New Antihypertensive Agents

2013.04.20.
Sang-Hyun Ihm. MD, PhD.
Division of Cardiology
The Catholic University of Korea
Contents

• Introduction
• New approaches
• RAAS blockers
• Dual Vasopeptidase inhibitors
• New molecules
• New combinations
• Conclusions
Introduction

• Several classes of anti-HTN drug → Successful Tx. of HTN is difficult
• Resistant HTN : 5-30% of the overall hypertensive population. → only about 10% of patients have true RH.
• Novel approaches, novel devices and novel drugs including either novel pharmacological classes or novel molecules
New approaches (1)

- Low salt diet in patients with resistant hypertension.

Pimenta E. Hypertension 2009;54: 475–481.
New approaches (2) : chronotherapy

Hermida RC. Hypertension 2008;51:69–76.
New approaches (3)
: Renal Nerve Denervation
Baroreceptor Activation Therapy
The Goals for anti-HTN drugs

- Improvement of BP
- Treatment of resistant hypertension
- Possibly also reduction of cardiovascular risk factors other than BP
 - myocardial hypertrophy, fibrosis, or increased arterial stiffness
RAAS blockers

AT1R blockers & AT2R agonist

- New ARB
 - Azilsartan medoxomil (2011, FDA & EMA)
 - AT1R blocker with PPAR-γ activity
 - Edarbi (20, 40, 80 mg (Valsartan : 320mg, Olmesartan medoxomil : 40 mg))

- AT2R agonist
 - vasodilatory, antiproliferative, and anti-inflammatory effects
 - Nonpeptide AT2R agonist compound 21
 - Animal studies (+ ARB)
Aldosterone synthase inhibitors

- Aldosterone antagonist (Mineralocorticoid receptor-blockers) → growing awareness
 - spironolactone and eplerenone
 - primary aldosteronism, resistant hypertension and CHF
 - the poor selectivity of spironolactone
 - → progesterone or testosterone-dependent adverse effects
 - Eplerenone → more selective inhibitor
 - cf.) both : hyperkalemia (particularly in CKD)

- LCI 699 (1st in-class aldosterone synthase inhibitor)
Hypertension

Effects of a Novel Aldosterone Synthase Inhibitor for Treatment of Primary Hypertension
Results of a Randomized, Double-Blind, Placebo- and Active-Controlled Phase 2 Trial

David A. Calhoun, MD; William B. White, MD; Henry Krum, MB, PhD; Weinong Guo, MD, PhD; Georgina Bermann, PhD; Angelo Trapani, PhD; Martin P. Lefkowitz, MD; Joël Ménard, MD

Background—LCI699, a novel inhibitor of aldosterone synthase, reduces serum aldosterone, and may have benefit in the treatment of hypertension.

Methods and Results—We performed the first double-blind, randomized trial with LCI699 in patients with primary hypertension. We randomized 524 patients to LCI699 0.25 mg once daily (n=92), 0.5 mg once daily (n=88), 1.0 mg once daily (n=86), and 0.5 mg twice daily (n=97); eplerenone 50 mg twice daily (n=84); or placebo (n=77) for 8 weeks. Adrenocorticotropic hormone (250 μg IV) stimulation testing was performed in a subset of patients to quantify the selectivity of LCI699 for aldosterone synthase compared with 11-β-hydroxylase. Reductions in clinic diastolic blood pressure were significant for LCI699 1.0 mg (−7.1 mm Hg; P=0.0012) and eplerenone 50 mg twice daily (−7.9 mm Hg; P<0.0001) compared with placebo (−2.6 mm Hg) but not other doses of LCI699. Significant reductions in clinic systolic blood pressure were observed with all doses of LCI699 (P<0.005 or better) and eplerenone (P<0.0001). All doses of LCI699 significantly reduced 24-hour ambulatory blood pressure compared with placebo (P<0.01). Adrenocorticotropic hormone stimulation of cortisol was suppressed in ~20% of subjects receiving LCI699 at a total daily dose of 1.0 mg. Safety and tolerability were similar among LCI699, placebo, and eplerenone.

