DILATREND®

Carvedilol : β-blockade and beyond

Donghoon Choi, M.D., Ph.D.

Division of Cardiology Severance Cardiovascular Hospital Yonsei University Health System

Beta Blockers

Classification of Beta-Blockers

■ 1st generation

- nonselective for β_1 or β_2 blockade
- no ancillary propertiesex) propranolol

■ 2nd generation

- selective for β_1 or β_2 blockade
- no ancillary properties
 - ex) bisoprolol, metoprolol, atenolol

■ 3rd generation

- selective or nonselective blockade
- has potentially important ancillary properties
 - ex) carvedilol, nebivolol

Beta Blockers

β-blockers are not an homogeneous group of agents

Potency and duration of action

\square Cardioselectivity (β_1 selectivity)

Intrinsic sympathomimetic activity (ISA)

Lipid solubility

Carvedilol : β blocker beyond β_1 -blockade

3rd generation vasodilating β-blocker

- **α** Carvedilol is a third-generation, combination β_1 -, β_2 -, α_1 -adrenergic receptor antagonist.
- Carvedilol has been marketed worldwide for the treatment of hypertension, chronic heart failure and coronary artery disease.
- History
 - In 1990, a first approval of carvedilol was obtained in Germany.
 - In 1994, carvedilol was marketed in Korea.
 - In 1995, carvedilol was marketed in USA.

Ref. Am J Cardiol, 2006;98(7A):1L-4L. R&D focus'carvedilol'

Carvedilol : β blocker beyond β_1 -blockade

Hemodynamic effect

Vasodilation

• α_1 -receptor blockade by carvedilol decreases peripheral vascular resistance.²⁾

Anti-oxidant activity

Potent antioxidant effect more than vitamin E

- Carvedilol is a potent anti-oxidant, 10-fold more than vitamin E.¹⁾
- Cavedilol's metabolites are 30 80 times more potent than carvedilol and up to 1000-fold more potent than vitamin E. ^{1), 3)}

Anti-proliferative & Anti-apoptotic activity

• Carvedilol in vitro and in vivo has been shown to have antiproliferative effects on smooth muscle cells⁴⁾

Anti-arrhythmic effect

- β_2 -receptor blockade may prevent arrhythmias and, consequently, sudden cardiac death.²⁾
- α_1 -receptor blockade by carvedilol reduces the potential for arrhythmias.²⁾

Ref. 1) Am J Cardiol, 1997;82(1A):41L-45L 3) Expert Opin Drug Metab Toxicol. 2010:6(2):237-250. 2) Expert Rev Cardiovasc Ther. 2009;7(5):483-498
4) Am J Hypertens 1998;11:155–225

Anti-Adrenergic Activity

[Potentially deleterious effects of the different adrenergic receptors in the progression of HF & remodeling] ¹⁾

Effects	β1	β2	α 1	Effects	βı	β2	α1
Positive inotropic	+++	++	+	Myocyte toxicity	+++	+	+
Positive chronotropic	+++	++	о	Tachyarrhythmias	++	++	+
Myocyte hypertrophy	+++	+	++	Vasoconstriction	О	-	++
Fibroblast hyperplasia	+++	+	NA	Sodium retention	о	о	++

Not only the β_1 receptor, but also the β_2 and α_1 receptor are linked to downstream cellular signaling pathways in cardiac remodeling.²⁾

• Consequently, blocking only the β_1 receptor, leaves the heart unprotected to remodeling signals triggered by stimulation of the other adrenergic receptors.²)

Ref. 1) Heart Fail Rev, 2004 ;9(2):123-130

2) Cardiovasc Drugs Ther, 2010;24:351-358

Carvedilol: β blocker beyond β_1 -blockade

Cardioprotective Effect

- Anti-Adrenergic Activity
 - In the Carvedilol Or Metoprolol European Trial (COMET), patients with heart failure treated with carvedilol had a 17% lower risk of death than those treated with metoprolol (P=0.0017).

