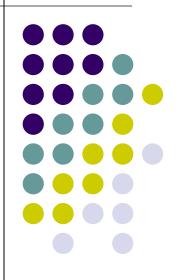

# Percutaneous Circulatory Support

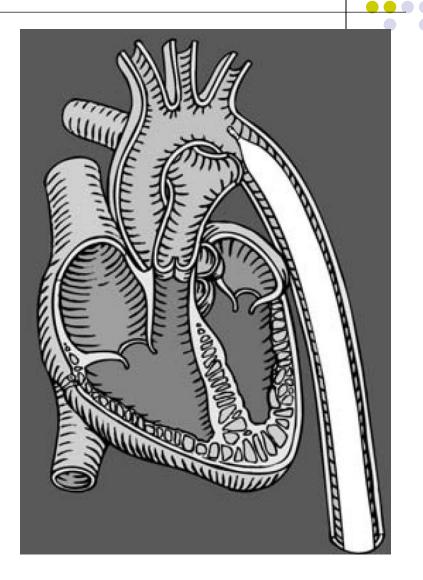
### 경북대학교병원 순환기내과 양 동 헌




## **Mechanical cardiac support**

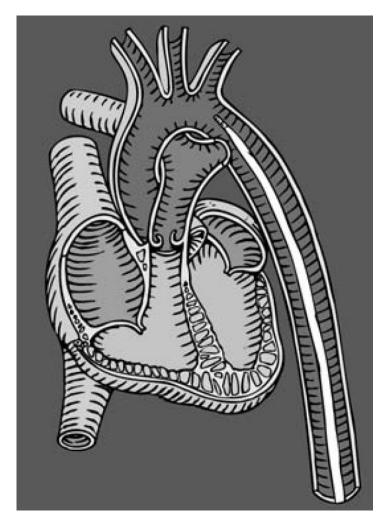
- Intra-aortic balloon pump (IABP)
- Extracorporeal membrane oxygenation (ECMO)
- Ventricular assist devices
  - LVAD / RVAD / BiVAD
- Total heart








## IABP

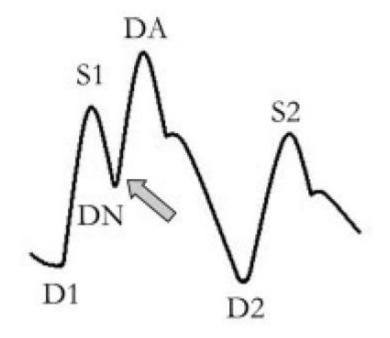

#### Diastole

- ↑ diastolic pressure
- ↑ coronary blood flow
- ↑ coronary collateral circulation
- ↑ systemic perfusion
  - Urine output
  - Cerebral perfusion



## IABP

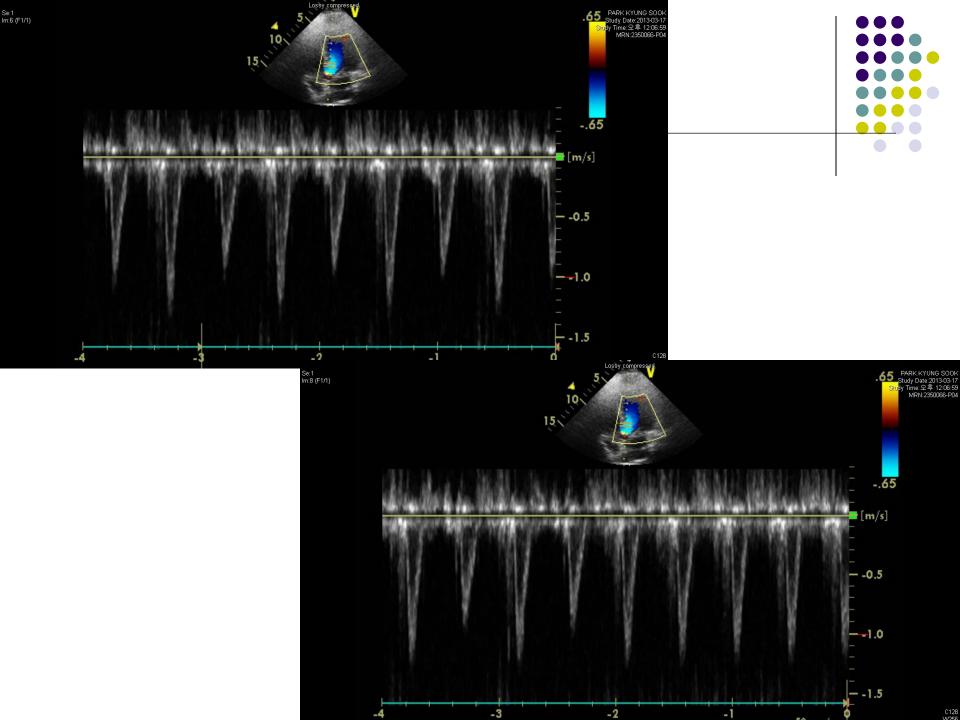


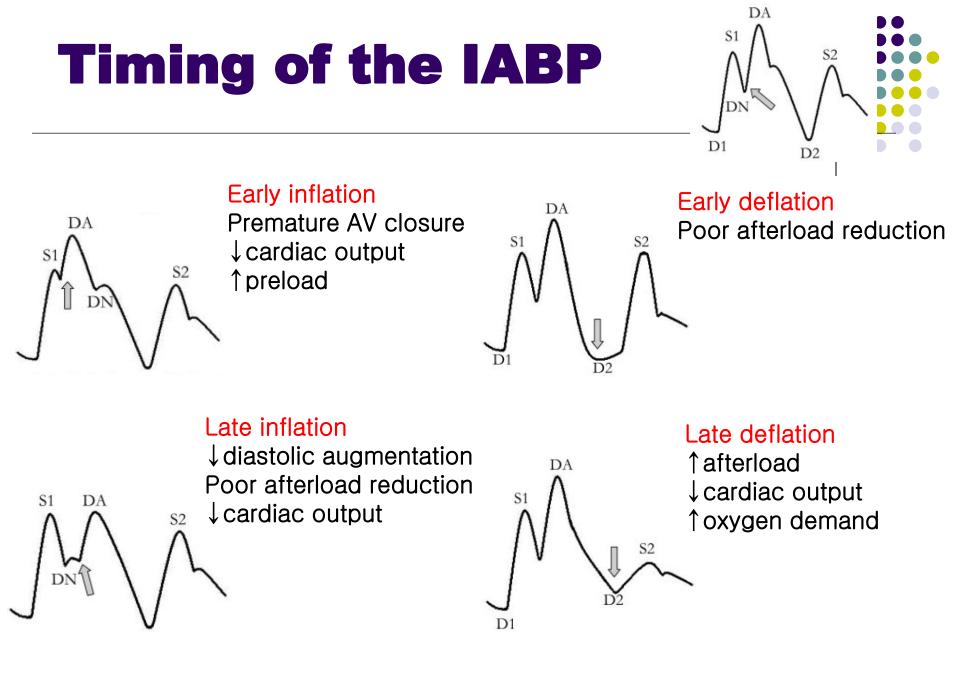



#### Systole

- ↓afterload
- ↓ myocardial oxygen demand
- ↑ stroke volume
- $\downarrow$  Lt to Rt shunt

## **Typical hemodynamic effects**




|                                     | Unassisted | Assisted |
|-------------------------------------|------------|----------|
| SBP (mmHg)                          | 101        | 96       |
| DBP (mmHg)                          | 53         | 45       |
| Diastolic<br>augmentation<br>(mmHg) |            | 114      |
| Mean BP<br>(mmHg)                   | 64         | 81       |

CO 1 by 30%

Reduced myocardial O2 demand  $\downarrow$  by 50%





# **Indications for IABP**

#### Medical indications

- Cardiogenic shock that is not quickly reversed with pharmacologic therapy
- Mechanical Cx. of AMI
  - Acute mitral regurgitation
  - ventricular septal rupture
- Recurrent ischemic chest discomfort with signs of hemodynamic instability, poor left ventricular function, or a large area of myocardium at risk
- High risk interventional precedures
- Bridging device to other mechanical assist (VAD)
- Surgical indications
  - Post-surgical myocardial dysfunction
  - Support for weaning from CPB
  - Pulsatile flow during CPB
  - Maintenance of graft patency after CABG



