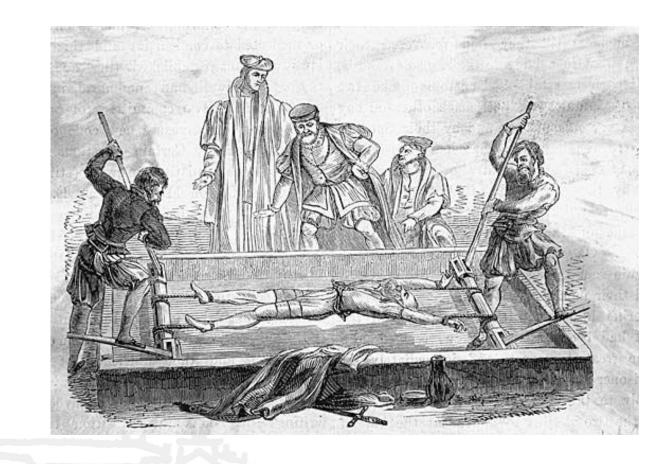
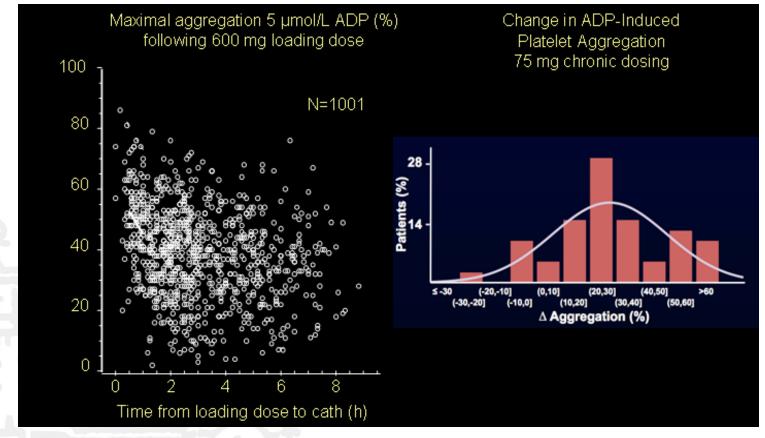

Do We Need Genotyping for Antiplatelet Therapy? : Pros

분당서울대학교병원 순환기내과 서정원

Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital



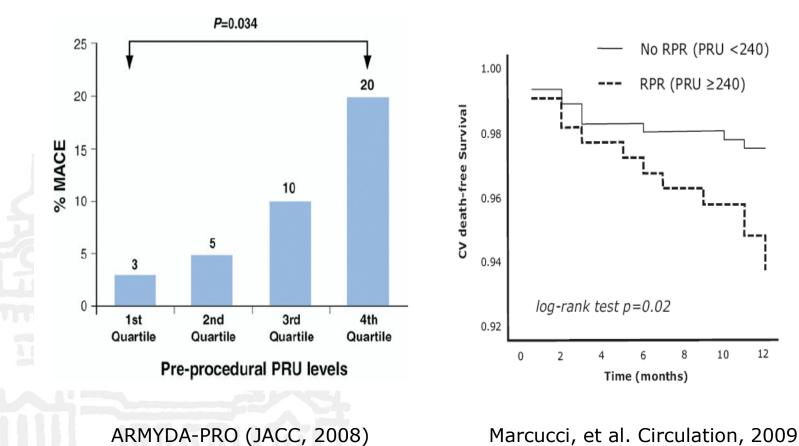
Contents


- Introduction
- Hyporesponsiveness to clopidogrel
- CYP2C19 genotype
 - Association with responsiveness to clopidogrel
 - Association with clinical outcomes in patients with CHD
 - Tailored selection of antiplatelet agents
- Conclusion

The Myth of Procrustes' Bed

「世であっ

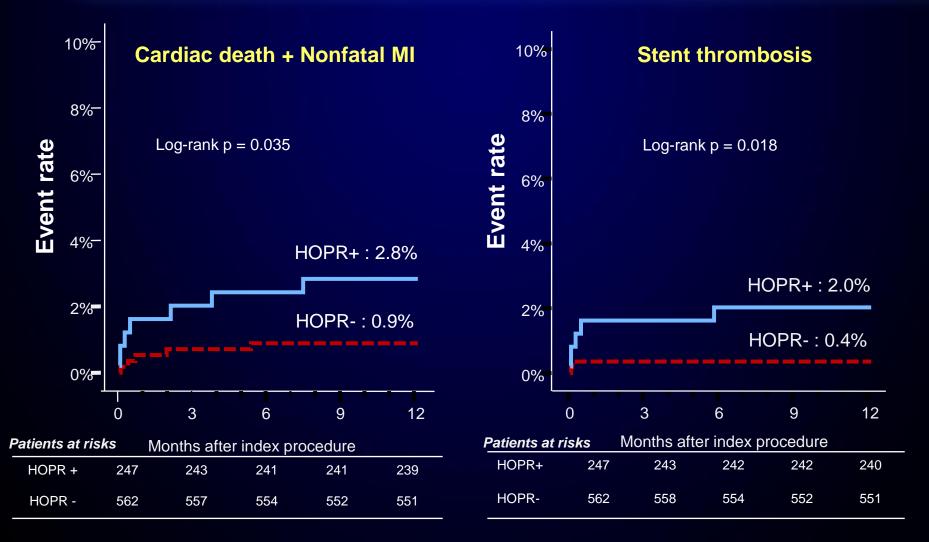
Platelet Reactivity Varies Widely Among Patients on Clopidogrel



Hochholzer et al. Circulation 2005

Gurbel P et al, Circulation 2003

High On (Post)-treament Platelet Teactivity (HOPR or HPPR)