Conclusions—Aldosterone synthase inhibition with LCI699 significantly lowered clinic and ambulatory blood pressure. A minority of subjects developed blunted adrenocorticotropic hormone–stimulated release of cortisol. These results support additional research to evaluate use of aldosterone synthase inhibition in primary hypertension and/or patients characterized by aldosterone excess.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00758524.
(Circulation. 2011;124:1945-1955.)

Key Words: blood pressure ■ hypertension ■ inhibitors ■ trials
LCI 699
(Aldosterone synthase inhibitor)
LCI 699
(Aldosterone synthase inhibitor)

• Effectively lowered clinic and 24-hour BP
• Generally well tolerated.
• Suppressed ACTH-stimulated release of cortisol in ~20% of patients.
• the development of more selective compounds to determine whether inhibition of aldosterone synthesis provides advantages over other classes of antihypertensive agents in terms of tolerability and clinical benefit.
• aldosterone excess such as resistant hypertension, congestive heart failure, post–myocardial infarction, and chronic renal failure.
Biosynthetic Pathway of Aldosterone

- **Cholesterol**
 - Side chain cleavage enzyme (CYP11A)
 - 17α-Hydroxylase (CYP17)
 - 3β-Hydroxysteroid dehydrogenase (3β-HSD)

- **Pregnenolone**

- **Progesterone**

- **11-Deoxycorticosterone**
 - 11β-Hydroxylase (CYP11B2)

- **Corticosterone**
 - 18-Hydroxylase (CYP11B2)

- **18-OH-corticosterone**
 - 18 Oxidase (CYP11B2)

Aldosterone synthase

- **17-OH-Pregnenolone**

- **17-OH-Progesterone**

- **11-Deoxycortisol**
 - 11β-Hydroxylase (CYP11B1)

Cortisol
Dual Vasopeptidase inhibitors

- Pharmacological targets for HTN
 1) ACE or AT1R
 2) Two other zinc metalloproteinase
 - Nephri lysin (neural endopeptidase (NEP))
 - Endothelin-converting enzyme (ECE)

- Dual Vasopeptidase inhibitors
- Anti-proliferative, anti-fibrotic and anti-inflammatory effects
Omapatrilat

- **NEP inhibitor**
 - ↑ ANP and related peptides
 - ↓ Angiotensin II
 - ↑ Vasodilation
 - ↑ Sodium excretion
 - ↑ Antihypertrophic effect
 - ↓ Vasoconstriction
 - ↓ Sodium retention
 - ↓ Hypertrophic effect

- **ACE**
 - ↓ Blood pressure
 - Cardiac performance
 - Target-organ effects

Omapatrilat

- **ACE**
- **Neprilysin**
- **Aminopeptidase (APP)**
Angioedema

- Ilepatril (Sanofi-Aventis) : Phase III
Angiotensin Receptor-Neprilysin Inhibitor (ARNI)

- NEP Inhibition
 - Natriuretic peptides (ANP, BNP)
 - Vasodilatation
 - Sodium excretion
 - Antihypertrophic effect
 - Antifibrotic effect
 - Metabolites
- AT1R blockade
 - Angiotensin 2
 - Vasoconstriction
 - Sodium retention
 - Pro-hypertrophic effect
 - Pro-fibrotic effect
 - Metabolites
- Dual-acting ARNI
 - Bradykinin
 - Aminopeptidase P

Synergistic effect on blood-pressure lowering and reduction of target organ damage
Risk of angio-oedema
LCZ696: a first-in class inhibitor of dual-acting ARNI

LCZ696 : Valsartan + AHU77

Angiotensinogen → Renin → Angiotensin I → ACE inhibitor → Angiotensin II → Angiotensin II type 1 receptor → Valsartan moiety → Metabolites → LCZ696

Natriuretic peptides (ANP, BNP) → ACE → Aminopeptidase P → Neutral endopeptidase (neprilysin) → Metabolites

Bradykinin → ACE inhibitor
LCZ696 dose-dependently enhances ANP levels and reduces BP

