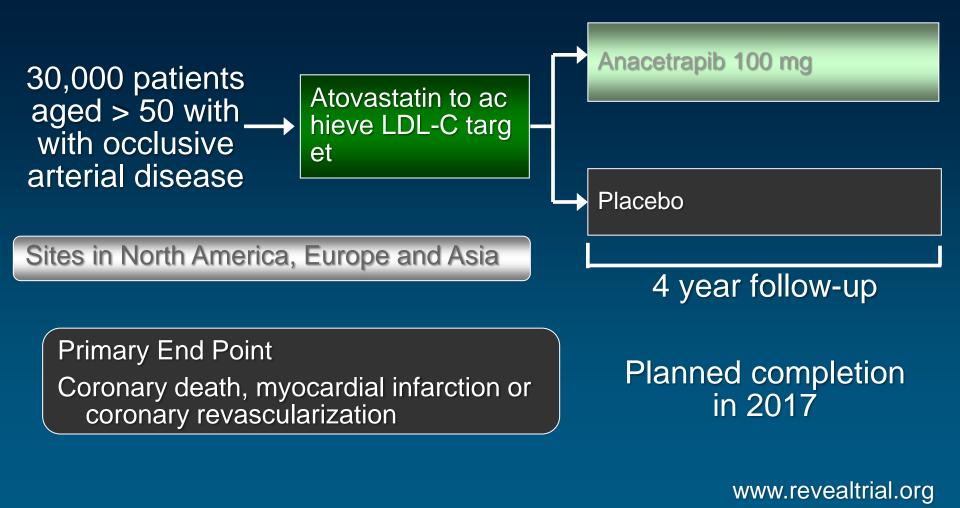
Schwartz et al. Am Heart J. 2009;158:896.

dal-OUTCOMES Trial


- It was announced in early May 2012 that the dal-O UTCOMES trial had been terminated early on the basis of futility.
- The early termination was solely on the basis of fut ility and not because of any safety issues.

DEFINE trial <u>D</u>etermining the <u>EF</u>ficacy and Tolerability of CETP <u>IN</u>hibition with Anac<u>E</u>trapib

Cannon et al. NEJM. 2010; 363:2406-2415.


DEFINE trial

Cannon et al. NEJM. 2010; 363:2406

REVEAL trial

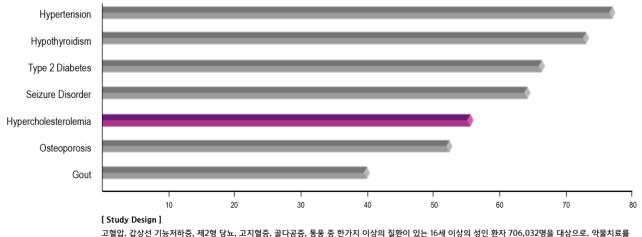
Randomized Evaluation of the Effects of Anacetrapib through Lipid-modification