Clinical Implication of HOPR in Caucasian Population

Marcucci, et al. Circulation, 2009

Clinical Implication of HOPR in Korean population

CROSS-VERIFY Registry

Park KW, Jeon KH, et al. Am J Cardiol. 2011

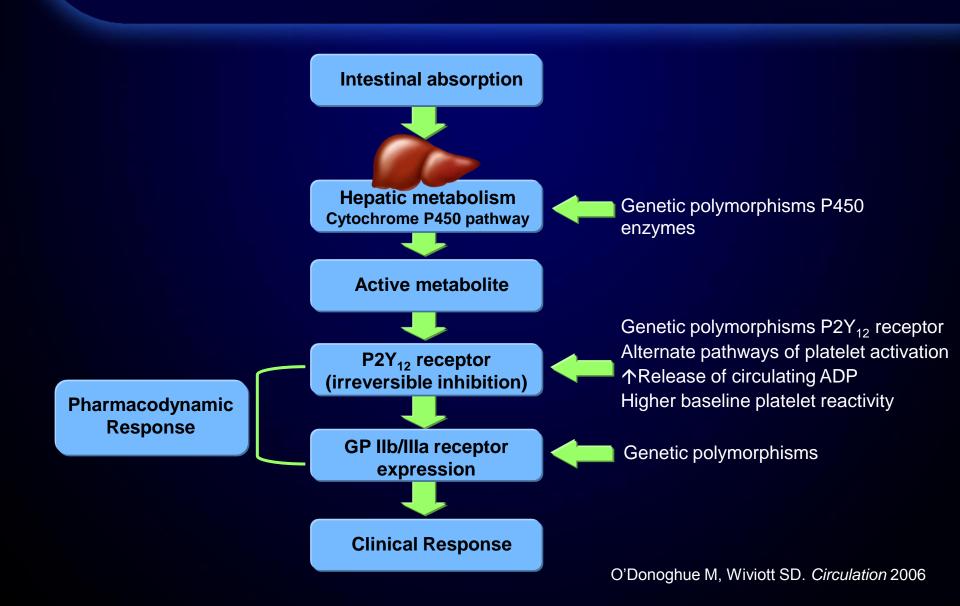
Mechanisms of Inter-individual Variability in Clopidogrel Responsiveness

Genetic Factors

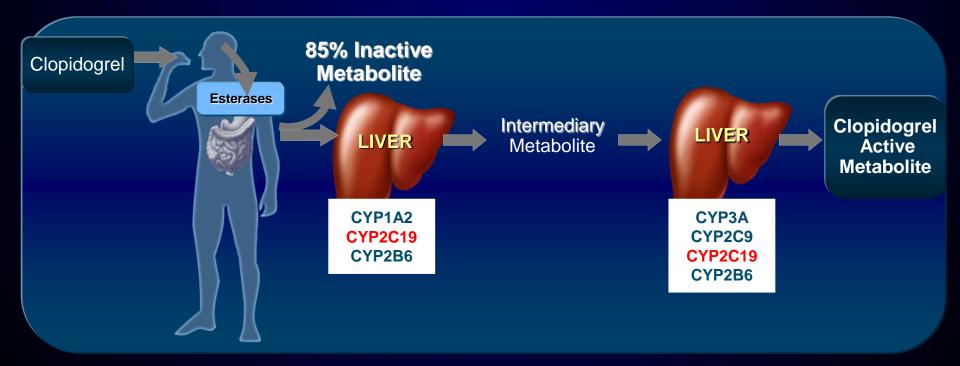
- Polymorphisms of CYP
- Polymorphisms of GPIa
- Polymorphisms of P2Y₁₂
- Polymorphisms of GPIIIa

Suboptimal Clopidogrel Response

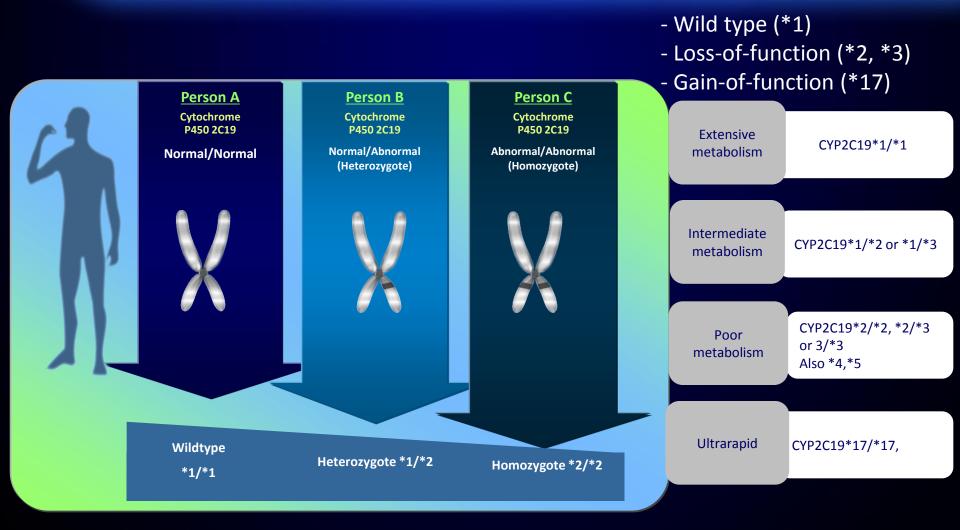
Cellular Factors

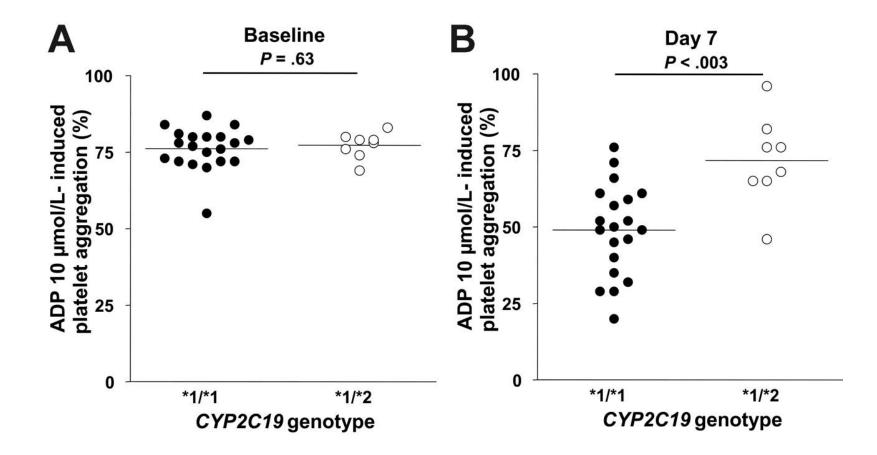

- Accelerated platelet turnover
- Reduced CYP3A metabolic activity
- Increased ADP exposure
- Up-regulation of the P2Y₁₂ pathway
- Up-regulation of the P2Y₁ pathway
- Up-regulation of the P2Y-independent pathways (collagen, epinephrine, thomboxane A₂, thrombin)