Rats infused with ANP

Conscious Sprague-Dawley rats infused with ANP (450 ng/kg/min; n=4 per treatment group)

†dTGR = double transgenic rats over-expressing renin and angiotensinogen (n=6 per treatment group)

Effects of LCZ696 on biomarkers of NEP inhibition and AT1R blockade

- Healthy volunteers received once-daily oral LCZ696 50, 200, 600 or 900 mg or placebo for 14 days
- cGMP measured as a biomarker of NEP inhibition and Ang II as a measure of AT1 receptor blockade

cGMP

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Placebo</th>
<th>LCZ696 50 mg</th>
<th>LCZ696 200 mg</th>
<th>LCZ696 600 mg</th>
<th>LCZ696 900 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>24</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Ang II

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Placebo</th>
<th>LCZ696 50 mg</th>
<th>LCZ696 200 mg</th>
<th>LCZ696 600 mg</th>
<th>LCZ696 900 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

*p < 0.05 vs placebo, n=8/group
Values are n-fold change from baseline (logarithmic scale) at the post-dose time points indicated
Ang, angiotensin; AT1, angiotensin II type 1; cGMP, cyclic guanosine monophosphate; NEP, nephrilysin
Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study

Luis Miguel Ruielope, Andrej Dukat, Michael Böhm, Yves Lacourcière, Jianjian Gong, Martin P Lefkowitz

Summary
Background LCZ696 is a first-in-class inhibitor of the angiotensin II receptor and neprilysin. We aimed to establish whether the dual actions of LCZ696 lead to further lowering of blood pressure, compared with the angiotensin-receptor blocker valsartan.

Methods 1328 patients aged 18–75 years with mild-to-moderate hypertension were randomly assigned (double-blind) to 8 weeks’ treatment in one of eight groups: 100 mg (n=156 patients), 200 mg (n=169), or 400 mg (n=172) LCZ696; 80 mg (n=163), 160 mg (n=166), or 320 mg (n=164) valsartan; 200 mg AHU377 (n=165); or placebo (n=173). The primary endpoint was the mean difference across the three single-dose pairwise comparisons of LCZ696 versus valsartan (100 mg vs 80 mg, 200 mg vs 160 mg, and 400 mg vs 320 mg) in mean sitting diastolic blood pressure during the 8-week treatment period. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00549770.

Findings 1215 patients completed the 8-week treatment period. The average reduction in mean sitting diastolic blood pressure across the doses of LCZ696 versus the appropriate comparator dose of valsartan showed significantly greater reductions with LCZ696 (mean reduction: −2.17 mm Hg, 95% CI −3.28 to −1.06; p<0.0001). The reduction in mean sitting diastolic blood pressure was significantly different for 200 mg LCZ696 versus 160 mg valsartan (−2.97 mm Hg, 95% CI −4.88 to −1.07, p=0.0023) and for 400 mg LCZ696 versus 320 mg valsartan (−2.70 mm Hg, −4.61 to −0.80, p=0.0055). LCZ696 was well tolerated and no cases of angio-oedema were reported; only three serious adverse events occurred during the 8-week treatment period, of which none was judged to be related to the study drug, and no patients died.

Interpretation Compared with valsartan, dual-acting LCZ696 provides complementary and fully additive reduction of blood pressure, which suggests that the drug holds promise for treatment of hypertension and cardiovascular disease.

Funding Novartis.
LCZ696: mild to moderate HTN

Lancet 2010; 375: 1255–66
PARADIGM-HF: Study Design

Single-blind run-in

- Enalapril 10 mg bid†
- LCZ696 100 mg bid
- LCZ696 200 mg bid

Double-blind randomized treatment

- LCZ696 200 mg bid
- N = 7,980 patients

Enalapril 10 mg bid

- On top of standard heart failure therapy (excluding ACEIs and ARBs)
- ~ 21 to 43 months (event-driven)

Testing tolerability to target doses of enalapril and LCZ696

† Enalapril 5 mg bid for 1–2 weeks followed by enalapril 10 mg bid as an optional starting run-in dose for those pts who are treated with ARBs or with low dose of ACEI