Better Compliance for Better Outcome

Compliance Issues

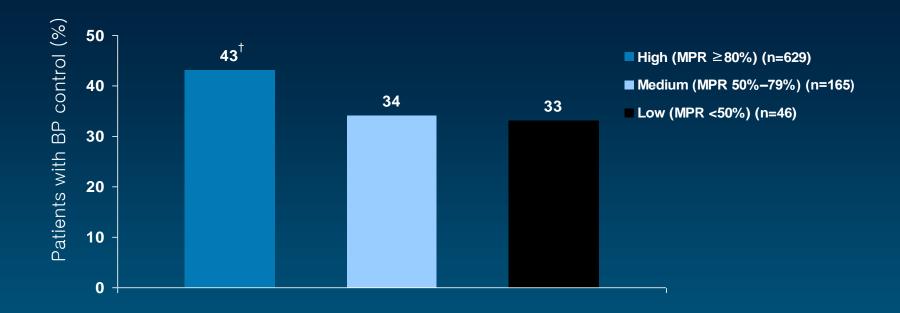
Asymptomatic disease

Cost


Memory

Understanding

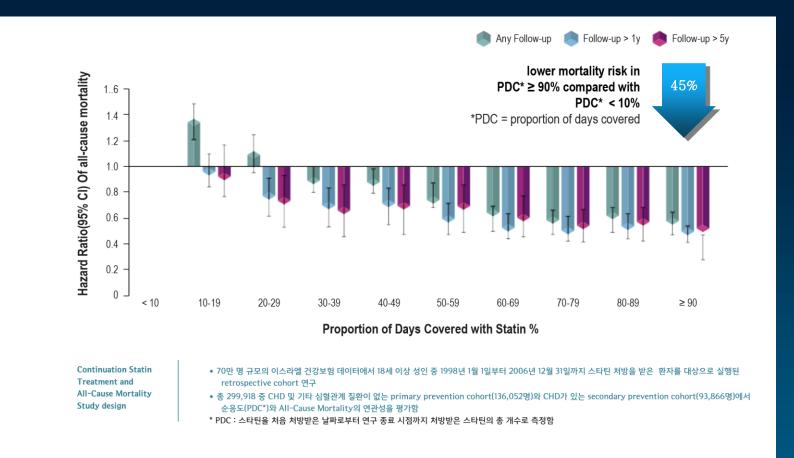
1 year after diagnosis of chronic disease, patient compliance was reduced


Comparison of drug adherence rates across seven medical conditions.

고열컵, 갑장신 기능자하능, 제2성 등표, 고시열등, 들다송등, 송동 중 인기시 이성의 열전이 있는 10세 이정의 정인 환자 706,052정을 내성으로, 약물자 시작하는 첫 1년동안 medication possession ratio(MPR)이 80% 이상인 환자를 중심으로 복약순응도를 분석하였다.

Dislipidemia Patients showed 45% of reduction in compliance 1 year after diagnosis

Low adherence to antihypertensive therapy (AHT): worse BP control



[†]P=0.06 prior to adjustment; P=0.026 in regression analysis

Retrospective, population-based study of medical and pharmacy claims from 13 health plans from 1999-2002 HEDIS data. N=840 patients who had received monotherapy or fixed-dose combination therapy during the time BP was measured; \geq 3 AHT Rxs prior to BP measurement; and \geq 1 AHT Rx after BP measurement. Medication possession ratio (MPR).

Bramley T, et al. J Managed Care Pharm. 2006:239-245.

Statin Adherence Is Associated with All-cause Mortality

PDC≥90% group showed 45% lower all-cause mortality compared to PDC<10% Group

Reference : Shalev V, Chodick G, Silber H, Kokia E, Jan J, Heymann AD, Continuation of statin Treatment and All-Cause Mortality. Arch Intern Med 2009;169(3):260-268.

Physicians have varying degrees of control over factors that impact adherence

Modifiable causes of nonadherence

Less able to control

Patients are forgetful and/or stubborn

Patients do not understand that they are at significant risk and must take medication High pill burden and unsynchronized initiation make it difficult to