Clinical Factors

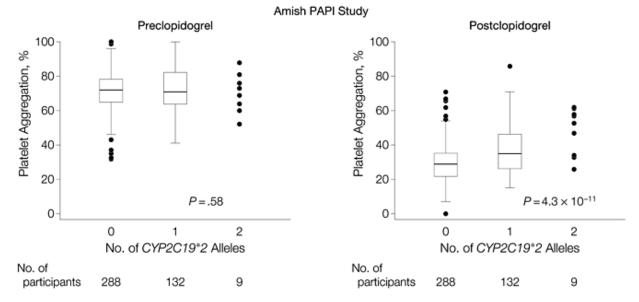

- Failure to prescribe/Poor compliance
- Under-dosing
- Poor absorption
- Drug-drug interactions involving CYP3A4
- Acute coronary syndrome
- Diabetes Mellitus/Insulin resistance
- Elevated body mass index

Angiolillio DJ et al. J Am Coll Cardiol. 2007;49:1505–16


Clopidogrel Metabolism Pathway


Role of Cytochrome P450 system in the metabolism of clopidogrel

Cytochrome P450 2C19 Polymorphisms & Antiplatelet Effects



CYP2C19 LOF Polymorphism & Response to Clopidogrel

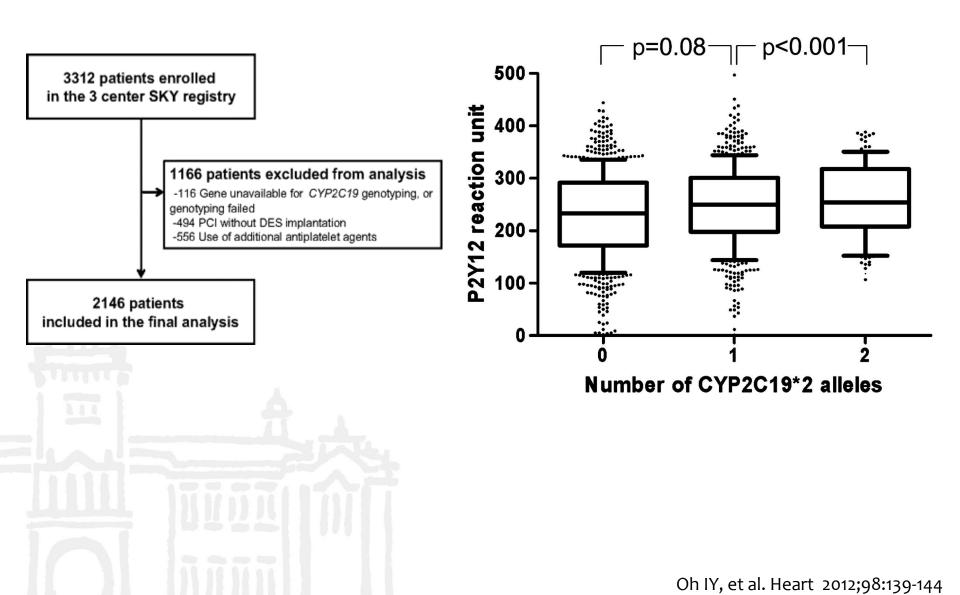
Hulot JS, et al. Blood 2006;108:2244-7

CYP2C19 LOF Polymorphism & Response to Clopidogrel

Sinai Hospital of Baltimore Study Postclopidogrel Preclopidogrel 100 100 Platelet Aggregation, % Platelet Aggregation, % 80 80 : 60 60 40 40 20 20 P = .92P = .020 0 0 1 2 0 2 1 No. of CYP2C19*2 Alleles No. of CYP2C19*2 Alleles No. of No. of 37 participants 3

131

54

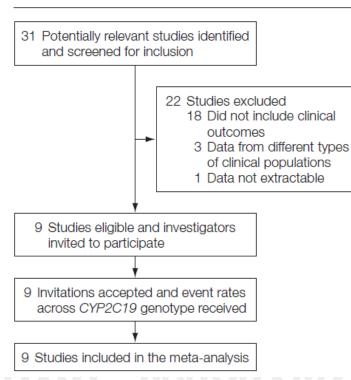

4

participants

102

Shuldiner AR, et al. JAMA 2009;302:849-57

Korean Data : SKY registry



CYP2C19 polymorphism is associated with low responsiveness to clopidogrel, How about clinical outcomes?

Reduced-Function *CYP2C19* Genotype and Risk of Adverse Clinical Outcomes Among Patients Treated With Clopidogrel Predominantly for PCI

A Meta-analysis

Figure 1. Study Selection Flow Diagram

Table 2. Pooled Baseline Characteristics by CYP2C19 Genotype Status^a

		No. of Participants (%) ^b					
	Γ	Reduced	Reduced-Function CYP2C19 Alleles				
Characteristics	Overall (n = 9685)	None (n = 6923)	1 (n = 2544)	2 (n = 218)			
Age, weighted mean, y	64.2	64.1	64.6	63.7			
Male sex	7204 (74.4)	5180 (74.8)	1852 (72.8)	172 (78.9)			
Diabetes	2724 (28.1)	1926 (27.8)	739 (29.0)	58 (27.1)			
Current smoker	2524 (26.1)	1821 (26.3)	648 (25.5)	55 (25.2)			
ACS at presentation	5278 (54.5)	3820 (55.2)	1339 (52.6)	119 (54.6)			
PCI at presentation	8847 (91.3)	6336 (91.5)	2316 (91.0)	195 (89.4)			
White race ^c	4781 (95.8)	3399 (95.9)	1277 (95.7)	105 (92.9)			

Abbreviations: ACS, acute coronary syndrome; FAST-MI, French Registry of Acute ST-Segment Elevation and Non-ST-Elevation Myocardial Infarction; ISAR, Intracoronary Stenting and Antithrombotic Regimen; PCI, percutaneous coronary intervention.

