TEE in Adult Congenital Heart Disease: Indication and Guideline

Geu-Ru Hong

Yonsei University College of Medicine, Severance Cardiovascular Hospital

Adult Congenital Heart Disease

- Most common birth defect
- Most (over 85%) now living to adulthood

Table 1. Survival Rate from Year of Birth (1940–2000) byComplexity of Congenital Heart Disease

Year of birth	Simple	Moderate	Complex
1940–1959	90%	55%	10%
1960–1979	95%	65%	50%
1980–1989	95%	90%	80%

Common CHD in Adults

- Bicuspid aortic valve
- Atrial septal defect
- Ventricular septal defect
- Patent ductus arteriosus
- Coarctation of aorta
- ToF
- Miscellaneous
 - Ebstein's anomaly, corrected TGA,
 - Congenital coronary anomalies

Echocardiography in ACHD

- Preferred method for initial assessment of congenital heart disease
- Comprehensive assessment of LV function, valvular abnormalities
- Limitations
 - Poor image quality
 - Chest wall deformities
 - Extracardiac structures
 - Post-surgical assessment
 - poor assessment of RV size and function

Transesophageal Echocardiography

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Transesophageal Echocardiography

- First introduced in Mayo clinic (1987)
- Better image quality
- Relatively easy to perform
- Few complication
- 5-10% of patients with TTE require TEE

Seward JB et al, Mayo Clinic Proceedings, 1988;63:649-680

Transesophageal Echocardiography

TTE for Adult Congenital Heart Disease				
92.	Initial evaluation of known or suspected adult congenital heart disease			
93.	Known adult congenital heart disease with a change in clinical status or cardiac exam			
94.	Re-evaluation to guide therapy in known adult congenital heart disease			
98.	 Routine surveillance (≥1 y) of adult congenital heart disease following incomplete or palliative repair 	A (8)		
	 with residual structural or hemodynamic abnormality 			
	• Without a change in clinical status or cardiac exam			
TEE as Initial or Supplemental Test—General Uses				
99.	 Use of TEE when there is a high likelihood of a nondiagnostic TTE due to patient characteristics or inadequate visualization of relevant structures 	A (8)		
101.	Re-evaluation of prior TEE finding for interval change (e.g., resolution of thrombus after anticoagulation, resolution of	A (8)		
100	vegetation after antibiotic therapy) when a change in therapy is anticipated			
103.	 Guidance during percutaneous noncoronary cardiac interventions including but not limited to closure device placement, radiofrequency ablation, and percutaneous valve procedures 	A (9)		
104.	Suspected acute aortic pathology including but not limited to dissection/transsection	A (9)		
TEE as Initial or Supplemental Test—Valvular Disease				
106.	Evaluation of valvular structure and function to assess suitability for, and assist in planning of, an intervention	A (9)		
108.	 To diagnose infective endocarditis with a moderate or high pretest probability (e.g., staph bacteremia, fungemia, prosthetic heart valve, or intracardiac device) 	A (9)		
TEE as Initial or Supplemental Test—Embolic Event				
109.	 Evaluation for cardiovascular source of embolus with no identified noncardiac source 	A (7)		
TEE as Initial Test—Atrial Fibrillation/Flutter				
112.	 Evaluation to facilitate clinical decision making with regards to anticoagulation, cardioversion, and/or radiofrequency ablation 	A (9)		

SEVERANCE CARDIOVASCULAR HOSPITAL

Indications

- TTE is inconclusive
- Potential new information obtained by TEE is important
- Cardiovascular structures not seen well on TTE: LAA, Pulmonary veins, atrial septum, thoracic aorta
- Best available image quality is of crucial importance: infective endocarditis, assessment of prosthetic valves

Flachskampf FA et al., Eur J Echocardiogr 2010;11,557-576

Indications for TEE

Oh JK et al. The Echo Manual. 3rd edition

Indications

- Cardiac source of embolism evaluation
- Infective endocarditis
- Aortic dissection, aortic aneurysm
- Atrial fibrillation

Increasing number of patients with A fib, TEE guided cardioversion, ablation procedure

- Valvular disease, Prosthetic valve evaluation
- Cardiac mass

Flachskampf FA et al., Eur J Echocardiogr 2010;11,557-576

Routine TEE Views

1. Transesophageal (TE) Views

YONSEI UNIVERSITY COLLEGE OF MEDICINE

T: 37.0C T< 37.0C

Morphologic evaluation of AV (Vegetation, 2D planimetry...)
LA and LAA for thrombi swirling

0 43 180

BP140/82

T: 37.0C T: 37.7C

> 0 43 180 BP140/82

JPEG

JPEG

- Analogous to the parasternal long-axis view - 2D and Color Doppler evaluation of MV and AV

 $\widehat{\mathbb{S}}$

Best view to evaluate the PFO, ASD, SEC
Evaluate PFO with agitated saline test

Shunt evaluation: Agitated saline test

VALSALVA

Routine TEE Views

2. Examination of the aorta

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Alternative Views

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Pulmonary veins

Lt. pulmonary veins

Rt. pulmonary veins

SV4.0mm 3.6cm

> -6! cn -- 80 --- 60

- cm/: - -20 - -40

58bpm

75mm/s

Coronary arteries

Pulmonary artery bifurcation

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

JPEG

- Good for evaluation of venous return, atria, AV valves, and the left ventricular outflow tract
- Mid-esophageal (ME) four-chamber and bicaval views good for atrial septum by 2D
- ME 4-chamber and transgastric mid-short axis to assess for VSDs
- Essential in intra-operative repair
- Imaging assistance during device intervention