take medication

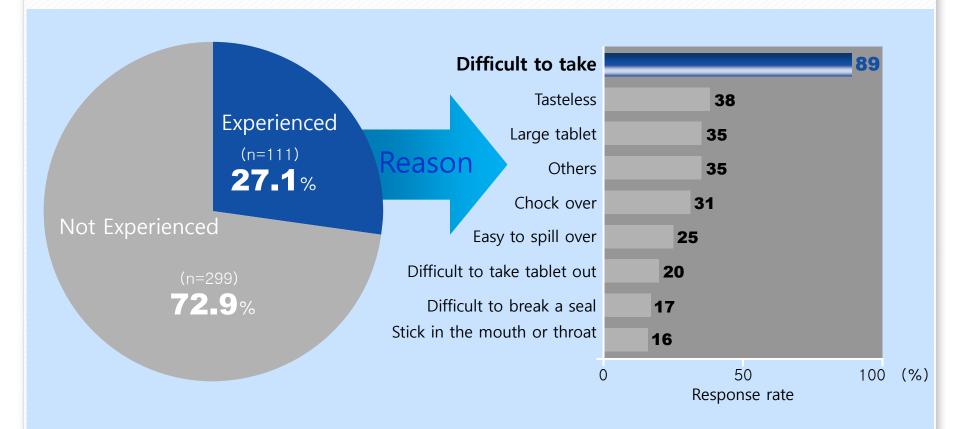
More able to control

Potential solutions to nonadherence

Address nonadherent behaviours with patients Communicate patients' global risk

Prescribe treatment regimens that optimize adherence

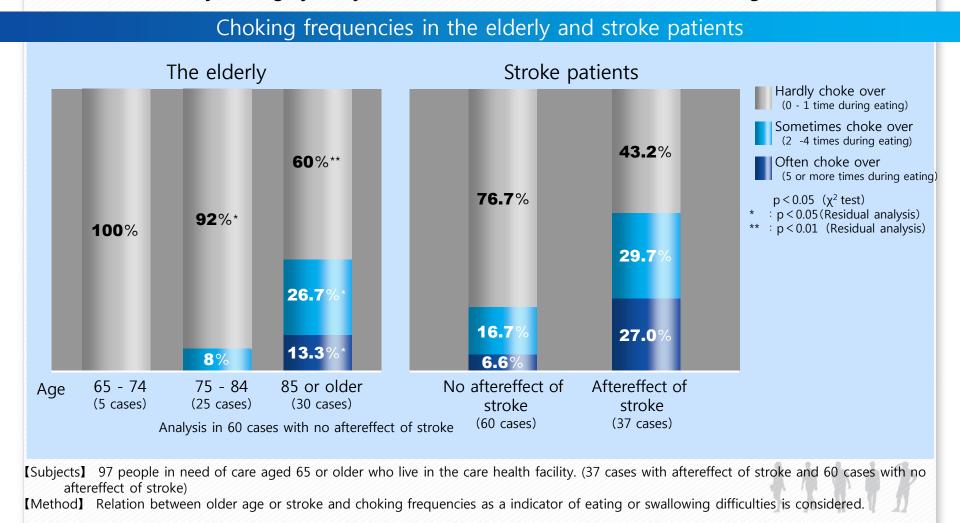
Enhanced Formulation of Statin is Expected to Improve Patient's Compliance.


Lipitor becomes Round and smaller for better compliance

One out of four elderly experiences choking on a drug in administration

Reason to choke on drugs is "difficult to take drugs."

Experience and reason to choke on drugs

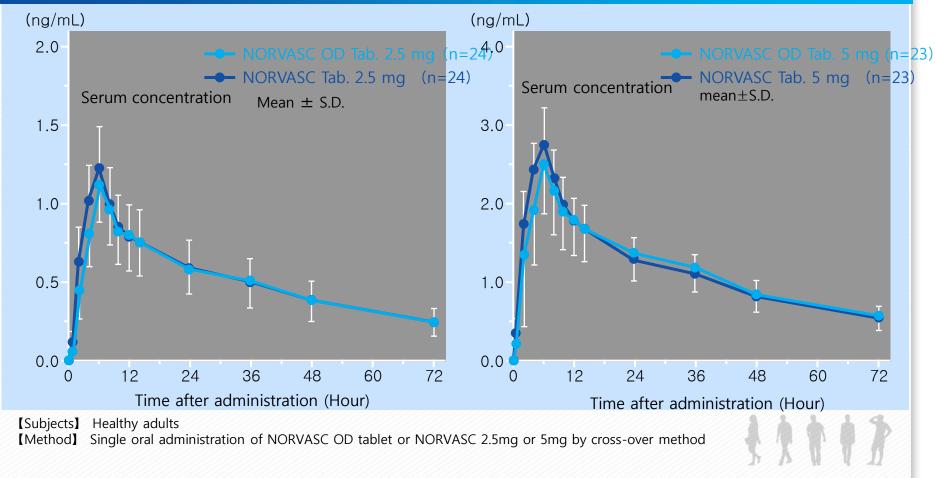


[Respondents] 410 elderly people aged 65 or older (Self-help, Needed support or Needed nursing care) taking one or more tablets daily who live in nursing home, special elderly nursing home or elderly housing. [Method] An interview survey was conducted to grasp drug administration and awareness about dosage form among the elderly.

Takao Hashimoto: Based on Ther Res 27(6): 1219, 2006 [L20060710145]

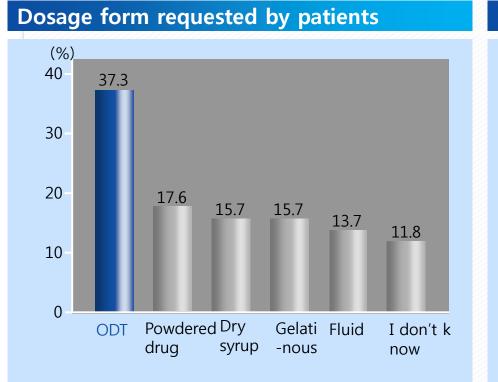
What kind of patients would suffer from swallowing difficulties?

Elderly or stroke patients would suffer. If patient are aged at 75 or older, or suffer from the after effect of stroke, they are highly likely to choke over as an indicator of swallowing difficulties.

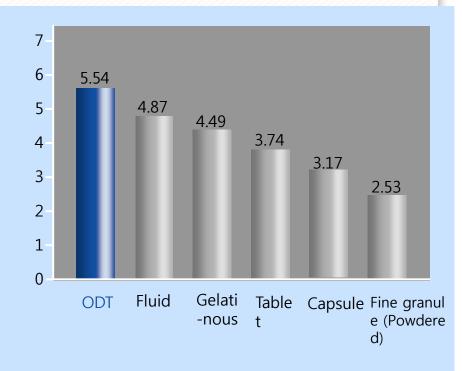


Teruo Yokoi and others: Based on physical therapy science 19(4): 347, 2004 [L20080130043]

NOVASC OD tab. is expected to achieve similar efficacy to NORVASC tab.