# Contraindications

### Absolute

- Aortic regurgitation (severe)
- Dissecting aortic aneurysm

### Relative

- Severe atherosclerosis
- Abdominal aortic aneurysm
- Blood dyscrasia (thrombocytopenia)
- End-stage cardiomyopathies unless bridging to VAD
- End-stage terminal disease



# Complications

- Aortic wall injury
  - Dissection
  - Repture
  - Local vascular injury
- Emboli
  - Thrombus
  - Plaque
  - Air
- IAB rupture
  - Helium embolism
  - Catheter entrapment
- Infection
- Malposition
  - Obstruction of Lt subclavian, carotid artery
  - Obstruction of renal & mesenteric artery
- Compromised circulation d/t catheter
  - Ischemia
  - Compartment syndrome
- Hematologic
  - Bleeding
  - thrombocytopenia

- High risk group
  - PVD
  - Female
  - Diabetes
  - HTN
  - Smoking
  - Obesity
  - Shock



# **Major complications**

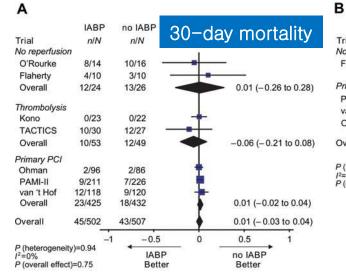


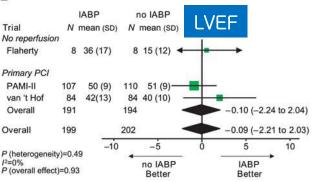
### • 7~15%

• Bleeding / Ischemia

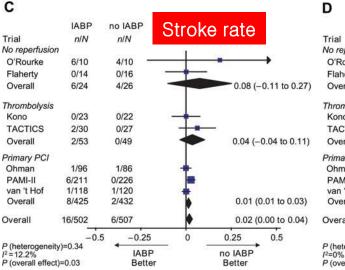
### • IABP-related mortality : 0.05~0.5%

| Investigators       |           |        | Complications (%) |                 |                 |                 |                    |           |               |                 |
|---------------------|-----------|--------|-------------------|-----------------|-----------------|-----------------|--------------------|-----------|---------------|-----------------|
|                     | Years     | п      | Overall           | Any<br>bleeding | Severe bleeding | Any<br>ischemia | Severe<br>ischemia | Infection | IABP<br>death | IABP<br>failure |
| Arceo et al. [6]    | 1989–1996 | 212    | 10.4              | 2.4             | 0.9             | 5.6             | 2.8                | 0.5       | 0.5           | 1.4             |
| Cohen et al. [7]    | 1993-1997 | 1,119  | 15                | 4.6             | _               | 3.3             | _                  | _         | 0.4           | 2.8             |
| Cohen et al. [8]    | 1997-2000 | 9,332  | 7.1               | 3.1             | 0.9             | 2.6             | 0.7                | _         | 0.1           | 2.0             |
| Ferguson et al. [9] | 1996-2000 | 16,909 | 7.0               | 2.4             | 0.8             | 2.9             | 0.9                | _         | 0.05          | 2.3             |
| Stone et al. [10]   | 1996-2001 | 5,495  | 8.1               | 4.3             | 1.4             | 2.3             | 0.5                | 0.1       | 0.05          | 2.3             |
| Urban et al. [11]   | 1997-2002 | 23,281 | 7.2               | _               | 0.9             | _               | 0.9                | _         | < 0.1         | 1.2             |

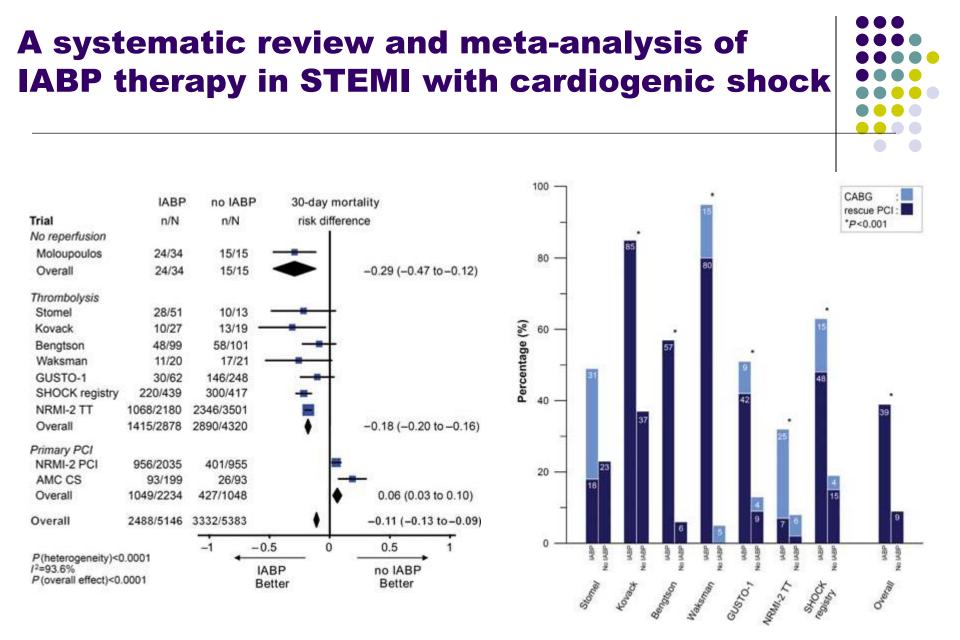

## Limitations



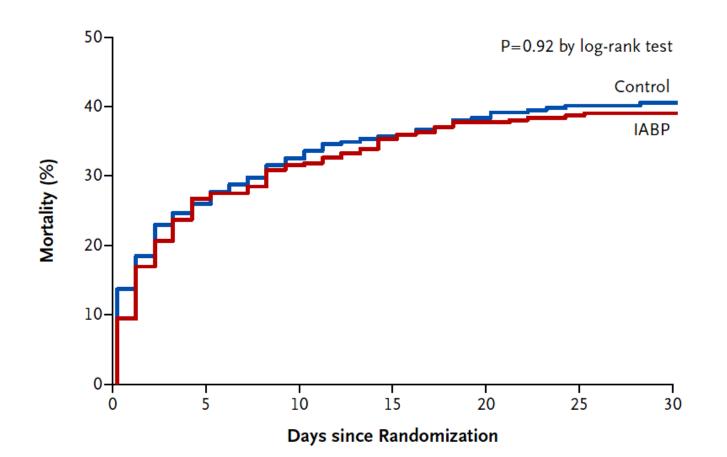

- Atrial fibrillation
- Tachycardia
- Ventricular arrhythmia


#### A systematic review and meta-analysis of **IABP therapy in STEMI**









С



Bleeding rate IABP no IABP n/N n/N No reperfusion O'Rourke 3/14 0/16 Flaherty 1/10 0/10 0.17 (-0.01 to 0.35) Overall 4/24 0/26 Thrombolysis Kono 5/23 6/22 TACTICS 8/30 7/27 Overall 13/53 13/49 -0.02 (-0.19 to 0.15) Primary PCI Ohman 24/96 14/86 PAMI-II 76/211 62/226 10/118 9/120 van 't Hof 110/425 Overall 85/432 0.06 (0.01 to 0.12) 0.06 (0.01 to 0.11) Overall 127/501 98/508 -0.250.25 -0.5 0 0.5 P (heterogeneity)=0.48 IABP no IABP P (overall effect)=0.02 Better Better