^aThere were no significant differences for the categorical variables across CYP2C19 genotype.

^DData are presented as No. of participants (%) unless otherwise indicated.

^C Data on race (self-reported) were not captured uniformly in ISAR and FAST-MI (see footnotes c and d in Table 1). White race denominators for overall, none, 1, and 2 reduced-function CYP2C19 alleles are 4992, 3545, 1334, and 113, respectively.

JAMA. 2010;304(16):1821-1830

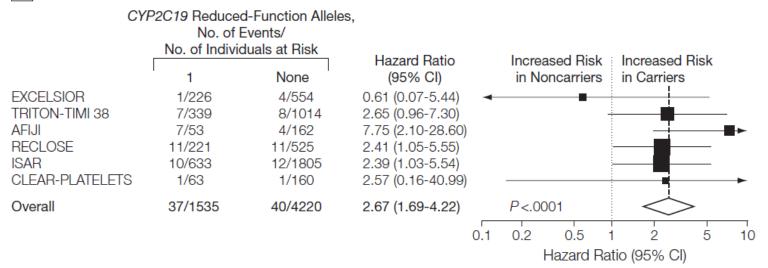
Cardiovascular death, MI, or ischemic stroke by CYP2C19 genotype

B Carriers of 1 CYP2C19 Reduced-Function Alleles vs Noncarriers

CYP2C19 Reduced-Function Alleles, No. of Events/ No. of Individuals at Risk Hazard Ratio Increased Risk Increased Risk (95% CI) in Noncarriers 1 None in Carriers 8/73 10/150 1.64 (0.65-4.17) CLARITY-TIMI 28 EXCELSIOR 5/226 7/554 1.75 (0.56-5.53) TRITON-TIMI 38 42/357 83/1064 1.55 (1.07-2.25) AFIJI 13/64 11/186 5.42 (2.23-13.18) FAST-MI 53/577 193/1573 0.73 (0.54-0.99) RECLOSE 13/221 14/525 2.25 (1.06-4.78) ISAR 52/633 119/1805 1.25 (0.90-1.73) CLEAR-PLATELETS 5/63 4/160 3.45 (0.93-12.89) Intermountain 1.29 (0.96-1.73) 65/330 141/906 P = .01256/2544 582/6923 1.55 (1.11-2.17) Overall 0.2 0.1 0.5 2 5 10

Hazard Ratio (95% CI)

Hazard Ratio (95% CI)

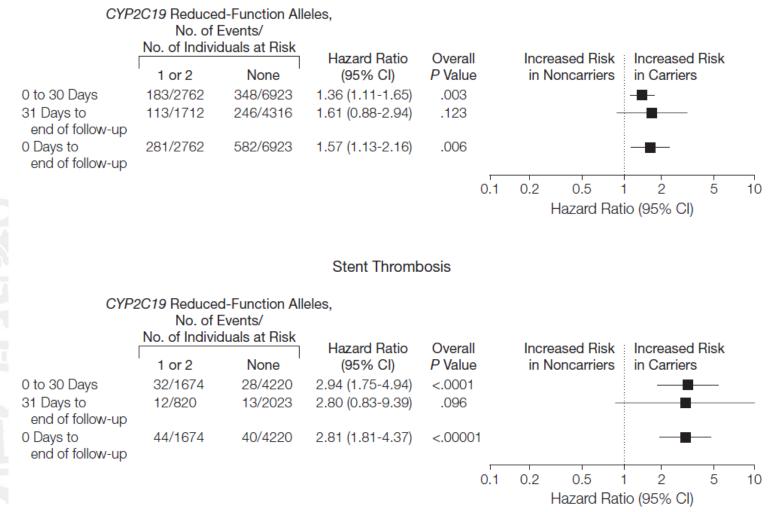

C Carriers of 2 CYP2C19 Reduced-Function Alleles vs Noncarriers

CY.	No. of	d-Function Allel Events/ duals at Risk	es, Hazard Ratio	Increased Risk	Increased Risk
	2	None	(95% CI)	in Noncarriers	in Carriers
TRITON-TIMI 38	4/38	83/1064	1.35 (0.49-3.69)		
AFIJI	2/9	11/186	2.85 (1.07-7.59)		
FAST-MI	10/58	193/1573	1.75 (0.92-3.32)	-	
RECLOSE	2/26	14/525	1.73 (0.83-3.62)		
ISAR	3/47	119/1805	0.96 (0.30-3.04)		:
CLEAR-PLATELETS	1/5	4/160	14.27 (1.57-129.46)		►
Intermountain	3/14	141/906	1.41 (0.45-4.41)		
Overall	25/197	565/6219	1.76 (1.24-2.50)	P=.002	\diamond
0 00 4/4 6/ 4 00	4 4020		0.1	0.2 0.5	1 2 5 10