- In heart failure patients, β_1 receptors are downregulated, whereas β_2 and α_1 receptors are upregulated. In the normal heart, β_1 and β_2 receptors are in a ratio of approximately 70:30, which becomes approximately 60:40 in heart failure patients
- When β_1 -selective β -blockers are used, β_2 and α_1 receptors become sensitized and upregulated. The selective overexpression of β_2 or α_1 receptors causes cardiac hypertrophy and congestive heart failure.

Anti-Adrenergic Activity

[Adrenergic & β -adrenergic receptor percentages in non-failing & failing human heart]

- Non-failing myocardium is dominated by the β_1 receptor subtype, whereas failing myocardium exhibits a mixture of receptor subtypes with β_2 and α_1 receptor subtype comprising approximately 50% of the total population.
- **I** In the failing heart, the $β_2$ receptor represents 35%-40% of the total β receptor population.
- These data would suggest that β_1 selective blocker may have inherent limitations in their ability to inhibit the adverse biological effects of elevated cardiac adrenergic drive in the failing human heart.

Anti-Adrenergic Activity

[Detrimental effects of sympathetic activation]

 Activation of the sympathetic nervous system specifically of cardiac sympathetic nerves, contributes to progression of heart failure and sudden death.

Anti-Adrenergic Activity

[Comparison of the effect on total body & cardiac norepinephrine spillover]

In heart failure patients carvedilol exerts a more potent anti-adrenergic effect than metoprolol during stress.

Ref. Cardiovasc Drugs Ther, 2010;24:351–358

Anti-Adrenergic Activity

	β_1 blockade	β_2 blockade	α ₁ blockade	ISA	Ancillary effects
Carvedilol	+++	+++	+++	-	+++ ^a
Metoprolol	+++	-	-	-	-
Bisoprolol	+++				
Nebivolol	+++	-	-	_	+ + ^b

a : anti-oxidant, anti-apoptotic, anti-endothelin

b : NO generation

Vasodilation

- Traditional β-blockers, such as atenolol, metoprolol, bisoprolol and propranolol, lower BP primarily by reducing cardiac output.²⁾
- By contrast, vasodilatory β -blockers, such as carvedilol, lower BP partly by reducing systemic vascular resistance via α_1 -inhibition.²⁾

Ref. 1) Cardiovasc Drugs Ther, 1996;10(2):113-117

2) Expert Rev Cardiovasc Ther. 2009;7(5):483-498.

Antioxidant Activity

[Effects on Fe++-vitamin C-initiated lipid peroxidation in rat]

 Carvedilol rapidly inhibited Fe⁺⁺-vitamin C-initiated lipid peroxidation measured as TBARS in rat brain homogenate.

* TBARS : thiobarbituric acid reactive substances

Antioxidant Activity

[Antioxidative effects of carvedilol vs atenolol]

- This is the first long-term randomized parallel-group study comparing markers of oxidative stress of 2 beta blockers in patients after an AMI. (n=204)
- The results indicate that carvedilol exerts a stronger antioxidant effect than atenolol, as assessed by the ox-LDL and vitamin E levels.

Ref. J Cardiovasc Pharmacol., 2007 Jan;49(1):27-32.

Carvedilol : β blocker beyond β₁−blockade ■ Metabolic Effect

Ref. 1) Vascular Health and Risk Management 2008:4(1) 23–30 2) JAMA. 2004;292:2227-2236

Carvedilol : β blocker beyond β₁-blockade Metabolic Effect

[Interplay between hemodynamic and metabolic alterations]

Ref. Am J Hypertens 1998;11:1258-1265

Carvedilol : β blocker beyond β_1 -blockade

Metabolic Effect

D Effect on insulin sensitivity

[Effect on insulin sensitivity in patients with HTN]

Change Above or Below Baseline (%)

Carvedilol : β blocker beyond β₁-blockade Metabolic Effect

GEMINI study : Hypertension with T2DM

[Change in HbA_{1C}]

Carvedilol treatment did not increase HbA1c levels (0.02%; p = 0.65), whereas metoprolol treatment significantly increased HbA1c levels from baseline (0.15%; p < 0.001).</p>

Ref. JAMA. 2004;292:2227-2236

Carvedilol : β blocker beyond β_1 -blockade **Metabolic Effect**

GEMINI study : Hypertension with T2DM

[Mean change from baseline at 5 Months]

13.2

* ACR : urinay albumin/creatinine ratio, HOMA-IR : homeostatic model assessment-insulin resistance, MAU : microalbuminuria

Ref. JAMA. 2004;292:2227-2236

Carvedilol : β blocker beyond β₁-blockade ■ Metabolic Effect

Effect on metabolic risk factors

[Metabolic effects in diabetic hypertensive patients]

Ref. Rev Cardiovasc Med, 2004;5 Suppl 1:S18-S27

Ann Intern Med., 1997 ;15;126(12):955-959.