## **IABP-SHOCK II Trial**





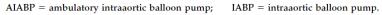
| Baseline Variable   | No. of<br>Patients | IABP | Control      | Relative Risk (95% CI)     |                  | P Value for<br>Interaction |
|---------------------|--------------------|------|--------------|----------------------------|------------------|----------------------------|
|                     |                    |      | ortality (%) |                            |                  |                            |
| Sex                 |                    |      |              |                            |                  | 0.61                       |
| Female              | 187                | 44.4 | 43.2         | <b>_</b>                   | 1.03 (0.74-1.43) |                            |
| Male                | 411                | 37.3 | 40.5         | <b></b>                    | 0.92 (0.72-1.18) |                            |
| Age                 |                    |      |              |                            |                  | 0.09                       |
| <50 yr              | 70                 | 19.4 | 44.1         | <u> </u>                   | 0.44 (0.21–0.95) |                            |
| 50–75 yr            | 334                | 34.6 | 36.5         | <b></b>                    | 0.95 (0.71-1.27) |                            |
| >75 yr              | 194                | 53.7 | 50.0         | <b></b>                    | 1.07 (0.81-1.41) |                            |
| Diabetes            |                    |      |              |                            |                  | 0.82                       |
| Yes                 | 195                | 42.9 | 46.7         | <b>+</b>                   | 0.92 (0.67–1.26) |                            |
| No                  | 399                | 37.2 | 38.9         | <b>_</b>                   | 0.96 (0.74–1.23) |                            |
| Hypertension        |                    |      |              |                            |                  | 0.05                       |
| Yes                 | 410                | 42.9 | 40.4         | <b>_</b>                   | 1.06 (0.84–1.34) |                            |
| No                  | 183                | 28.9 | 43.0         | <b></b>                    | 0.67 (0.45–1.01) |                            |
| Type of MI          |                    |      |              |                            |                  | 0.76                       |
| STEMI/LBBB          | 412                | 41.0 | 42.9         | <b></b>                    | 0.96 (0.77–1.21) |                            |
| Non-STEMI           | 177                | 37.5 | 38.3         |                            | 0.98 (0.67–1.43) |                            |
| STEMI type          |                    |      |              |                            |                  | 0.14                       |
| Anterior            | 216                | 35.4 | 43.7         | <b></b>                    | 0.81 (0.58–1.13) |                            |
| Nonanterior         | 196                | 48.3 | 42.2         |                            | 1.16 (0.85–1.57) |                            |
| Previous infarction |                    |      |              |                            |                  | 0.04                       |
| Yes                 | 131                | 47.9 | 33.3         | +                          | 1.44 (0.93–2.21) |                            |
| No                  | 466                | 37.3 | 43.3         | <b>→</b> +                 | 0.86 (0.69–1.07) |                            |
| Hypothermia         |                    |      |              |                            |                  | 0.31                       |
| Yes                 | 226                | 48.1 | 44.2         | <b></b>                    | 1.09 (0.82–1.44) |                            |
| No                  | 372                | 35.1 | 39.3         | <b></b>                    | 0.89 (0.68–1.16) |                            |
| Blood pressure      |                    |      |              |                            |                  | 0.76                       |
| <80 mm Hg           | 161                | 50.7 | 46.4         | <b></b>                    | 1.09 (0.79–1.50) |                            |
| ≥80 mm Hg           | 432                | 35.9 | 39.2         |                            | 0.92 (0.72–1.17) |                            |
|                     |                    |      | <b>0</b> .   | 0 0.5 1.0 1.5 2.0 2        | .5               |                            |
|                     |                    |      |              | IABP Better Control Better |                  |                            |
|                     |                    |      |              | Abi better Control better  |                  |                            |

## Criticism



- Open-label
- Crossover
  - 30 case, 5 centers
- VAD
- Slightly lower mortality
  - 40% vs 42-48%
  - Use of catecholamines : 89.8%

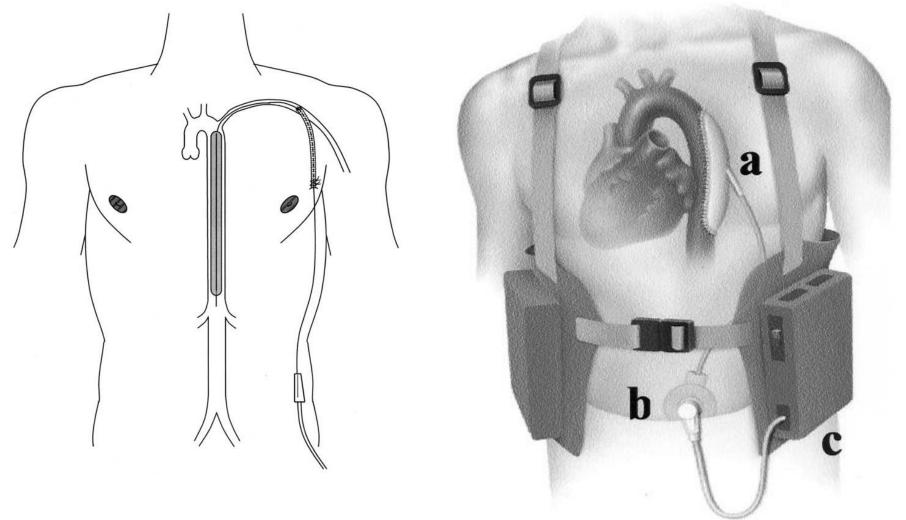
## **Benefits of IABP**


#### Relatively low cost

- Easy and immediate application
- Beneficial hemodynamics

#### • Low complication rate

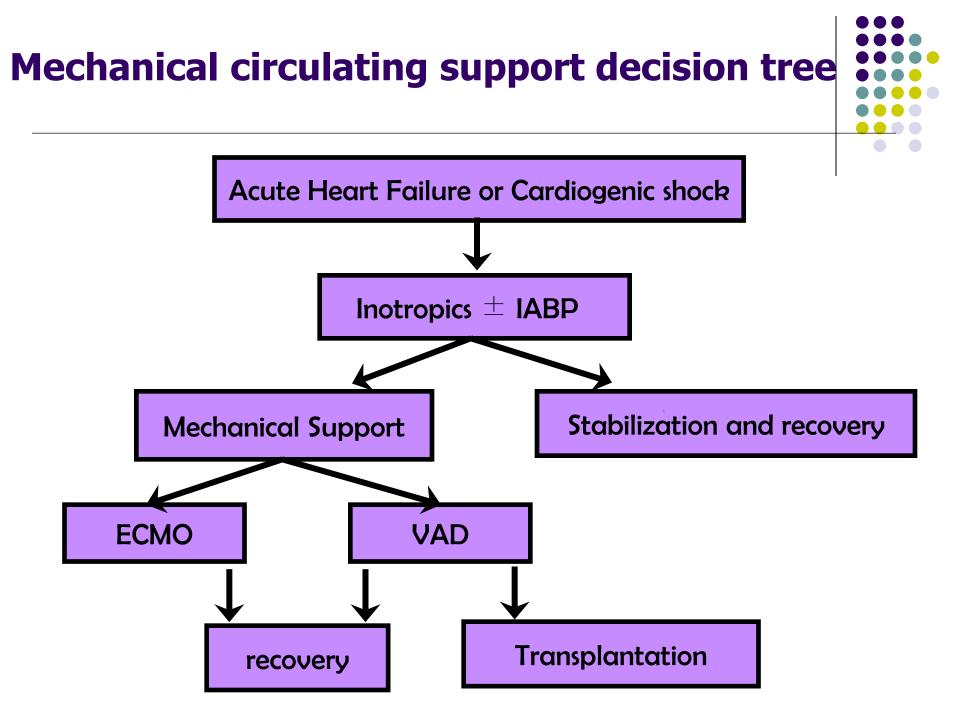
| Table 2. Comparison of Ambulatory Intraaortic Balloon Pump Cost to | "Standard" Ventricular Assist Device Costs |
|--------------------------------------------------------------------|--------------------------------------------|
|--------------------------------------------------------------------|--------------------------------------------|


|                                      | alerite Buileen Fuilip e |           |           |                   |
|--------------------------------------|--------------------------|-----------|-----------|-------------------|
| Variables                            | Patient 1                | Patient 2 | Patient 3 | Patient 4         |
| Number of days on device             | 46                       | 70        | 12        | 19                |
| Number of AIABP replacements         | 0                        | 4         | 0         | 1                 |
| Trial IABP cost                      | \$960                    | \$960     | \$960     | \$960             |
| AIABP initial cost                   | \$960                    | \$960     | \$960     | \$960             |
| AIABP replacement cost               | <b>\$</b> 0              | \$3,840   | \$0       | \$960             |
| Total AIABP cost                     | \$1,920                  | \$5,760   | \$1,920   | \$2,880           |
| Heartmate cost                       | \$70,150                 | \$70,150  | \$70,150  | \$70,150          |
| Heartmate console rental (\$284/day) | \$13,064                 | \$19,880  | \$3,408   | \$5,396           |
| Total Heartmate cost                 | \$83,214                 | \$90,030  | \$73,558  | \$75,546          |
| Heartmate VE cost                    | \$95,100                 | \$95,100  | \$95,100  | \$95,100          |
| Heartmate VE rental (none)           | <b>\$</b> 0              | \$0       | \$0       | <mark>\$</mark> 0 |
| Total Heartmate VE cost              | \$95,100                 | \$95,100  | \$95,100  | \$95,100          |
| Abiomed cost                         | \$13,100                 | \$13,100  | \$13,100  | <b>\$13,10</b> 0  |
| Abiomed console rental (\$900/day)   | \$41,400                 | \$63,000  | \$10,800  | \$17,100          |
| Total Abiomed cost                   | \$54,500                 | \$76,100  | \$23,900  | \$30,200          |
| Thoratec cost                        | \$80,500                 | \$80,500  | \$80,500  | \$80,500          |
| Thoratec console rental (\$284/day)  | \$13,064                 | \$19,880  | \$3,408   | <b>\$5,39</b> 6   |
| Total Thoratec cost                  | \$93,564                 | \$100,380 | \$83,908  | \$85,396          |