Primary outcome: CV death or heart failure hospitalization (event driven: 2,410 patients with primary events)

Clinicaltrials.gov; http://clinicaltrials.gov/ct2/show/NCT01035255; Accessed July 2010
PARADIGM-HF: key efficacy outcomes

- **Primary outcome measure:**
 - Time to first occurrence of either CV mortality or HF hospitalization

- **Secondary outcomes measures:**
 - HF symptoms and physical limitations measured by the clinical summary score of the Kansas City Cardiomyopathy Questionnaire (KCCQ)
 - All-cause mortality
 - Renal progression assessed by first occurrence of 50% decline in eGFR, >30 mL/min/1.73m2, or reaching end-stage renal disease

Clinicaltrials.gov; http://clinicaltrials.gov/ct2/show/NCT01035255
Endothelin Receptor Antagonist

- **Endothelin-1**: a powerful vasoconstrictor
- **Endothelin A and B receptor antagonists**: an additional therapeutic target to conventional antihypertensive treatment strategies
- **Darusentan (selective ETA receptor antagonist)**: Resistant hypertension (Phase III)
 - 100 mg ➔ lowered BP by 11.3/8.3 mmHg without reflex alteration in heart rate
 - Salt & water retention ➔ peripheral edema
Dual NEP-ECE inhibitor

- **Endothelin-converting enzyme (ECE)**
 - a key peptidase in the endothelin system
 - This enzyme cleaves inactive big endothelin-1 to active endothelin-1
 - binds to endothelin type-A receptors
 - exerts its vasoconstrictor effect
Dual NEP-ECE inhibitor

Vasopeptidase inhibitors (dual NEP-ECE inhibitors)

NEP inhibition

NEP

Metabolites

Natriuretic peptides (ANP, BNP)

Vasodilatation
Antihypertrophic effect
Antifibrotic effect

Sodium excretion

Endothelin 1

Endothelin 1

Vasoconstriction
Pro-inflammatory effect
Pro-fibrotic effect

Non-selective blockade of endothelin

Sodium and fluid retention

Synergistic effect on blood-pressure lowering and reduction of target organ damage

Risk of angio-oedema

Metabolites

Aminopeptidase P

Bradykinin

Big endothelin 1

Lancet 2012; 380: 591–600
Dual NEP-ECE inhibitor

- Block the pro-inflammatory and pro-fibrotic effects of endothelin-1
- Enhance the plasma concentrations of natriuretic peptides
- Overcome some vasoconstriction because neprilysin degrades endothelin-1.
- The natriuretic action of neprilysin can oppose the salt and fluid retention caused by non-selective blockade of endothelin receptor.
Dual NEP-ECE inhibitor

- **Daglutril** (Solvay Pharmaceuticals)
 - a potent inhibitor of combined neprilysin and endothelin converting enzyme.
 - in phase 2 clinical development in patients with hypertension.
AT1R and Endothelin A Receptor Antagonist

- **PS 433540**
 - dual-specificity AT1R and endothelin A receptor antagonists
 - more effective and better tolerated
 - Phase IIb (200 mg, 400 mg, and 800 mg)
 - reduction of SBP & DBP more effectively than placebo
 - the highest dose achieving a greater reduction than the AT1R blocker irbesartan
New molecules or compounds