Carvedilol : β blocker beyond β₁-blockade Metabolic Effect

Effect on new-onset of DM in COMET

[Development of new-onset diabetes]

- New-onset diabetes was diagnosed in 119/1,151(10.3%) vs 145/1,147(12.6%) in the carvedilol and metoprolol treatment groups (HR 0.78, p=0.048).
- Diabetic events occurred in 122/1,151 (10.6%) patients in the carvedilol group and 149/1,147 (13.0%) patients in the metoprolol group (HR 0.78, p=0.039).
 - * Diabetic events : diabetic coma, peripheral gangrene, diabetic foot, decreased glucose tolerance, hyperglycaemia

Ref. Heart 2007;93:968–973

Carvedilol : β blocker beyond β₁−blockade ■ Renal Effect

D Effect on chronic kidney disease

[Renal effects in chronic kidney disease (CKD)]

	Carvedilol	Atenolol	Propranolol	Metoprolol	Labetalol
Renal Vascular Resistance	Ļ	↔	1	Ļ	÷
Renal Blood Flow	1	\leftrightarrow	Ļ	\leftrightarrow	\leftrightarrow
GFR	1	\leftrightarrow	Ļ	\leftrightarrow	÷

Carvedilol : β blocker beyond β₁-blockade Renal Effect

Effect on microalbuminuria

Carvedilol : β blocker beyond β₁-blockade ■ Tolerability

COLA study

In COLA, 88% of all patients(n=808) with heart failure tolerated treatment with carvedilol, determined from the percentage of patients able to be maintained on a stable dose of therapy for 3 months after initiation.

Carvedilol : β blocker beyond β₁-blockade ■ Tolerability

D COLA II study

- Tolerability was defined as being on 6.25 mg bid of carvedilol at 6 months having received a total of 3 months therapy.
- Tolerability overall was 80% with age 70–75 years 84.3%, 76–80 years 76.8% and >80 years 76.8%.

Ref. Eur J Heart Fail. 2006;8(3):302-307

Conclusions

3rd generation vasodilating β-blocker

	Ideal Drug	Traditional β-Blockers	Carvedilol	α ₁ -Adrenoceptor Blocker	ACE Inhibitor or ARB	DHP-Calcium Antagonist	Thiazide Diuretic
Mean arterial blood pressure	↓	Ļ	\downarrow	Ļ	Ļ	Ļ	\downarrow
Total peripheral resistance	↓ ↓	(↑)	(↓)	\downarrow	Ļ	Ļ	\downarrow
Cardiac output	0	(↓)	0	0	0	0	0
Heart rate	0/↓	, t	0/↓	(↑)	0	(↑)	0
Activation of sympathetic	\downarrow	↓ ↓	\downarrow	(1)	\downarrow	1	↑
nervous system							-
Renin-angiotensin-	Ļ	↓ (\downarrow	0	Ļ	1	↑
aldosterone system							-
Lipid metabolism	0/+	-	0	0/+	0	0	_
Glucose metabolism	0/+	-	0	0	0/+	0	-

↑ increase (activation); ↓ decrease (inhibition); 0 no effect; + positive effect; - negative effect; () predominantly after acute administration.

- Several pathophysiologic/pharmacologic studies have documented that not all β-blockers are created equal.
- In particular, the new vasodilating compounds, such as carvedilol, have been shown to differ in their cardiovascular effects from traditional β-blockers.
- Carvedilol, in contrast to the classic β-blockers, maintains cardiac output, has little effect on heart rate, and decreases blood pressure by decreasing systemic vascular resistance.

Thank you