JAMA. 2010;304(16):1821-1830

Stent thrombosis by CYP2C19 genotype

B Carriers of 1 CYP2C19 Reduced-Function Alleles vs Noncarriers

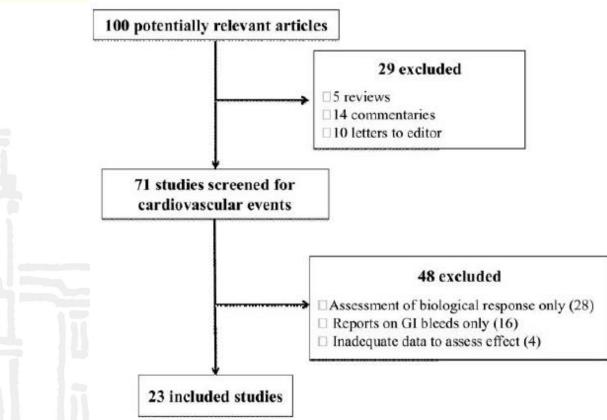


C Carriers of 2 CYP2C19 Reduced-Function Alleles vs Noncarriers

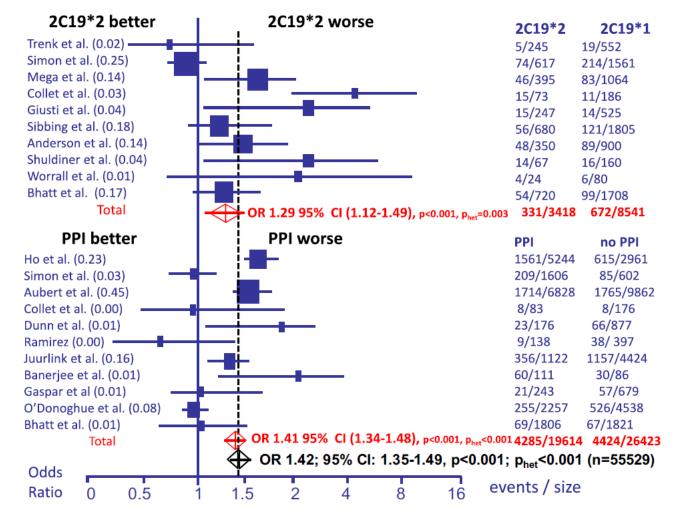
	C	YP2C19 Reduced No. of E No. of Individ	Events/	es, Hazard Ratio	Increased Risk	Increased Ri		
		2	None	(95% CI)	in Noncarriers	in Carriers	SK	
	TRITON-TIMI 38	2/36	8/1014	6.79 (1.42-32.53)			_	•
	AFIJI	1/8	4/162	5.46 (1.05-28.38)				•
	RECLOSE	2/26	11/525	1.95 (0.92-4.13)	-			
	ISAR	1/47	12/1805	3.21 (0.42-24.60)				•
	CLEAR-PLATELETS	1/5	1/160	34.41 (2.15-551.50)				►
	Overall	7/122	36/3666	3.97 (1.75-9.02)	<i>P</i> = .001	\sim	>	-
				0.1	0.2 0.5	1 2	5	10
JAMA. 2	010;304(16):18	21-1830			Hazard Ra	tio (95% Cl)		

Timing of Events for CV Death, MI, or Ischemic Stroke and Stent Thrombosis

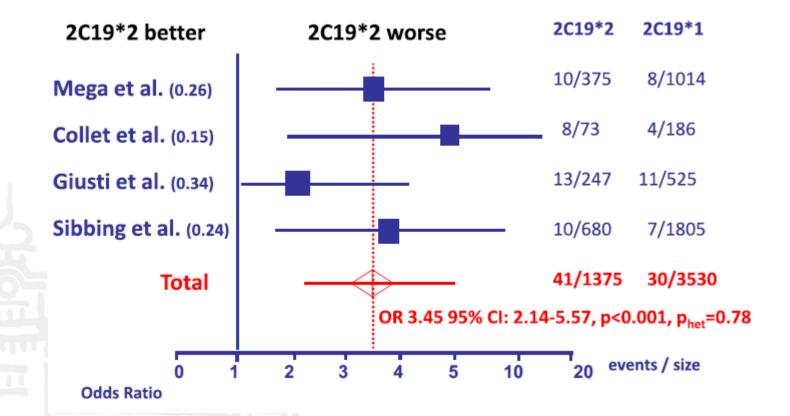
Cardiovascular Death, Myocardial Infarction, or Stroke

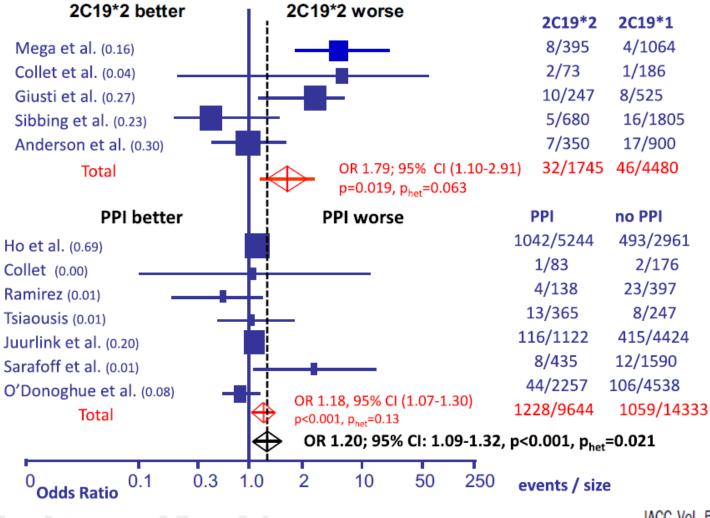

JAMA. 2010;304(16):1821-1830

Cardiovascular Risk in Clopidogrel-Treated Patients According to Cytochrome P450 2C19*2 Loss-of-Function Allele or Proton Pump Inhibitor Coadministration


A Systematic Meta-Analysis

Jean-Sébastien Hulot, MD, PHD,* Jean-Philippe Collet, MD, PHD,† Johanne Silvain, MD,† Ana Pena, PHD,† Anne Bellemain-Appaix, MD,† Olivier Barthélémy, MD,† Guillaume Cayla, MD,† Farzin Beygui, MD, PHD,† Gilles Montalescot, MD, PHD†


Paris, France


ORs for MACE According to CYP2C19*2 Allele (n=11,959) and PPI use (n=46,037)

ORs for Stent Thrombosis (n=4,905) According to CYP2C19*2 Allele

ORs for Death According to CYP2C19*2 Allele (n=6,225) and PPI Use (n=23,997)

CYP2C19 Genotype, Clopidogrel Metabolism, Platelet Function, and Cardiovascular Events

A Systematic Review and Meta-analysis

- 32 studies of 42,016 patients
 - 3545 CVD events
 - 579 STs
 - 1413 bleeding events

✓ 6 studies were randomized trials ("effect modification" design)

✓ 26 reported individuals exposed to clopidogrel ("treatment-only" design).