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mechanism of action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azilsartan medoxomil</td>
<td>AT<sub>1</sub>R blocker with peroxisome proliferator-activated receptor γ activity</td>
<td>Approved in 2011 by EMA and FDA</td>
</tr>
<tr>
<td>LCI 699</td>
<td>Aldosterone synthase inhibitor</td>
<td>Phase II</td>
</tr>
<tr>
<td>LCZ 696</td>
<td>Dual AT<sub>1</sub>R blocker and neutral endopeptidase inhibitor</td>
<td>Phase II (phase III for heart failure)</td>
</tr>
<tr>
<td>PS 433540</td>
<td>Dual AT<sub>1</sub>R and endothelin A receptor blocker</td>
<td>Phase II</td>
</tr>
<tr>
<td>Daglutril</td>
<td>Dual endothelin-converting enzyme and neutral endopeptidase inhibitor</td>
<td>Phase III</td>
</tr>
<tr>
<td>PL 3994</td>
<td>Natriuretic peptide receptor agonist</td>
<td>Phase II (also phase II for congestive heart failure)</td>
</tr>
<tr>
<td>AR 9281</td>
<td>Soluble epoxide hydrolase inhibitor</td>
<td>Phase II (also phase II for diabetes mellitus type 2)</td>
</tr>
<tr>
<td>Lercanidine, modified release</td>
<td>Calcium-channel antagonist</td>
<td>Phase II</td>
</tr>
<tr>
<td>Clonidine, controlled release</td>
<td>Centrally acting α<sub>2</sub>-adrenergic agonist</td>
<td>Phase III</td>
</tr>
</tbody>
</table>

*Only compounds approved by the FDA in 2010–2011 or listed as clinically investigated by the Pharmaceutical Research and Manufacturers of America website on 1 December 2011 are included. Abbreviation: AT₁R, angiotensin II type 1 receptor; EMA, European Medicines Agency.

- AT2R agonist & ACE2 activator
- Renin-prorenin blocker
- Amnpeptidase-A inhibitors, Nitric Oxide donors

New targeting (1)

- Two angiotensin-based vaccines (In a phase 2a study)
 1) CYT006-AngQb
 - an angiotensin-2 vaccine (Cytos Biotechnology AG), significantly reduced BP in HTN Pts.
 2) PMD3117
 - an angiotensin-1 vaccine (Protherics Inc)
 - lowered blood pressure in rats, but not in a subsequent placebo-controlled clinical study.

 ➔ Further studies with modified immunogen or adjuvant are needed to boost antibody titres.
New targeting (2)

- Advanced glycation end-products (AGE)
 - targeting vascular ageing and isolated systolic HTN
 - AGE inhibitor (Aminoguanidine & pyridoxamine)
 - prevent the formation of AGE crosslinks
 - AGE breakers (alagebrium & pyridinium analogues TRC4186 and TRC4149)
 - catalytically break these crosslinks
 - a promising molecule to reduce aortic stiffness independently of BP in patients with isolated systolic hypertension. (not show benefit in patients)
Combinations newly approved or in clinical trials for the treatment of hypertension

<table>
<thead>
<tr>
<th>Combination</th>
<th>Mechanism of action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olmesartan, amlodipine, and hydrochlorothiazide</td>
<td>(\text{AT}_1\text{R}) antagonist, calcium-channel blocker, and diuretic</td>
<td>FDA and German(^\d) approval in 2010</td>
</tr>
<tr>
<td>Aliskiren, amlodipine, and hydrochlorothiazide</td>
<td>Renin inhibitor, calcium-channel blocker, and diuretic</td>
<td>FDA approved in 2010, EMA approved in 2011</td>
</tr>
<tr>
<td>Aliskiren and amlodipine</td>
<td>Renin inhibitor and calcium-channel blocker</td>
<td>FDA approved in 2010, EMA approved in 2011</td>
</tr>
<tr>
<td>Azilsartan medoxomil and chlortalidone</td>
<td>(\text{AT}_1\text{R}) antagonist and diuretic</td>
<td>Preregistration</td>
</tr>
<tr>
<td>Candesartan cilexetil and nifedipine</td>
<td>(\text{AT}_1\text{R}) antagonist and calcium-channel blocker</td>
<td>Phase II</td>
</tr>
</tbody>
</table>

*Only combinations approved by the FDA in 2010–2011\(^\d\) or listed as clinically investigated by the Pharmaceutical Research and Manufacturers of America\(^\circ\) on 1 December 2011 are included. *Approval via the European decentralized procedure. Abbreviation: \(\text{AT}_1\text{R}\), angiotensin II type 1 receptor; EMA, European Medicines Agency.