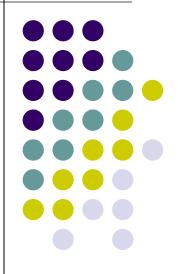




## **Ambulatory IABP**

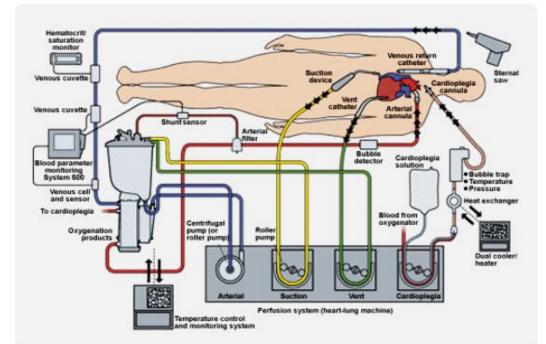




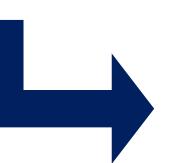


### **ACC/AHA IABP practice guideline**

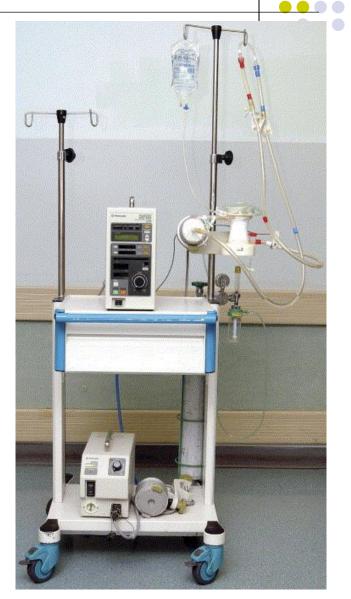


| Clinical situation                                                                                                                                                                                       | ACC/AHA recommendation | Level of<br>evidence |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|
| Cardiogenic shock (when cardiogenic shock<br>is not quickly reversed with pharmacological<br>therapy)                                                                                                    | Class I<br>→ Ila       | В                    |
| Recurrent ischemia/infarction (in the setting<br>of hemodynamic instability, poor LV<br>function, or a large area of myocardium at<br>risk)                                                              | Class I                | С                    |
| Unstable angina (severe ischemia that is<br>continuing or recurs frequently despite<br>intensive medical therapy or for<br>Hemodynamic instability in patients before<br>and after coronary angiography) | Class IIa              | С                    |
| CHF (it may be reasonable for the management of patients with refractory pulmonary congestion)                                                                                                           | Class IIb              | С                    |
| Polymorphic ventricular tachycardia<br>(refractory to medical management)                                                                                                                                | Class Ila              | В                    |



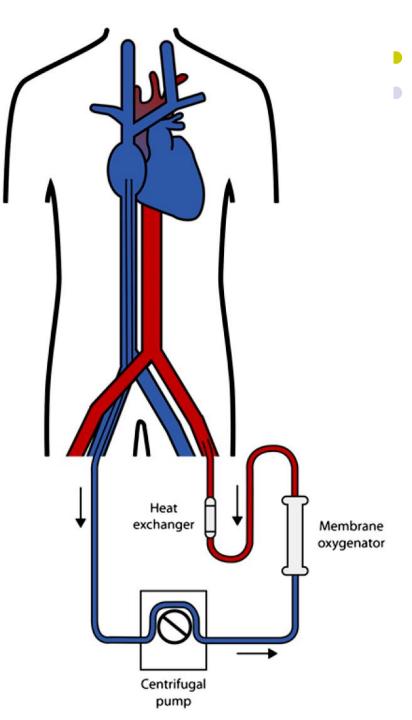


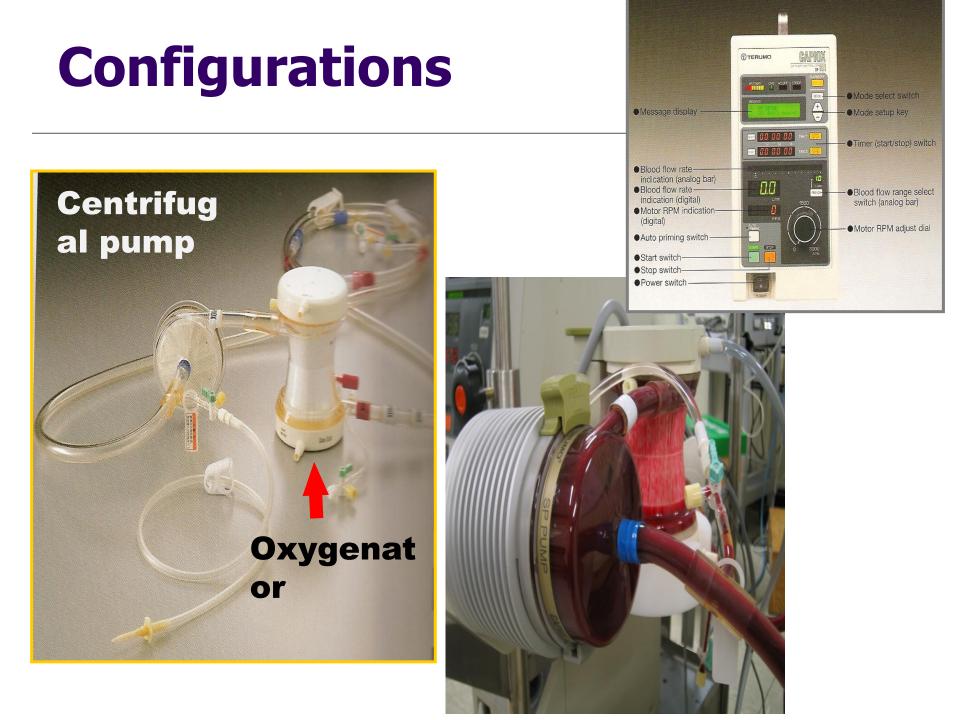







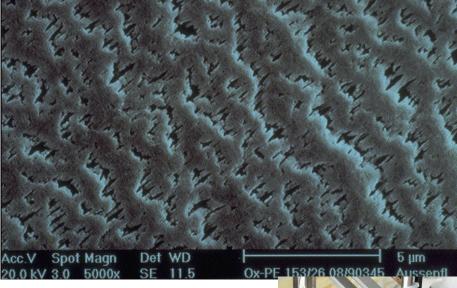


Quick, Compact, Simple, Safe







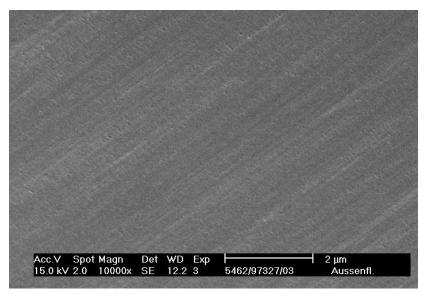

- Removed from the venous system
  - either peripherally via cannulation of a femoral vein or centrally via cannulation of the right atrium
- Oxygenated, and CO2 Extraction
- Returned back to the body
  - either peripherally via a femoral artery or centrally via the ascending aorta at physiologic perfusion pressures