JAMA. 2011;306(24):2704-2714

CYP2C19 Genotype and Clinical Outcomes: **Treatment-Only Analysis**

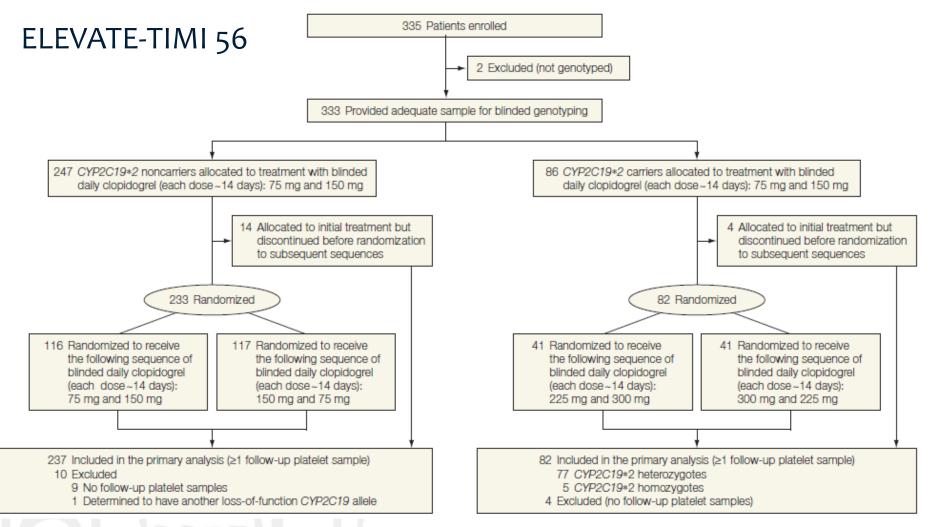
	Cases, N	lo./Total No.			
	*2-*8	*1 or *17	(95% CI)	Lower Risk of CVD	Higher Risk of CVD
I-99 CVD Events	12 10		(3370 0)	01070	:
Ono et al, ³⁵ 2011	2/131	0/71	NA		1
Yamomoto et al, ⁴⁸ 2011	5/62	0/36	NA		
Malek et al, ³¹ 2008	1/21	5/84	0.80 (0.10-6.49) —		
Worrall et al, ⁴⁷ 2009	4/24	6/80	2.22 (0.68-7.23)		
Jeong et al, ²⁹ 2011	NR/162	NR/104	5.14 (1.82-14.54)		.
Yuan et al, ⁵⁰ 2011	11/137	3/130	3.48 (0.99-12.19)		
Campo et al, ²⁴ 2011	10/81	11/219	2.46 (1.09-5.57)		
Trenk et al, ⁴⁵ 2008	5/245	19/552	0.59 (0.22-1.57)	.	
Sawada et al, ³⁷ 2010	13/42	11/58	1.63 (0.81-3.28)	_	
Collet et al, ²⁵ 2009	15/73	11/186	3.47 (1.68-7.21)		
Giusti et al, ²⁶ 2009	15/247	14/525	2.28 (1.12-4.64)		
Shuldiner et al, ³⁸ 2009	14/67	16/160	2.09 (1.08-4.04)		
Malek et al, 32 2010	10/56	20/205	1.83 (0.91-3.68)	_	.
Oh et al, ³⁴ 2011	23/1011	10/1135	2.58 (1.23-5.40)		
Harmsze et al, 27 2011	NR/200	NR/525	1.40 (0.82-2.30)	_	
Komarov et al, ³⁰ 2011	22/108	48/291	1.23 (0.78-1.94)	_	-
Subtotal: /2=33% (95% Cl, 0%-65%))		1.83 (1.50-2.23)		\diamond
100-199 CVD Events					
Tello-Montoliu et al, ⁴³ 2011	NR/NR	NR/NR	1.17 (0.78-1.75)	_	
Pare et al (ACTIVE-A), ³⁶ 2010	29/139	83/421	1.06 (0.73-1.54)	_	<u> </u>
Mega et al, ¹⁶ 2009	46/395	83/1064	1.49 (1.06-2.10)		·
Anderson et al, 21 2009	48/350	89/900	1.39 (1.00-1.93)		
Bhatt et al, ²² 2009	54/722	99/1706	1.29 (0.94-1.77)		
Sibbing et al, ⁴¹ 2009	52/680	121/1805	1.14 (0.83-1.56)	_	- -
Subtotal: / ² =0% (95% Cl, 0%-75%)			1.26 (1.09-1.45)		\diamond
x x x y					
≥200 CVD Events	50/050	170/1000	0.04 (0.00.1.14)	_	
Pare et al (CURE), ³⁶ 2010	52/650	178/1880	0.84 (0.63-1.14)		-1
Tiroch et al, ⁴⁴ 2010	60/248	184/680	0.89 (0.69-1.15)	-	
Simon et al, ⁴² 2009	76/635	218/1573	0.86 (0.68-1.10)	-	
Wallentin et al, ⁴⁶ 2010	149/1388	332/3516	1.14 (0.95-1.37)	1	
Subtotal: 1 ² = 40% (95% Cl, 0%-80%))		0.97 (0.86-1.09)	0	>
Overall: / ² =60% (95% Cl, 38%-75%)			1.18 (1.09-1.28)		\$
			0.1	1.	0
al., JAMA. 2011 Dec 28;306(2	4):2704-14	4.		RR (95	
				1111(90	70 OIJ

Holmes MV et al., JAMA. 2011 Dec 28;306(24):2704-14.

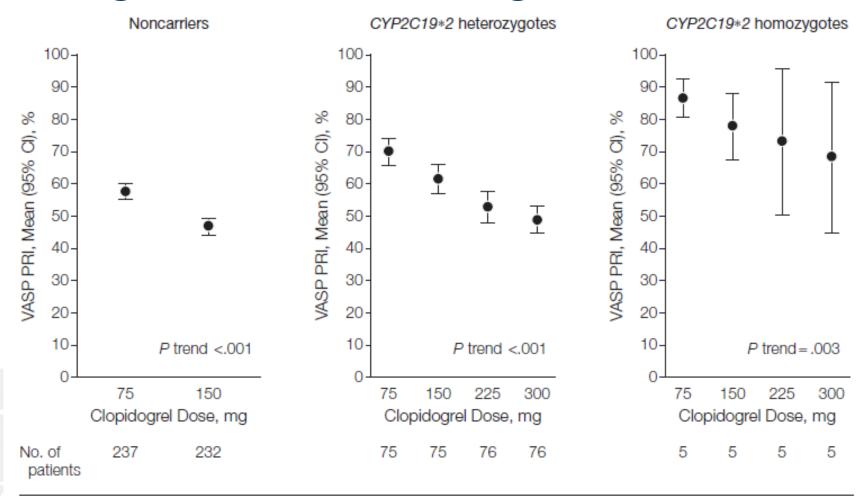
CYP2C19 Genotype and Clinical Outcomes: Effect-Modification Analysis