Conclusion (1)

- One novel antihypertensive—azilsartan—as well as several novel fixed-dose combinations of existing antihypertensive agents, including aliskiren double and triple combinations and an olmesartan triple combination were approved.

- An angiotensin II type 2 receptor agonist—compound 21—is in preclinical development.

- Novel antihypertensive compounds in clinical development include an aldosterone synthase inhibitor, a natriuretic peptide agonist, and a soluble epoxide hydrolase inhibitor.
Conclusion (2)

- Novel antihypertensives with dual activity, including an ARB & neutral endopeptidase inhibitor, an ARB & endothelin receptor A blocker, and an endothelin-converting enzyme & neutral endopeptidase inhibitor, are in clinical development.

- Upcoming fixed-dose combinations of antihypertensives are expected to include CCBs other than amlodipine, and diuretics other than hydrochlorothiazide (which are included in the current combinations).
<table>
<thead>
<tr>
<th>Drug</th>
<th>Preclinical stage</th>
<th>Phase 1-3</th>
<th>Pharmaceutical industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual vasopeptidase inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual neprilyn-ACE inhibitor</td>
<td>Ilepatril (AVE7688)</td>
<td>Phase 3</td>
<td>Sanofi-Aventis</td>
</tr>
<tr>
<td>Dual neprilyn-ECE inhibitor</td>
<td>Daglutril (SLV306)</td>
<td>Phase 2</td>
<td>Solvay Pharmaceuticals</td>
</tr>
<tr>
<td>Dual ARNI</td>
<td>LCZ696</td>
<td>Phase 3</td>
<td>Novartis Pharmaceuticals</td>
</tr>
<tr>
<td>Aldosterone-synthase inhibitor</td>
<td>LCI699</td>
<td>Phase 2*</td>
<td>Novartis Pharmaceuticals</td>
</tr>
<tr>
<td>Endothelin antagonist</td>
<td>Bosentan, Darusentan</td>
<td>Phase 2</td>
<td>Actelion Pharmaceuticals</td>
</tr>
<tr>
<td>Nitric oxide donor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric oxide-releasing drugs</td>
<td>Nitrosyl-cobinamide</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide-releasing hybridxs</td>
<td>Nitric oxide-losartan</td>
<td>Yes</td>
<td>Cayman Chemicals</td>
</tr>
<tr>
<td></td>
<td>Nitric oxide-telmisartan</td>
<td>Yes</td>
<td>Cayman Chemicals</td>
</tr>
<tr>
<td>CINOD</td>
<td>Naproxcinod</td>
<td>Phase 3</td>
<td>NicOx</td>
</tr>
<tr>
<td>Renin-prorenin blocker</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ACE-2 activator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminopeptidase-A inhibitor</td>
<td>QGC001</td>
<td>Yes</td>
<td>Quantum Genomics Corp</td>
</tr>
<tr>
<td>Vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin 1 vaccine</td>
<td>PMD3117</td>
<td>Phase 2</td>
<td>Protherics Inc</td>
</tr>
<tr>
<td>Angiotensin 2 vaccine</td>
<td>Gyt006-AngQb</td>
<td>Phase 2</td>
<td>Cytos Biotechnology AG</td>
</tr>
<tr>
<td>Dual AT1R/ETA antagonist</td>
<td>PS-433540</td>
<td>Phase 2</td>
<td>Ligand Pharmaceuticals</td>
</tr>
<tr>
<td>Novel dual ARB and partial PPAR-γ agonist</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AGE breaker</td>
<td>Alagebrium (ALT-711)</td>
<td>Phase 2*</td>
<td>Synvista Therapeutics</td>
</tr>
</tbody>
</table>

We have only listed molecules described in the text. ACE=angiotensin-I converting enzyme. ARNI=dual-acting angiotensin receptor-neprilyn inhibitor. CINOD=cyclo-oxygenase-inhibiting nitric-oxide donator. ARB=angiotensin-receptor blocker. PPAR-γ=peroxisome proliferator-activated receptor-γ. AGE=advanced glycation end-product. *Development stopped.

Table: New drugs for hypertension
Thank you very much for your attention