# **Oxygenator membrane**



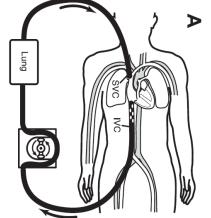

#### Microporous membrane surface

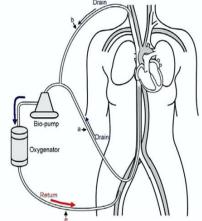






#### Diffusion membrane surface








- VA (Veno-arterial) ECMO for cardiac failure
  - Inflow; RA, SVC, IVC
  - Outflow; aorta, femoral a., carotid a.
- VV (Veno-venous) ECMO for respiratory failure
  - Inflow; IVC
  - Outflow; SVC or RA






# **Effects of ECMO**

- ECMO for heart
  - Support :
    - Improve systemic perfusion
  - Rest:
    - Decrease preload requirement
    - Decrease catecholamine
    - Decrease myocardial work

- ECMO for lung
  - Support :
    - O2 supply & CO2 removal
- Rest :
  - Reduce ventilator induced lung injury

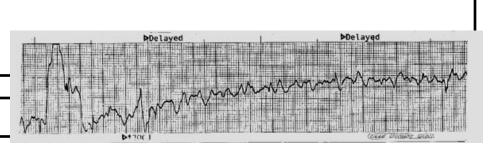


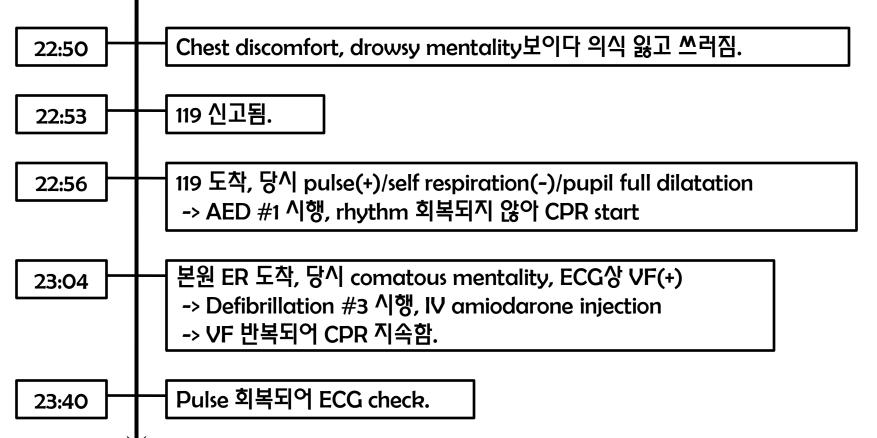
## Indications

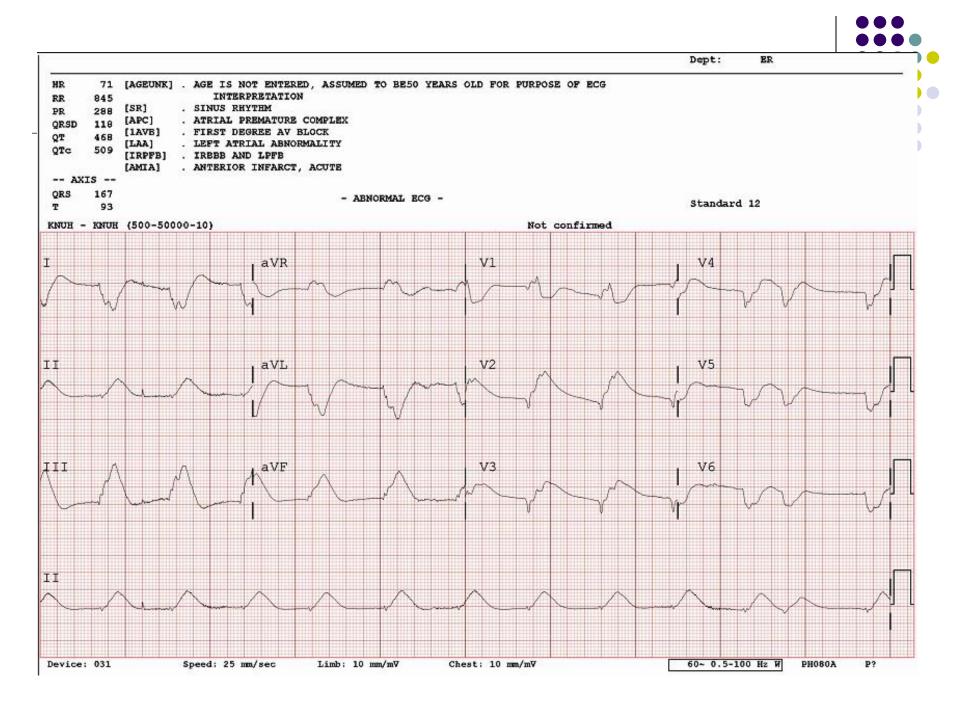


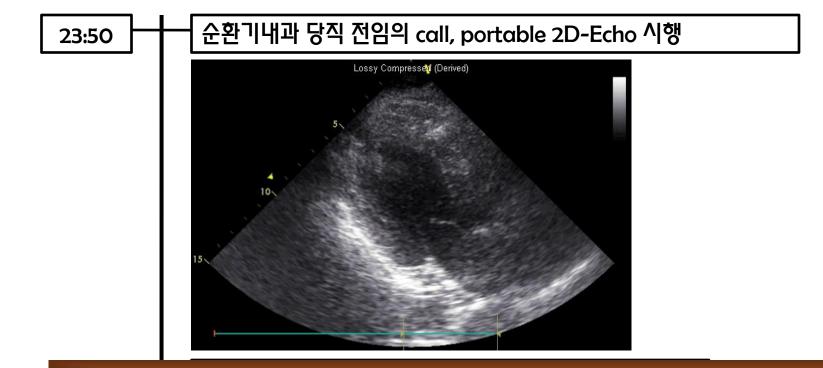
- Acute severe cardiac or pulmonary failure
  - potentially reversible and
  - unresponsive to conventional management
- Criteria for introducing PCPS
  - Difficulty in weaning from CPB during open heart surgery
  - Inadequate cardiopulmonary support even after IABP
  - Low blood pressure below 80 mmHg under full support by catecholamines
  - Oliguria/anuria (<1ml/kg/h)
  - Low cardiac output (<1.8 l/min/m2)</li>
  - Low PaO2 (<60mmHg)</li>
  - Uncontrollable VF/VT
  - Uncontrollable metabolic acidosis

# Indications


- Cardiac failure
  - Severe cardiac failure due to
    - Cardiomyopathy
    - Myocarditis
    - ACS
  - Cardiopulmonary resuscitation
  - Post-cardiotomy
  - Post-heart transplant


- Pulmonary failure
  - ARDS
  - Pneumonia
  - Trauma
  - Primary graft failure following lung transplantation