	Cases, No.	/Total No.				
Trial	Clopidogrel	Placebo	RR (95% Cl)	Lower Risk of CVD	Higher Risk of CVD	P Value (z Test)
ACTIVE-A ^{36, 54} Original RCT Genetic substudy *2 or *3 *1 or *17	832/3772 112/560 29/139 83/421	924/3782 153/574 35/139 118/435	0.89 (0.81-0.98) 0.75 (0.61-0.93) 0.83 (0.54-1.28) 0.73 (0.57-0.93)	= _== _== _==	_].15].61
CURE ^{19, 36} Original RCT Genetic substudy *2 or *3 *1 or *17	582/6259 230/2530 52/650 178/1880	719/6303 311/2486 78/673 233/1813	0.80 (0.72-0.90) 0.73 (0.62-0.85) 0.69 (0.49-0.96) 0.74 (0.61-0.89)].35].72
CHARISMA ^{20, 22} Original RCT Genetic substudy *2 or *3 *1 or *17	534/7802 153/2428 54/722 99/1706	573/7801 138/2434 36/708 102/1726	0.93 (0.83-1.05) 1.11 (0.89-1.39) 1.47 (0.98-2.21) 0.98 (0.75-1.28)	_	∎- -∎ ⊨-	.17 .10
CLARITY-TIMI 28 ³³ Original RCT Genetic substudy	, 53 262/1752 NR/NR	377/1739 NR/NR	0.69 (0.60-0.80) 0.49 (0.28-0.88)			.27

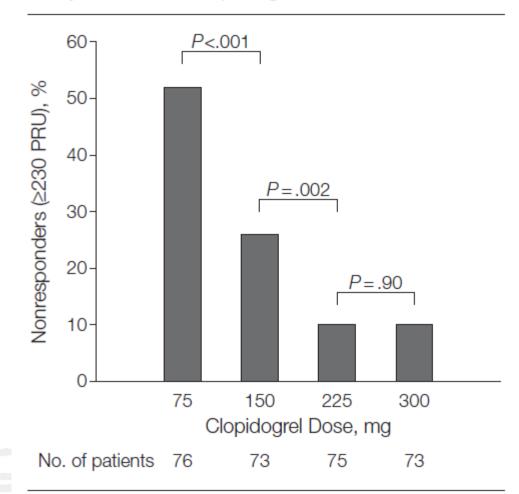
Overall, there was no significant association of CYP2C19 genotype with cardiovascular events.


Limitation

- The analysis included patients in whom there is relatively little to no benefit of clopidogrel.
- The current meta-analysis included outcomes that occurred in patients who were no longer taking clopidogrel.
 - It included outcomes such as elective TLR and non-CV death, in which clopidogrel has no clear effect.
 - Conversely, the authors excluded studies that focused solely on ST, even though this outcome is clinically important.


Point-of-care genetic testing

Dosing Clopidogrel Based on CYP2C19 Genotype and the Effect on Platelet Reactivity in Patients With Stable Cardiovascular Disease



On-treatment platelet reactivity across genotype and clopidogrel daily dose

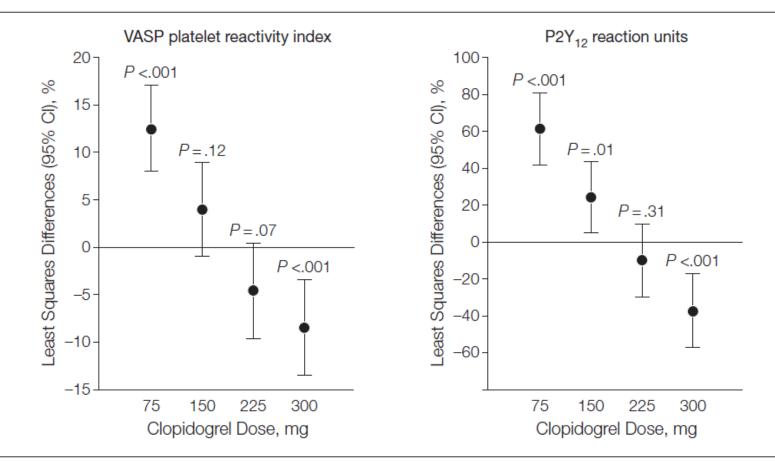
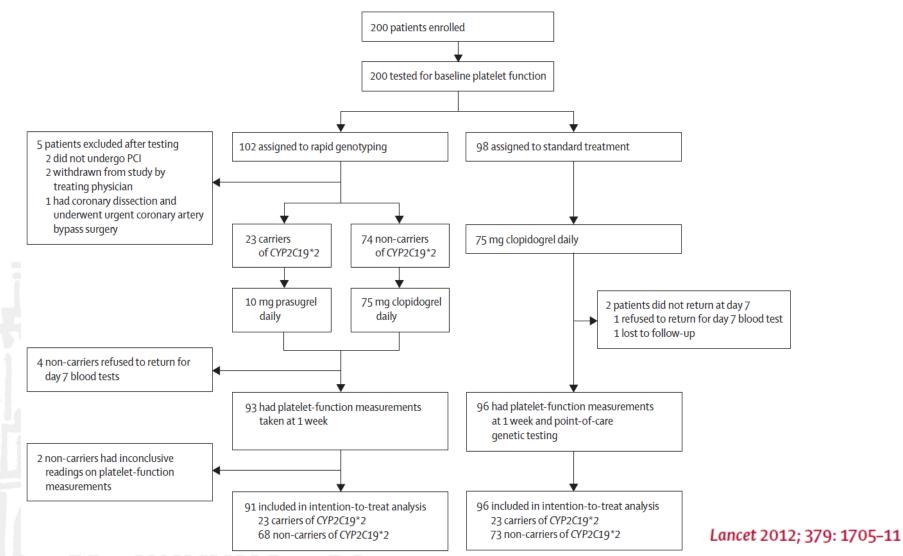

VASP PRI indicates vasodilator-stimulated phosphoprotein phosphorylation assay platelet reactivity index.