TEE in ACHD

- Preferred method in the following cases:
 - ASD, PFO
 - Bicuspid AV
 - Mitral valve regurgitation
 - Ebstein's anomaly
 - Fontan assessing for right atrial thrombus, obstruction
- Device intervention
 - ASD, VSD, PFO closure

- Confirm definitive congenital anomaly
- Find other associated congenital anomaly
- Decision of treatment strategy
- Assistance of intervention or operation

- Confirm definitive congenital anomaly
- Find other associated congenital anomaly
- Decision of treatment strategy
- Assistance of intervention or operation

27 year-old man with DOE

LVEDD = 96mm LVEF = 32% by biplane

27 year-old man with DOE

27 year-old man with DOE

73 HR

Congenital quadracuspid AV with sever AR

55 year-old man with dyspnea

LVEDD = 76mm LVEF = 61%

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Subarterial VSD with Severe AR due to prolapse of RCC

65 year-old woman with stroke

Angiography

Kommerell's diverticulum

SEVERANCE CARDIOVASCULAR HOSPITAL

Lt side SVC

- Confirm definitive congenital anomaly
- Find other associated congenital anomaly
- Decision of treatment strategy
- Assistance of intervention or operation

48 year-old woman with DOE

Endocardial cushion defect

Partial AVSD with cleft mitral valve

52-year-old woman with DOE

1 year ago

Present

Agitated Saline Injection

(•<u>•</u>)

Saline bubble test

Dilated Coronary Sinus with Significant Lt to Rt shunt

Unroofed coronary sinus

20-year-old man with DOE

Phx

- Congenital pulmonary artery malformation (출생시)
- Pulmonary hypertension (군입대전)
- Pulmonary valvular stenosis
- PI
 - 출생시 폐동맥 기형 진단 받고 7세까지 추적관찰했던 과 거력 있었으며, 군 입대전 폐고혈압, 폐동맥 판막 협착증 진단 받은 과거력 있는 분임
 - 군 입대후 숨찬 증상으로 훈련 수행에 제약 있어 다시 검사위해 본원 방문

Sinus venosus ASD

SEVERANCE CARDIOVASCULAR HOSPITAL

- Confirm definitive congenital anomaly
- Find other associated congenital anomaly
- Decision of treatment strategy
- Assistance of intervention or operation

Echocardiography and cardiac interventions

Cardiac interventions

Technology/costs Choosing procedure and technical requirements Image quality / temporal and spacial resolution Experience / Learning curve

Echocardiography and cardiac interventions (procedures with 2D/3D TEE guidance)

Anesthetic approach		Intervention procedure with TEE	Total
		PFO Closure	29
Anesthesia with Intubation	100/	ASD Closure	28
	49%	LAA Closure	17
		Periprosthetic leak closure	10
Sedation	45%	TAVI	6
	10/0	Balloon valvuloplasty	4
		Biopsy intracardiac mass	3
No sedation	6%	Alcohol Septal Ablation in HOC	2
		Aortic endoprosthesis	2
			101

SEVERANCE CARDIOVASCULAR HOSPITAL

Echocardiography and cardiac interventions

Guiding interventional procedures

Table 1 Interventional procedures: use of echocardiogra	phy for	guidance
---	---------	----------

Interventional Procedure	TTE	TEE	ICE
Transseptal catheterization	+	(++)	++ (radial or phased array)
PMBV	++	(+++)	++
Transcatheter closure of ASD, ventricular septal defect, and PFO	+	++	++ (phased array)
Alcohol septal ablation in HOCM	++	++	-
Percutaneous mitral valve repair	+	(+++)	+
Percutaneous left ventricular assist device placement	-	++	++
Percutaneous stented aortic valve prosthetic placement	-	(+)	+
Balloon or blade atrial septostomy	++	++	++
Placement of LAA occlusion devices		(++)	++
Myocardial and intravascular biopsy	++	++	++ (phased array)
Congenital heart disease applications (completion of Fontan procedure, coarctation repair)	+	+	+
Placement of aortic endograft	-	-	+ (radial or phased array)

-, No documented role or benefit in the literature; +, anecdotal reports of use and benefit exist, but further study is needed to delineate; ++, advantages favor use when available; +++, clearly documented benefit or role.

ASE RECOMMENDATIONS FOR CLINICAL PRACTICE Echocardiography-Guided Interventions; *Silvestry, JASE, Mar 2009*

F/25 with DOE

3D TEE - Multiple ASD

40-year-old woman with DOE

ASD secundum : 1.6cm Qp:Qs = 1.98

.65

Secundum ASD : 1.9cm

Secundum ASD : 1.9cm Unroofed coronary sinus

43-year-old man with sudden aphasia

- ✓ Past History: Hypertension (–), DM (–), Smoking (–)
- ✓ Family History: None
- ✓ Review of System:

Aphasia (+), Transient right side weakness (+)

Physical Examination:

BP 152 / 92 mmHg, PR 118 bpm, RR 17 / min Ht. 187 cm, Wt. 115 kg, BMI: 33 kg/m² Motor grade V/V on upper/ lower extremities Sensory: Intact

Brain MRI

Acute infarct, left MCA territory Intraluminal thrombus at left distal MCA area

TR Vmax = 3.5 m/s Estimated RVSP = 60 mmHg

CHEST CT

Low Extremities CT

Source of embolism in this man..

PFO device closure

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Take home massage

- TEE is useful when TTE is inconclusive
- Can visualize cardiovascular structures not seen well on TTE: (LAA, Pulmonary veins, atrial septum, thoracic aorta)
- TEE can provide imaging assistance for intervention

SEVERANCE HOSPITAL

CARDIOVASCULAR HOSPITAL

Thank You For Your Attention !