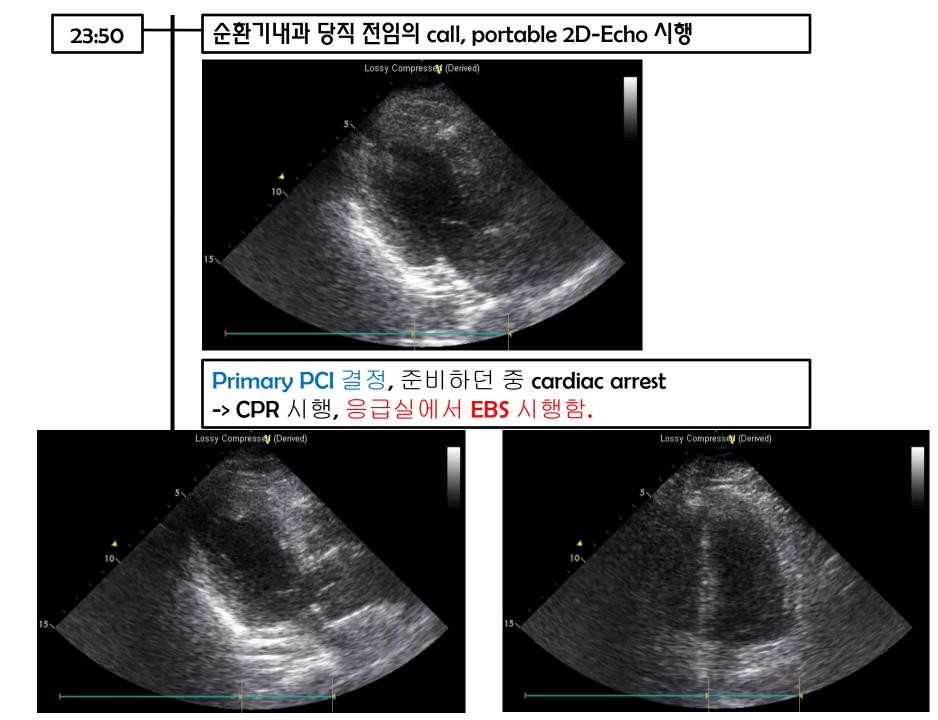

## CASE

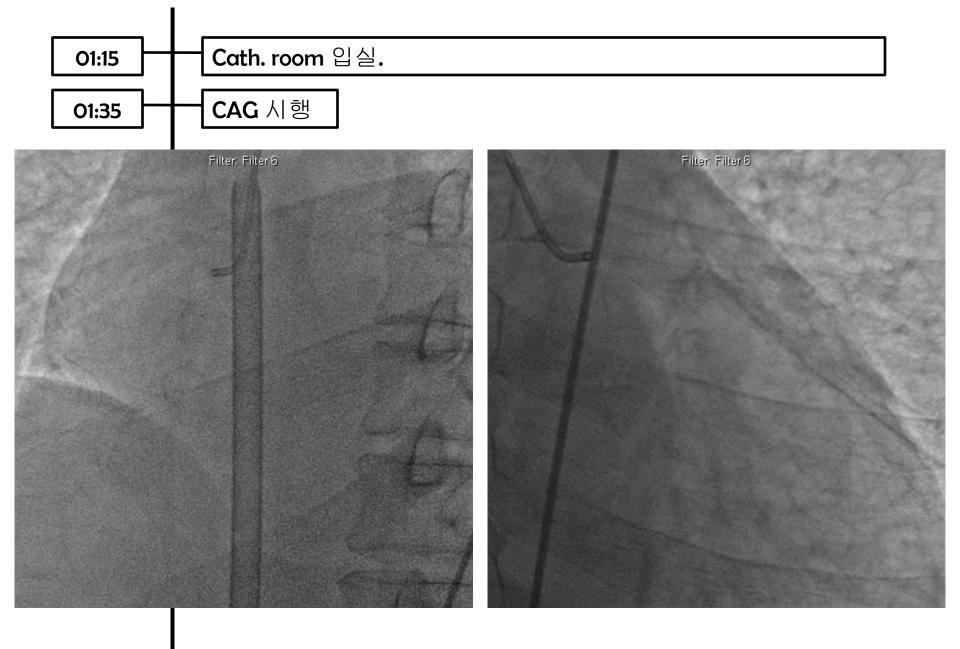

- 2011.05.25
- 46yrs, Male
- HTN/DM/dyslipidemia (-/-/+)

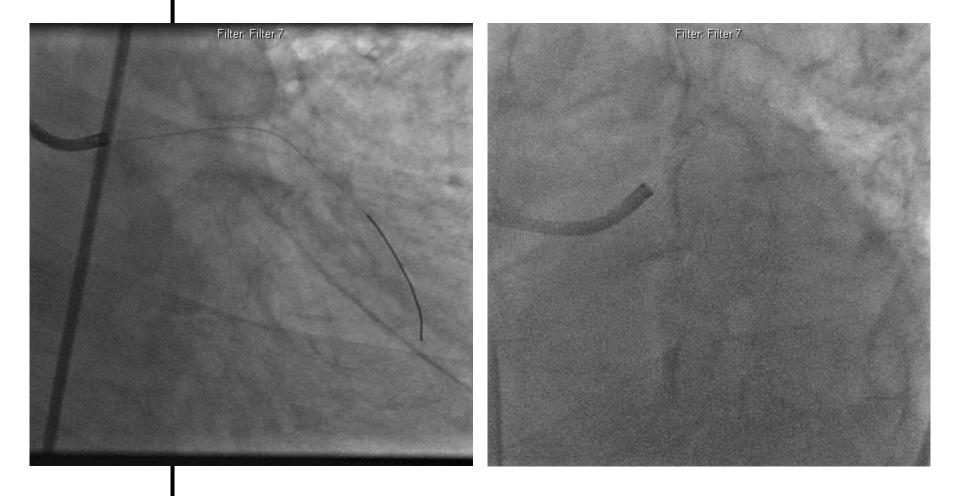










### After Cardiac arrest, what else can we do next?

Comatous mentality Wide QRS Very weak LV contractility

- 보호자에게 심장이 더 이상 뛰지 않음을 설명하고 돌아선다.
- 응급실에서 더 열심히 CPR을 계속 한다.
- CAG를 하기 위해 cath room으로 바로 이동한다.
- What else???







CCU 입실, MV, EBS, IABP, Inotropics keep



# Maintenance



- Respiratory point
  - Increasing the flow rate and FiO2 of the ECMO circuit, not by altering the FiO2 and PEEP on the ventilator
- Cardiac point
  - Minimize the use of inotropes
- Neurologic
  - Hypothermia

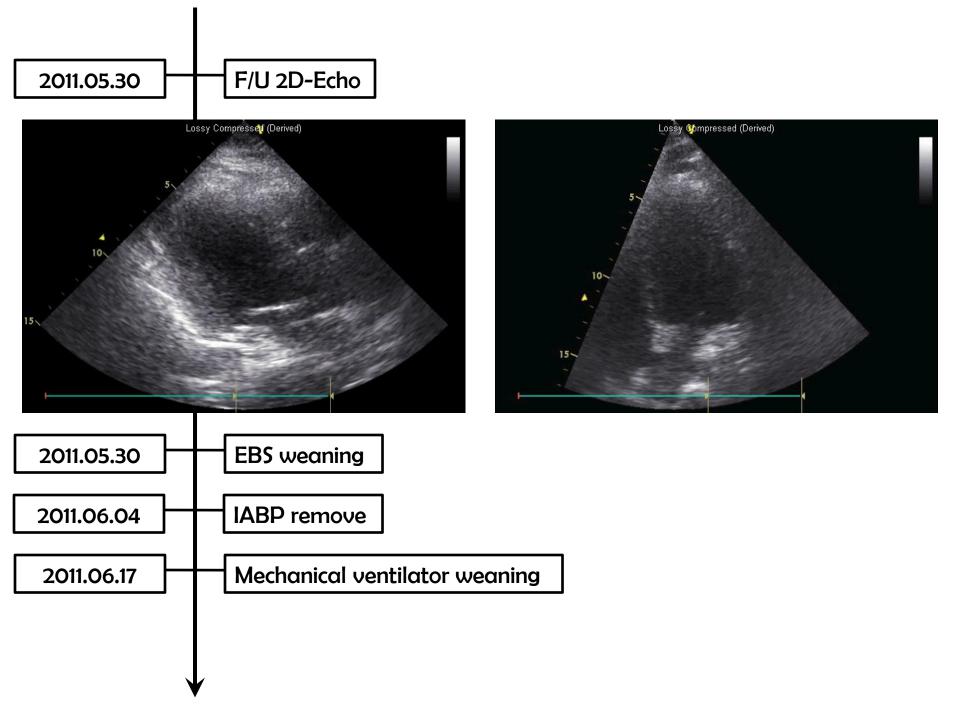


# Management



- Ventilator : rest setting
  - 4-10회/분, FiO2 <0.5, PIP <35cmH2O,
  - PEEP 10-15cmH2O
- Prone positioning ?
- Early tracheostomy
- Daily neurologic assessment
  - NSE 1, 3 day / EEG
- Enteral feeding is prefer
  - TPN order

### Maintenance




- MAP : 70-80mm Hg
- CVP : 6~8 mmHg, PCWP; 10~12mmHg
- Cardiac index : > 2.4 L/min/m2
  - Flow rate > 4 L/min, Pump RPM < 2500
- ACT : 160~200 s (bleeding 150 s)
- Hct > 35% (14<Hb<16, 40%<Hct<50%), platelet > 100,000
- PaO2 >100 mmHg, SaO2 > 90%
- V-line saturation 75-80% (SVO2 >60%)
- A-line saturation 100%