Figure 3. Clopidogrel Nonresponders Among *CYP2C19*2* Heterozygotes Across Daily Doses of Clopidogrel

Nonresponders were defined using the VerifyNow $P2Y_{12}$ assay with a prespecified cut point of $\geq 230 P2Y_{12}$ reaction units (PRU).


Figure 4. Difference in Platelet Reactivity Between *CYP2C19*2* Heterozygotes Treated With Increasing Doses of Clopidogrel vs Noncarriers Treated With 75 mg of Clopidogrel Daily

Data are reported as least squares differences and 95% confidence intervals for platelet reactivity between CYP2C19*2 heterozygotes at clopidogrel doses of 75 mg (n=76), 150 mg (n=73), 225 mg (n=75), and 300 mg (n=73) and noncarriers at 75 mg of clopidogrel (n=237). Differences in least squares means were tested using asymptotic methods (normal z test). VASP indicates vasodilator-stimulated phosphoprotein phosphory-lation assay.

Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial

Jason D Roberts, George A Wells, Michel R Le May, Marino Labinaz, Chris Glover, Michael Froeschl, Alexander Dick, Jean-Francois Marquis, Edward O'Brien, Sandro Goncalves, Irena Druce, Alexandre Stewart, Michael H Gollob, Derek Y F So

Primary and secondary outcomes in CYP2C19*2 carriers

	Rapid genotyping (n=23)	Standard treatment (n=23)	p value
Primary outcome			
Patients with PRU values >234 at day 7	0	7 (30%)	0.0092
Secondary outcomes			
Patients with PRU values >208 at day 7	1 (4%)	11 (48%)	0.0017
Baseline PRU	198.7 (80.7)	198.7 (91.9)	0.9986
PRU at day 7	75.6 (57.3)	207.3 (55.8)	<0.0001
Platelet inhibition at day 7	73·3% (20·3)	27.0% (13.4)	<0.0001
Change in PRU from baseline to day 7	123.09 (77.2)	-8.48 (74.0)	<0.0001

Data are n (%) or mean (SD). PRU=P2Y12 reactivity unit.

Table 2: Primary and secondary outcomes in CYP2C19*2 carriers

Platelet function outcomes in all patients

	Rapid genotyping (n=91)	Standard treatment (n=96)	p value*	p value†
Baseline PRU	154.7 (98.0)	160·2 (101·7)	0.7098	0.2646
PRU at day 7	125.3 (74.8)	163·9 (78·4)	0.0007	<0.0001
Patients with PRU values >234 at day 7	9 (10%)	16 (17%)	0.1735	0.0672
Patients with PRU values >208 at day 7	14 (15%)	30 (31%)	0.0106	0.0008
Platelet inhibition at day 7	56.5% (24.5)	43.9% (22.9)	0.0003	<0.0001

Data are mean (SD) or n (%). PRU=P2Y12 reactivity unit. *Unadjusted p value. †p value based on imputation analysis for missing data and adjusted for acute coronary syndrome, diabetes, smoking status, bodyweight, and use of proton-pump inhibitor.

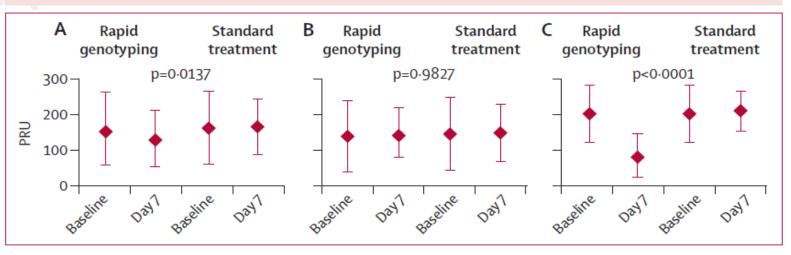
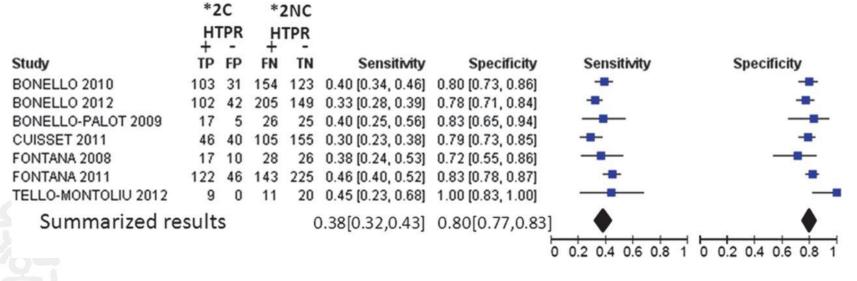



Figure 2: PRU values at baseline and at day 7

Values given for the whole cohort (A), non-carriers of CYP2C19*2 (B), and carriers of CYP2C19*2 (C). p values correspond to analyses for comparison of change in platelet reactivity from baseline to day 7 between rapid genotyping and standard treatment groups. PRU=P2Y12 reactivity units.

Sensitivity and specificity of the 2C19*2 polymorphisms for detecting HOPR, as based on VASP assay performed in clopidogrel-treated patients

Fontana P, et al. JAHA 2013;2:e000131

CYP2C19 genotype should be regarded as one of risk factors. "Personalized" antiplatelet therapy based on CYP2C19 genotyping needs more clinical evidence.

Summary

- CYP2C19 polymorphism is associated with poor responsiveness to clopidogrel & cardiovascular outcomes after PCI.
- Point-of-care genetic assay may be useful in identifying patients with increased thrombotic risk.
- We need more data for "Tailored antiplatelet strategy by genotype"

"Here's my sequence ... "

Journey Toward Personalized Patient Care Best clinical practice might be selecting a best clinical trial for the patient

might be selecting a best clinical trial for the patient, during our journey toward a genuine tailored therapy