NORVASC OT tab. is bioequivalent to the traditional NORVASC tab.

Serum concentration Trend in NORVASC OD tablet and NORVASC tablet


OD tab. is accepted by patients and caretakers

If it is easy for patients to take drugs, caretakers will reduce their burden.

Dosage form that caretakers can easily administer

×

Takao Hashimoto: Based on Ther Res 27(6): 1219, 2006[L20060710145]

- [Respondents] Those who request dosage form change among 410 elderly p eople aged 65 or older (Self-help, Needed support or Needed nursing care) taking one or more tablets daily, living in nursing home, special e lderly nursing home or elderly housing.
- [Method] An interview survey was conducted to grasp drug administration a nd the awareness about dosage form among the elderly.

Yukimichi Imai: Created based on Treatment 87(2): 433, 2005[L20050215027]

- [Respondents] 210 caretakers responded among 404 caretakers providing ho me care for senile elderly
- [Method] An online survey was conducted to grasp administration manageme nt among home care caretakers.
- * Caretakers are asked about administration after explaining each dosage for m to evaluate on a 7-point scale: 1. Difficult to administer to 7. Easy to ad minister

NORVASC OD tab. is also expected to suppress cerebral and cardiovascular events like NORVASC

NORVASC is one of the most effective hypotensive drugs to suppress cerebral and cardiovascular events.

Cardiac infarction (CI) and stroke risk (NORVASC vs. other hypotensive drugs)

	Cardiac infarction				Stroke			
, , , , , , , , , , , , , , , , , , ,	of event ther drug: NOR	Odds VASC) (95%	ratio 6 CIs)	Difference	No. of event (Other drug: N	Odds ORVASC)(95%	ratio 6 CIs)	Difference
ALLHAT(Chlorthalidone)	1362 : 798		-		675:377		_	
ASCOT (Atenolol)	444 : 390				422 : 327	-		
ALLHAT (Lisinopril)	796 ÷ 798		-		457:377			
CAMELOT (Enalapril)	16 : 19	-	-	_	8:6			→
All studies (NORVASC vs. ACE inhibitor ^{×1, 2})	812 : 817	<		p=0.88	465 : 383	\diamond		p=0.004
All studies (NORVASC vs. hypotensive drug	s 2618 : 2005	• • • • • • • • • • • • • • • • • • •		p=0.29	1562:1087			p<0.0001
except for ARB ^{≋3, 4})								
IDNT(Irbesartan)	48 : 29				30 : 18		_	
VALUE (Valsartan)	369 : 313				322 : 261	-8-		
CASE-J (Candesartan)	17 : 18				60 : 47		_	
All studies (NORVASC vs. ARB ^{×5, 6})	434 : 360	~		p=0.01	421 : 346	~		p=0.02
All studies (NORVASC vs. hypotensive drugs Inc. $ARB^{\gg7, 8}$)	3052 : 2365	<u> </u>		p=0.03	1974:1433	~		p<0.0001
2-sided hypotheses ■ size is proportional to No. of events	0 Predominant		.0 1.5 redominant		0 9\$Predominant	0.5 1. in NORVASC P		.5 2.0 ant in other drug

%1 Heterogeneity against CI : P=0.60 %3 Heterogeneity against CI : P=0.21 %5 Heterogeneity against CI : P=0.28 %7 Heterogeneity against CI : P=0.12 %2 Heterogeneity against stroke : P=0.4%8 Heterogeneity against stroke : P=0.7%6 Heterogeneity against stroke : P=0.4%8 Heterogeneity against stroke : P=0.7%

[Method] Meta-Analysis with 12 studies (94,338 cases) to measure suppressive effects of stroke and cardiac infarction among patients suff ering from hypertention, coronary disease and diabetic nephropathy, using NORVASC, Angiotensin receptor antagonist or others.

Wang, J. G. et al. : Based on Hypertens 50(1): 181, 2007 [L20070809046]

Take Home Message

- According to guideline, more aggressive treatment is needed for dyslipidemia treatment
- High dose statin treatment is safe in Asian population
- Atorvastatin is effective in patients with CKD
- CETP inhibitor need more outcome data
- Compliance issue is important for reducing cardiovascular event

SEVERANCE HOSPITAL

CARDIOVASCULAR HOSPITAL

Thank You For Your Attention !