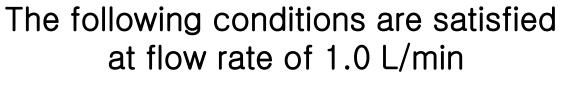
# Monitoring



- Continuously
  - MAP, Pulsation, CVP, mPAP, pulse oxymetry, bypass flow, SaO<sub>2</sub>, SvO<sub>2</sub>, body Temp
- Every 4-6 hrs
  - ABGA (pt, arterial catheter), VBGA
  - ACT, capillary refilling, (glucose)
- Every 12 hrs
  - Clot formation, cannular kinking & position
  - Calibration of monitoring devices, oxygenator
  - Distal perfusion
- On demand
  - TEE: ↑CVP, PAP, no pulsation, unexplained bypass flow 감소



failure

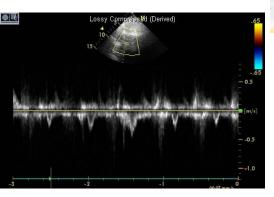

**Markers of circulatory** 

- (1) No metabolic acidosis
- (2) SVO2 >60%
- (3) LA: normal
- (4) TB (without hemolysis)<3.0 mg/dl (or AKBR: normal)</li>
- (5) Blood biochemistry: recovery from organic failure

(1) Wall motion improvement

**Markers of cardiac function** 

- (2) EF, %FS: improvement
- (3) Ejection time >200 ms
- (4) ETCO2= PaCO2
- (5) CI >2.0L/min<sup>-1</sup>/m<sup>-2</sup>
- (6) Pulse pressure

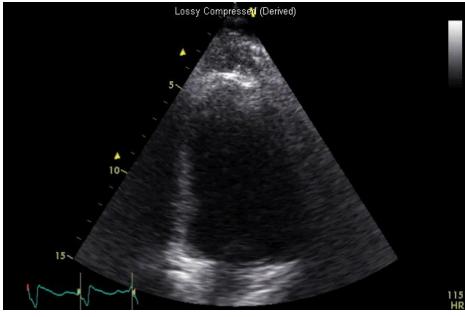


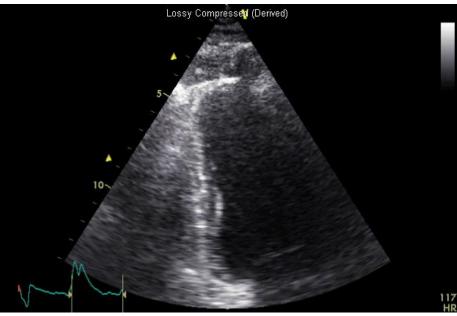


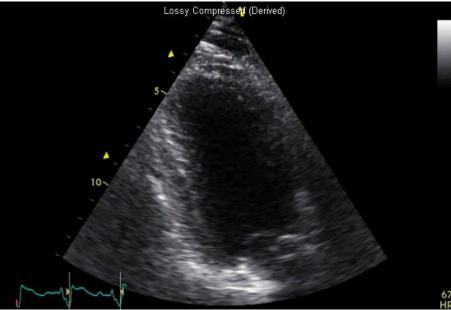

### **Pulse pressure / cET**



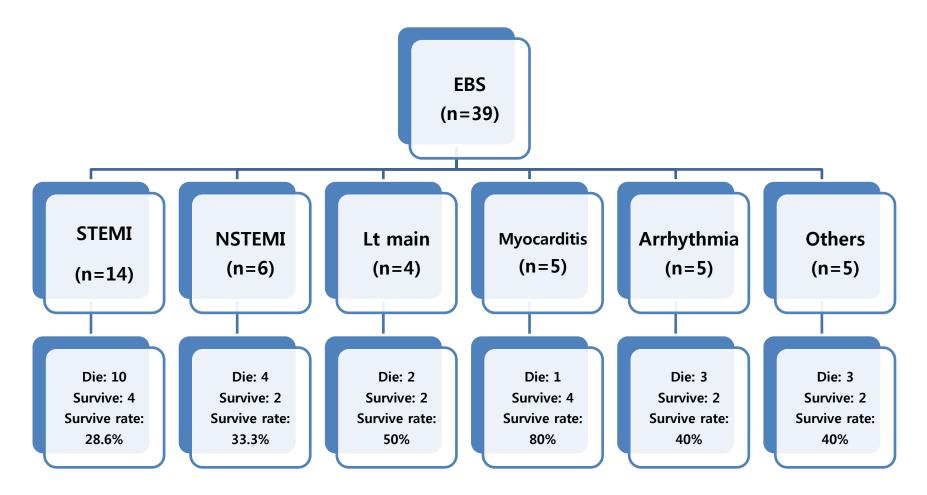




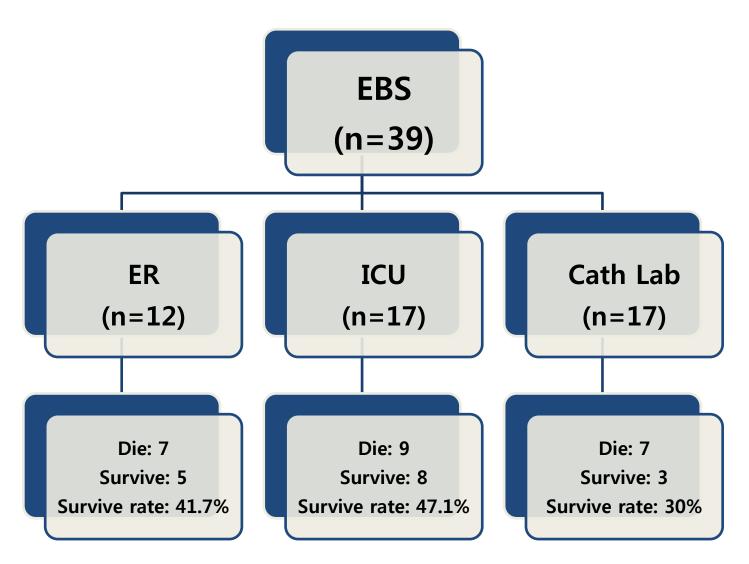




### 2011.06.10 퇴원 전 시행한 TTE








### Cause of cardiac arrest (KNUH EBS)



Other cause : no reflow during PCI, idiopathic pulmonary HTN, adriamycin induced CMP

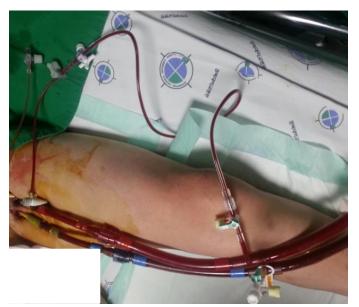
### EBS start site (KNUH EBS)



### **CPR time before PCPS**



| Author     | CPR <30 min CPR >30 min |              |  |
|------------|-------------------------|--------------|--|
| Hill       | 14/54 (25.9%)           | 8/56 (14.3%) |  |
| Wittenmyer | 16/63 (25.4%)           | 1/13 (7.7%)  |  |
| Willms     | 15/29 (51.7%            | 1/20 (5.0%)  |  |
| Hartz      | 1/19 (5.3%)             | 0/10 (0%)    |  |
| Cochran    | N/A                     | 2/3 (67%)    |  |


### **Contraindication of ECMO**

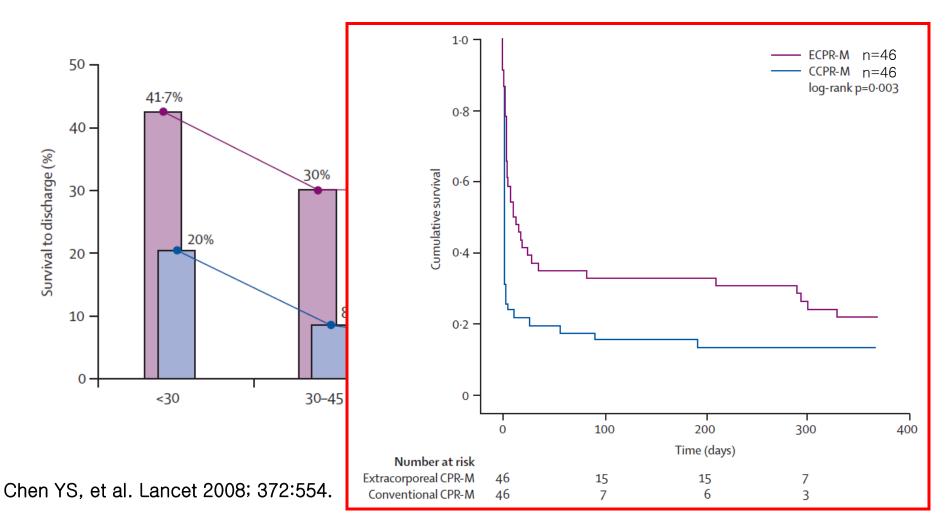
### ✓ "Impossibility" of organ recovery

- Disseminated malignancy
- Advanced age
- Graft vursus host disease (GVHD)
- Known severe brain injury
- Unwitnessed cardiac arrest or cardiac arrest of prolonged duration
- Aortic dissection or aortic regurgitation
- Bleeding

# Complications

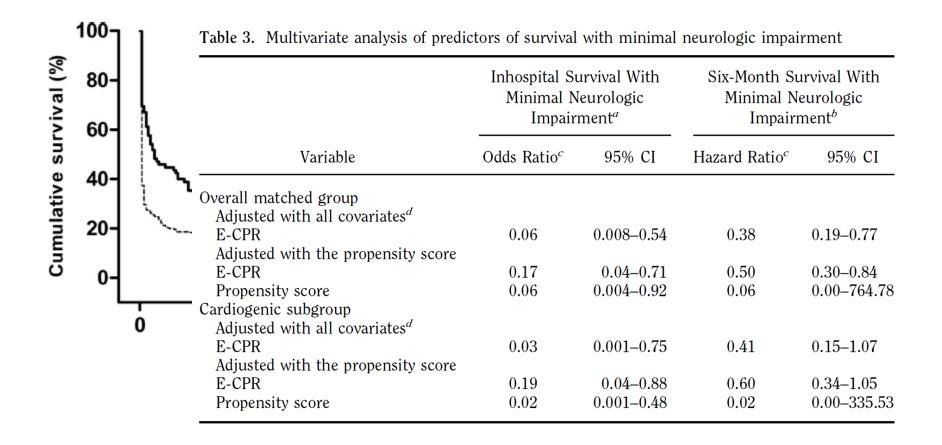
- Bleeding
  - Systemic heparinization is still advisable because of the risk of end organ damage from microthrombus and fibrin deposition
- Coagulopathy (consumption and dilution of factors)
- Non-pulsatile perfusion
  - kidneys, splanchnic circulation -> renal failure, GI bleeding
- Leg ischemia
- Air embolism, thromboembolism
- LV ballooning




# Survival >30 days



| Authors [ref. no.]                     | CA              | CS               | Р             | Т           | Н            | Misc      | Total          |
|----------------------------------------|-----------------|------------------|---------------|-------------|--------------|-----------|----------------|
| Hill et al. <sup>30</sup>              | 125/17          | 44/17            | 9/3           |             | 7/3          | 2/0       | 187/40         |
| Wittenmyer <i>et al.</i> <sup>36</sup> | 76/17           | 27/14            | 1/1           |             |              |           | 104/32         |
| Willms <i>et al.</i> <sup>31</sup>     | 68/17           | 13/3             |               |             |              |           | 81/20          |
| Reichman <i>et al.</i> 49              | 36/6            |                  |               |             |              |           | 36/6           |
| Hartz <i>et al.</i> 40                 | 27/1            | 3/3              |               |             | 2/0          |           | 32/4           |
| Phillips <i>et al</i> . <sup>50</sup>  | 18/5            |                  |               |             | 2/1          | 1/0       | 21/6           |
| Mooney et al. <sup>51</sup>            | 11/9            |                  |               |             |              |           | 11/9           |
| Overlie <sup>42</sup>                  | 35/8            |                  |               |             |              |           | 35/8           |
| Cochran <i>et al.</i> <sup>32</sup>    | 3/2             |                  |               |             |              |           | 3/2            |
| Kawahito <i>et al</i> . <sup>22</sup>  | 4/2             | 3/2              |               |             |              |           | 7/4            |
| Ohteki <i>et al.</i> <sup>38</sup>     | 2/2             | 1/1              |               |             |              |           | 3/3            |
| Hsieh <i>et al.</i> <sup>39</sup>      | 1/1             |                  |               |             |              |           | 1/1            |
| Wanner <i>et al.</i> 47                | 1/1             |                  |               |             |              |           | 1/1            |
| Sasako <i>et al.</i> <sup>52</sup>     |                 | 40/7             |               |             |              |           | 40/7           |
| Hata <i>et al.</i> <sup>29</sup>       |                 | 30/13            |               |             |              |           | 30/13          |
| Aiba <i>et al.</i> <sup>53</sup>       |                 | 26/5             |               |             |              |           | 26/5           |
| Yamashita <i>et al.</i> 43             |                 | 24/4             |               |             | 1/0          |           | 25/4           |
| Jacobs <i>et al</i> . <sup>18</sup>    |                 | 23/11            |               |             |              |           | 23/11          |
| Orime et al. <sup>54</sup>             |                 | 19/6             |               |             |              |           | 19/6           |
| Matsuwaka <i>et al.</i> <sup>55</sup>  |                 | 16/6             |               |             |              |           | 16/6           |
| Orime <i>et al.</i> <sup>56</sup>      |                 | 12/5             |               |             |              |           | 12/5           |
| von Segesser <sup>13</sup>             |                 | 11/9             |               |             |              |           | 11/9           |
| Sone <i>et al.</i> <sup>46</sup>       |                 | 10/7             |               |             |              |           | 10/7           |
| Kato <i>et al.</i> <sup>44</sup>       |                 | 9/7              |               |             |              |           | 9/7            |
| Shawl <i>et al.</i> <sup>57</sup>      |                 | 8/7              |               |             |              |           | 8/7            |
| Mitsui <i>et al.</i> 58                |                 | 8/2              |               |             |              |           | 8/2            |
| Yamashita <i>et al.</i> <sup>59</sup>  |                 | 3/3              |               |             |              |           | 3/3            |
| Aliabadi <i>et al.</i> ®               |                 | 2/2              |               |             |              |           | 2/2            |
| Yasu <i>et al.</i> <sup>61</sup>       |                 | 2/2              |               |             |              |           | 2/2            |
| lhno <i>et al.</i> <sup>62</sup>       |                 | 1/1              |               |             |              |           | 1/1            |
| Perchinsky <i>et al.</i> <sup>33</sup> |                 |                  |               | 6/3         |              |           | 6/3            |
| Hirose <i>et al.</i> <sup>34</sup>     |                 |                  |               | 1/1         | 20 E0/       |           | 1/1            |
| Sudo <i>et al.</i> <sup>35</sup>       | 21.6%           | 40.1%            | 1/1           |             | 38.5%        |           | 1/1            |
| Klofas <sup>37</sup>                   | 21.070          |                  | 1/0           |             | . / .        |           | 1/0            |
| Waters <i>et al.</i> 41                | 407/00 (04 00() | 005/407 (40.40() | 10/5 (11 50/) |             | 1/1          | 2/0 (00/) | 1/1            |
| Totals                                 | 407/88 (21.6%)  | 335/137 (40.1%)  | 12/5 (41.7%)  | 9/5 (55.6%) | 13/5 (38.5%) | 3/0 (0%)  | 777/239 (30.89 |


#### **Extracorporeal CPR vs Conventional CPR**

#### 10분이상 CPR : ECPR 59 vs CCPR 113



# ECPR (85) vs CCPR (321)

Samsung Medical Center Crit Care Med 2011;39:1-7



# **Factors of Poor Outcome**

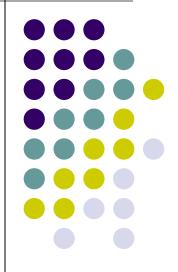
- Bleeding; mediastinal or peripheral
- Infection/sepsis on ECMO
- Multiple system organ failure; renal or liver
- Leg ishemia
- Duration of ECMO exceeding 8-10 days

### **IABP on ECMO**



- Pulsatile IABP + Non-pulsatile ECMO
- -> Increased coronary flow, decrease LV afterload
- -> The pulsatility created by using an IABP in combination with a non-pulsatile pump, is supposed to be more

effective at organ perfusion and at restoring






### • IABP

- Relatively low cost
- Easy and immediate application
- Beneficial hemodynamics
- Extracorporeal CPR may be effective for cardiac resuscitation in patients with cardiac arrest or cardiogenic shock who would otherwise not survive.
- Proper timing for proper patients

# 경청해 주셔서 감사합니다.

